摘要:【目的】探索施用氮肥對提高植物抗旱性的影響?!痉椒ā恳愿珊祬^(qū)重要造林樹種頭狀沙拐棗(Calligonum caput-medusae)幼苗為研究對象,采用盆栽試驗,設置兩組水分處理(虧缺供水和正常供水)和兩組氮肥處理(未施氮和施氮),測定幼苗同化枝的生理生化指標?!窘Y(jié)果】(1)同正常供水相比,虧缺供水下的幼苗同化枝相對含水量(RWC)、正午同化枝水勢(Ψm)、最大氣孔導度(gs)、葉綠素含量(Chl)、表觀量子效率(Φ)和可溶性糖(SS)含量顯著降低;而脯氨酸(Pro)含量顯著增加;(2)同未施氮組相比,施氮減緩了虧缺供水和正常供水下頭狀沙拐棗幼苗同化枝相對含水量的下降,但不顯著;同正常供水比,虧缺供水下施氮降低了頭狀沙拐棗幼苗的同化枝水勢;(3)正常供水下,施氮提高了幼苗Pro、SS含量,而丙二醛(MDA)含量顯著降低(Plt;0.05);虧缺供水下,施氮提高了超氧化物歧化酶(SOD)含量、Pro含量和SS含量(Plt;0.05),而MDA含量顯著降低(Plt;0.05)。
【結(jié)論】沙拐棗幼苗生理活性受土壤水分有效性的影響,而施氮有助于降低干旱脅迫造成的影響。施氮提高了虧缺供水和正常供水下頭狀沙拐棗幼苗的抗氧化酶活性和細胞溶質(zhì)濃度,有助于頭狀沙拐棗幼苗降低氧化應激反應并減少損傷,增加滲透調(diào)節(jié)物質(zhì)。
關鍵詞:頭狀沙拐棗;施氮;抗旱性;生理生化
中圖分類號:S511.2文獻標志碼:A文章編號:1001-4330(2024)09-2330-11
0引 言
【研究意義】植樹造林是干旱、半干旱區(qū)防治荒漠化的一種重要手段[1]。但幼苗在造林后,容易暴露于缺水環(huán)境中,出現(xiàn)干旱脅迫或死亡[2,3]。探討氮肥在提高幼苗抗旱性和維持存活中的作用,對幼苗撫育管理有重要意義?!厩叭搜芯窟M展】由于干旱地區(qū)蒸發(fā)量高降水量低,水分通常限制植物的初級生產(chǎn)力。干旱脅迫引發(fā)的植被退化將進一步導致土地沙化和荒漠化。植樹造林有助于生態(tài)恢復和提供多樣的生態(tài)系統(tǒng)服務[1],干旱荒漠區(qū)土壤貧瘠,植物生長經(jīng)常受到養(yǎng)分限制[4]。土壤缺氮會使葉片的葉綠素含量降低,光合作用能力下降,抑制植物的生產(chǎn)力[5]。此外,氮受限可能會顯著影響植物的抗旱性[6]。而人工施加氮肥可以促進幼苗早期的生長,防止細胞膜損傷和增強滲透調(diào)節(jié),增加葉綠素含量、凈光合速率,緩解養(yǎng)分脅迫,從而提高水分利用效率[4]。由此可提高植物對貧瘠土壤的適應能力,增強植物對干旱脅迫的耐受性。在干旱脅迫下植物的光合作用受損、滲透調(diào)節(jié)物質(zhì)可溶性糖(soluble sugar, SS)和脯氨酸(proline, Pro)積累增加[4]。此外,植物受到干旱脅迫時,活性氧(reactive oxygen species, ROS)會過量產(chǎn)生,如超氧離子(superoxide anion, O2-·)和丙二醛(malonic dialdehyde, MDA),會導致脂質(zhì)過氧化,對植物細胞蛋白質(zhì)、脫氧核糖酸(desoxyribonucleic acid, DNA)和脂質(zhì)造成損傷,進而抑制植物生長[7]。但植物細胞可通過增加超氧化物歧化酶(superoxide dismutase, SOD)來應對干旱脅迫,保護其不受ROS的傷害[8-10]。
【本研究切入點】蓼科沙拐棗屬(Calligonum mongolicum Turcz)是干旱荒漠地區(qū)防風固沙主要造林樹種[11]。頭狀沙拐棗(Calligonum caput-medusae)是一種典型的旱生小灌木,具有耐干旱、高溫、瘠薄和適應流沙的特性,在我國西北干旱、半干旱地區(qū)被廣泛用于防風固沙和生態(tài)修復[12-13]。有關沙拐棗屬植物抗旱性的研究較多,大多數(shù)集中在不同品種抗旱性評價[14-17],以及不同水分條件下生理生態(tài)響應方面[18-20],但有關施加氮肥能否提高沙拐棗抗旱性的研究較少。【擬解決的關鍵問題】以干旱區(qū)重要造林樹種頭狀沙拐棗(Calligonum caput-medusae)幼苗為研究對象,采用盆栽實驗,設置四組處理:虧缺供水下未施氮(N0)、虧缺供水下施氮(N1)、正常供水下未施氮(N0)、正常供水下施氮(N1),測定幼苗同化枝的生理生化指標,探討施加氮肥對沙拐棗抗旱性的影響。
1材料與方法
1.1材 料
1.1.1試驗區(qū)概況
試驗地位于新疆阜康荒漠生態(tài)系統(tǒng)國家野外科學觀測研究站 (87°56′E,44°17′N, 475 m asl)。試驗區(qū)屬溫帶大陸性氣候,年平均氣溫6.6 ℃,年均降水量約164 mm,年蒸發(fā)量為2 000 mm。土壤質(zhì)地為風沙土,沙土粒徑為0~500 mm,粒徑組成為:1.3%粘土13.7%壤土和85%砂[21],土壤pH值為9.5[22],土壤容重為1.53 g/cm-3[23],土壤飽和含水率為42.8%[24]。
1.1.2沙拐棗幼苗
試驗材料選自中國科學院吐魯番沙漠植物園(42°51′N,89°11′E,80 m asl)2年生頭狀沙拐棗幼苗,并于2019年4月移栽至阜康荒漠生態(tài)系統(tǒng)國家野外科學觀測研究站遮雨棚下。將頭狀沙拐棗幼苗種植于裝有荒漠土的花盆中(盆高50 cm,上徑34 cm,下徑26 cm)。每盆移植2~3棵幼苗,成活后每盆留1株。
1.2方 法
1.2.1試驗設計
幼苗經(jīng)過一個半月生長后,施加水、氮肥處理,處理20 d后開始試驗數(shù)據(jù)采集。水分處理分為正常供水和虧缺供水,正常供水是以土壤含水量2%作為參考基準,利用花盆容積和土壤容重計算花盆正常供水量為1 000 mL[21],虧缺供水量為正常供水量的一半,即500 mL。每周澆水2~3次。每組水分處理設2種施肥處理:N0(未施氮);N1(施氮,使用含氮量為35%硫磺包膜尿素[25];施肥量參考中國北方大氣氮沉降量3.5 gN/(m2·a),根據(jù)花盆的上表面積換算出每盆需要供應0.91 g 硫磺包膜尿素。共4組處理,每種處理10盆,共40盆。
1.2.2指標測定
1.2.2.1土壤含水量
在花盆表土往下15 cm處,取土15~20 g裝入已知重量的鋁盒中,迅速封膜,到室內(nèi)稱重,記錄土樣原土重。置于105℃烘箱中烘干至恒重,測定烘干土重[26]。
土壤含水量=[(原土重-烘干土重)/(烘干土重-鋁盒重量)]×100%。(1)
1.2.2.2同化枝相對含水量和同化枝水勢
每組隨機摘取同化枝后立即稱重(FW)。將同化枝放入溫度為4℃的蒸餾水中浸泡12 h,吸水紙吸取表面水分,測量同化枝飽和重(TW),80 ℃烘干24 h,得到同化枝干重(DW)。計算同化枝相對含水量(RWC)[27]:
RWC=[(FW–DW)/(TW–DW)]×100%."(2)
在黎明前和正午測定同化枝水勢(Ψ)。每個處理隨機選取5株,分別剪取其同化枝,迅速裝入帶有濕紙球的自封袋置于冰盒中。在實驗室中用壓力室水勢儀(Model 3005,PMS Instrument Company, Albany, NY, USA)測定同化枝水勢。[28,29]
1.2.3生理指標測量
1.2.3.1光合速率和氣孔導度
處理20 d后,每株選取3枝向陽且健康生長的同化枝掛牌標記,于晴天9:00-13:00利用便攜式光合儀Li-6400(Li-Cor, Lincoln, NE, USA)測量幼苗同化枝的光響應曲線。使用非直角雙曲線模型[30]擬合光響應曲線,其表達式為:
Pn(I)=αI+Pmax-(αI+Pmax)2-4θαIPmax2θ-Rd.(3)
式中,Pn(I)為凈光合速率;I為光強;θ為曲線的曲率;α為植物光合作用對光響應曲線在I=0時的斜率,即光響應曲線的初始斜率,也稱為初始量子效率;Pmax為最大凈光合速率;Rd為暗呼吸速率[31]。
利用SC-1穩(wěn)態(tài)氣孔計(Model SC-1,Decagon,USA)測定頭狀沙拐棗同化枝的氣孔導度。
1.2.3.2葉綠素含量和最大光化學量子產(chǎn)量
于7月中旬在上午11:00~12:00,分別選取長勢良好的頭狀沙拐棗同化枝,利用便攜式葉綠素測定儀(SPAD-502Plus)測量其葉綠素含量[32,33]。使用便攜式脈沖幅度調(diào)制熒光計(Pocket PEA, PE 32 1JL, Hansatech Instruments Ltd, King′s Lynn Norfolk, UK)測定葉綠素熒光參數(shù)。暗適應20 min后,在0.8 s以上調(diào)制光的弱脈沖下測量初始熒光(F0),其中最大熒光(Fm)由0.7 s上施加的飽和光脈沖(5 000 mmol/(m2·s))誘導所測得。計算出同化枝的光系統(tǒng)Ⅱ的最大光化學量子產(chǎn)量(maximal quantum yield of PSⅡ):Fv/Fm= (Fm-F0)/Fm,其中Fv是Fm和F0之間的差值[34]。
1.2.4生化指標測量
于8月中旬取頭狀沙拐棗同化枝鮮樣用于生化指標測定。采用氮藍四唑(NBT)法[9,35,36]測定超氧化物歧化酶(SOD)活性;采用硫代巴比妥酸(TBA)法測定丙二醛[3,37-38];采用羥胺氧化法測定超氧陰離子[27,39];采用苯酚硫酸比色法測定可溶性糖[40];采用磺基水楊酸法測定脯氨酸[41,42]。
1.3數(shù)據(jù)處理
使用Microsoft Excel 2007整理數(shù)據(jù),用均數(shù)±標準差(SD)表示。用SPSS 26.0(SPSS Inc., Chicago, IL, USA)進行單因素和雙因素方差分析(ANOVA),用鄧肯檢驗法對試驗結(jié)果進行顯著性差異分析(P<0.05)。用Origin pro 8.5(Origin Lab Corp., Northampton, MA, USA)進行繪圖。主成分分析使用R的基礎函數(shù) Prcomp分析,使用 ggbiplot 包展示結(jié)果。
2結(jié)果與分析
2.1水肥處理下土壤和植物的水分狀況
研究表明,同正常供水處理相比,虧缺供水下SWC、同化枝相對含水量顯著下降 (P<0.05),施氮使同化枝相對含水量維持在較高水平。在不同水分條件下施氮與未施氮對其同化枝水勢的影響亦有不同,正常供水下,施氮植株的黎明同化枝水勢(Ψpd)比未施氮植株的Ψpd高0.13 MPa,施氮植株的Ψmd比未施氮植株的Ψmd高0.12 MPa;虧缺供水下,施氮植株正午同化枝水勢(Ψmd)比未施氮植株低0.34 MPa。表1
2.2水肥處理下植物生理指標變化
研究表明,同虧缺供水處理相比,正常供水下表觀量子效率(Φ)、最大凈光合速率(Pmax)、暗呼吸速率(Rd)、最大氣孔導度(gs)葉綠素SPAD值、最大光化學量子產(chǎn)量(Fv/Fm)均有所提升。其中最大氣孔導度和葉綠素含量均呈現(xiàn)顯著性差異(Plt;0.05),表現(xiàn)為施加氮肥顯著增加最大氣孔導度和葉綠素含量。正常供水下,施氮植株的最大氣孔導度比未施氮植株高11.8%;虧缺供水下,施氮植株的最大氣孔導度比未施氮植株高11.9%;正常供水下未施氮植株的葉綠素含量比虧缺供水下未施氮植株的葉綠素含量高19%。施氮肥后,提高了同一水分處理下的植株葉綠素含量。正常供水下施氮植株的葉綠素含量增加了11%,虧缺供水下施氮植株的葉綠素含量增加了16%。施氮還能縮小正常供水植株與虧缺供水植株的葉綠素含量差異,兩者僅相差13.8%。表2
2.3水肥處理下植物生化指標變化
研究表明,不同處理條件下,MDA、Pro和SS差異顯著,表現(xiàn)為施氮顯著降低MDA(Plt;0.05),顯著增加Pro和SS(Plt;0.05),而SOD僅在虧缺供水條件下呈現(xiàn)顯著性差異,表現(xiàn)為施氮顯著增加SOD(Plt;0.05),而O2-·無顯著差異(Pgt;0.05);
虧缺供水下,施氮植株的MDA比未施氮植株的MDA低3.5%;正常供水下,施氮植株的MDA比未施氮植株的MDA低4%;虧缺供水下,施氮植株的SOD是4組處理中最高值,為78.44 μmol/(g·FW),比未施氮植株的SOD活性高15.9%;
虧缺供水下,施氮植株的Pro含量比未施氮植株多20%。正常供水下,施氮植株的Pro含量比未施氮的Pro含量高100.9%,未施氮植株的Pro含量為4組的最低值60.42μg/mol。在未施氮條件下,虧缺供水的Pro含量比正常供水高148%,而在施氮條件下,虧缺供水下的Pro含量比正常供水高49%。虧缺供水下,施氮植株的SS含量比未施氮植株多6%。正常供水施氮植株的SS含量與其他3組的SS含量差異顯著,為4組中的最高值273.74μg/ mL,比正常供水未施氮植株的SS含量高21.6%。圖1~3
2.4水肥處理對植物生理生化指標的綜合影響
研究表明,澆水對沙拐棗幼苗的SWC、RWC、Ψmd、Φ、gs、SS均有極顯著性影響(Plt;0.01),對Ψpd有顯著影響(Plt;0.05)。施肥對PRO有顯著影響(Plt;0.05)。水×肥對Ψmd有顯著影響(Plt;0.05)。表3
PC1 和 PC2 分別解釋了 40.4%和 15.6%的性狀變異。沿 PC1 軸的正向,代表了沙拐棗的脯氨酸,而與其相反的是植物的土壤含水量和正午葉水勢,植株脯氨酸與植株水分狀況負相關。正常供水組及虧缺供水組沿 PC1 軸分離,獨立樣本T檢驗的結(jié)果表明,缺供水組的 PC1 得分要顯著高于正常供水組,供水量的減少導致水分狀況下降引起了干旱脅迫,但植株通過增加滲透調(diào)節(jié)物質(zhì)(PRO)來應對干旱脅迫。施氮組及未施氮組沿 PC1 軸相交,施肥與不施肥處理之間無顯著性差異。圖4
3討 論
3.1水肥處理對植株水分狀況的影響
一般認為在外界環(huán)境水分減少的情況下,反映植物水分狀況的指標會隨著SWC的降低而減弱[43],例如在對干旱脅迫影響潤楠幼苗生理生長的研究中[44],發(fā)現(xiàn)植株的葉片相對含水量顯著降低。
試驗研究表明,澆水對沙拐棗幼苗的RWC有極顯著性影響,隨著澆水量的減少,同化枝的相對含水量變化較大,虧缺供水下的同化枝相對含水量均低于正常供水;同化枝相對含水量越高表示植株的抗旱能力越強。陳少瑜等[45]的研究中提到干旱脅迫下,抗旱性強的植株與抗旱性弱的植株相比葉片含水量下降更緩慢。試驗研究中發(fā)現(xiàn)不同補水量下,未施氮組的同化枝相對含水量差異大于施氮組。具體表現(xiàn)為施氮后頭狀沙拐棗幼苗同化枝相對含水量的下降速度相對緩慢,其抗旱性有所增強。
在試驗中,虧缺供水下同化枝水勢均低于正常供水。具體表現(xiàn)為:在正常供水下,施加氮肥植株比未施氮植株的Ψpd和Ψm高。未施氮植株的同化枝水勢在不同水分處理下無顯著差異。但施氮使得同一水分處理下植株的同化枝水勢呈顯著差異。植株的同化枝水勢可反映植株組織水分狀況和植株受水分條件的制約程度[46],其Ψpd的高低代表植株的水分恢復狀況,而植物經(jīng)受的最強脅迫程度則可以通過Ψm反映[47]。試驗研究發(fā)現(xiàn),水分處理對沙拐棗幼苗的水分狀況有顯著影響,主成分分析進一步表明了供水量的減少導致水分狀況下降引起了干旱脅迫。同時發(fā)現(xiàn)了施氮提高了正常供水下頭狀沙拐棗幼苗的水分恢復狀況,減緩了正午頭狀沙拐棗幼苗受到的脅迫程度。在水分條件較差的情況下(虧缺供水),施氮植株正午遭受的脅迫程度比未施氮植株略高。
3.2水肥處理對幼苗生理性狀的影響
通過光響應曲線可計算最大光合速率(Pmax)、光補償點(LCP)、暗呼吸速率(Rd)等光合參數(shù)[48]。試驗研究中,在不同氮肥處理下,植株Pmax雖無顯著差異,但表現(xiàn)為水分較好的情況下Pmax會有所提高。在不同水分處理下,植株的最大氣孔導度(gs)在施氮處理下也有所增長。同時我們發(fā)現(xiàn)施氮植株的葉綠素含量均顯著增加。最大光化學量子產(chǎn)量能夠表示植株在環(huán)境中受到的脅迫程度[49],在試驗研究中,施肥處理對植株最大光化學量子產(chǎn)值有顯著影響。
荒漠灌木能夠在土壤水有效性降低的情況下,生物量會更多的分配到地下部分,增加根系吸水能力,保證原有的生理特征和正常的光合作用[21]。頭狀沙拐棗在荒漠區(qū)分布廣泛[13],荒漠灌木傾向于優(yōu)化同化器官的密度,以適應土壤水分的有效性[21]。頭狀沙拐棗的這種特性決定了其在干旱脅迫發(fā)生時,會通過加大落葉量來減弱代謝活動,并且優(yōu)化其同化器官的密度,利用肉質(zhì)莖內(nèi)貯藏水分與綠色莖稈的光合性能維持代謝,可能是導致最大凈光合速率在試驗研究中的水分差異下未發(fā)生顯著變化的主要原因。
3.3水肥處理對幼苗抗旱性的影響
植物在進行光合作用時,無法避免地產(chǎn)生對細胞有損傷的ROS,但正常情況下會被各類抗氧化防護機制清除,達到活性氧產(chǎn)生和清除的平衡,倘若生長環(huán)境受到干旱脅迫等外界刺激,則會打破這種平衡[7]。植物可以通過酶類和非酶類的防御系統(tǒng)保護細胞免受或減少氧化傷害[50]。SOD在植物的抗氧化脅迫中有重要作用,主要是將O2-·歧化為H2O2[51]。試驗研究發(fā)現(xiàn)虧缺供水下施氮植株的SOD活性最高,將顯著地提升其抗氧化能力,與未施氮植株相比施氮植株的抗旱能力明顯增強[52]。
MDA常是細胞脂質(zhì)過氧化水平的判斷指標[53]。在試驗中不同水肥處理下,各組脂質(zhì)過氧化水平由小到大為正常供水N1lt;正常供水N0lt;虧缺供水N1lt;虧缺供水N0。試驗證明水分脅迫是影響植株脂質(zhì)過氧化水平的主要因素;同時施氮可以減少MDA的產(chǎn)生,即未施氮植株的脂質(zhì)過氧化水平均高于施氮植株。MDA屬于脂質(zhì)過氧化反應產(chǎn)生的強毒力的脂質(zhì)過氧化終產(chǎn)物[54];與施氮植株相比,MDA含量較高的未施氮植株的細胞膜受損程度較高,更多量的MDA造成細胞膜的流動性和通透性改變加大,甚至導致細胞結(jié)構(gòu)和功能變化[55]。
植物在干旱脅迫下常通過主動增加細胞內(nèi)的Pro、SS等可溶性物質(zhì)調(diào)節(jié)滲透勢,保持水分,維持膨壓[56],其可溶性物質(zhì)積累的濃度亦能體現(xiàn)植株的抗旱性水平[57]。在試驗中,主成分分析結(jié)果揭示了供水量的減少會導致水分狀況下降,引起了干旱脅迫時植株會通過增加滲透調(diào)節(jié)物質(zhì)(PRO)來應對干旱脅迫。在試驗中,施肥處理對PRO的影響顯著(Plt;0.05),施氮植株的Pro、SS均比同一水分處理下的植株水平高,明顯促進了植株的滲透調(diào)節(jié)能力。C、N代謝的產(chǎn)物多為滲透調(diào)節(jié)物質(zhì)[58],適當?shù)氖┑赡苡欣贜的代謝和C的同化,能夠促進Pro大量積累。同時,施氮可能提高了淀粉酶的活性,加快了淀粉的分解,使得SS含量顯著增加。Pro除了參與滲透調(diào)節(jié)以外,能夠作為抗氧化劑,可有效清除O2-·、·OH等ROS,其積累還能誘導谷胱甘肽(GSH)的上升,進一步加強植株的抗氧化能力[56]。施氮植株較高的Pro含量以及虧缺供水下施氮植株較高的SOD活性很有可能是導致施氮植株MDA含量降低、脂質(zhì)過氧化水平降低的原因之一。也有研究表明,Pro與葉綠素的合成的有關,在試驗中施氮植株大量積累的Pro極有可能促進了施氮植株的葉綠素合成。
4結(jié) 論
水肥處理對幼苗的水分生理和抗旱性狀都產(chǎn)生了一定的影響。在干旱脅迫條件下,隨著澆水量的減少,植株的相對含水量降低,而施氮可以增強植物的抗旱能力。此外,施氮還提高了正常供水下植株的水分恢復狀況,并減緩了幼苗在正午受到的脅迫程度。光合特性方面,施氮處理有助于提升植株的最大光合速率和葉綠素含量。在抗氧化能力方面,施氮處理顯著提高了植物的SOD活性,并降低了脂質(zhì)過氧化水平,進一步增強了植物的抗旱能力。此外,施氮還促進了可溶性物質(zhì)如Pro和SS的積累,從而提高了植物的滲透調(diào)節(jié)能力和抗氧化能力。因此,適量水肥處理有利于改善植物的水分狀況、幼苗生理性狀和抗旱性能,提高植物對干旱脅迫的適應能力。
參考文獻(References)
[1]
Cortina J, Amat B, Castillo V, et al."The restoration of vegetation cover in the semi-arid Iberian southeast[J].Journal of Arid Environments, 2011, 75(12): 1377-1384.
[2] Cortina J, Vilagrosa A, Trubat R."The role of nutrients for improving seedling quality in drylands[J].New Forests, 2013, 44(5): 719-732.
[3] Piper F I, Fajardo A, Hoch G."Single-provenance mature conifers show higher non-structural carbohydrate storage and reduced growth in a drier location[J].Tree Physiology, 2017, 37(8): 1001-1010.
[4] Liu X P, Fan Y Y, Long J X, et al."Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings[J].Journal of Environmental Sciences, 2013, 25(3): 585-595.
[5] Huang L L, Li M J, Zhou K, et al."Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia[J].Plant Physiology and Biochemistry, 2018, 127: 185-193.
[6] 張士功, 劉國棟, 劉更另."植物營養(yǎng)與作物抗旱性[J].植物學通報, 2001, 36(1): 64-69, 63.
ZHANG Shigong, LIU Guodong, LIU Gengling."Plant nutrition and drought resistance of crops[J].Chinese Bulletin of Botany, 2001, 36(1): 64-69, 63.
[7] 王赟."植物脂質(zhì)過氧化研究進展[J].安徽農(nóng)業(yè)科學, 2013, 41(6): 2370-2373.
WANG Yun."Research progress on lipid peroxidation of plant[J].Journal of Anhui Agricultural Sciences, 2013, 41(6): 2370-2373.
[8] Sevanto S, McDowell N G, Dickman L T, et al."How do trees die? A test of the hydraulic failure and carbon starvation hypotheses[J].Plant, Cell amp; Environment, 2014, 37(1): 153-161.
[9] Fu J M, Huang B R."Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J].Environmental and Experimental Botany, 2001, 45(2): 105-114.
[10] Luo Z B, Luo J."Uncovering the physiological mechanisms that allow nitrogen availability to affect drought acclimation in Catalpa bungei[J].Tree Physiology, 2017, 37(11): 1453-1456.
[11] 張杰, 賈斌斌, 張永虎, 等."我國沙拐棗屬植物研究進展[J].甘肅科技, 2014, 30(15): 145-148, 144.
ZHANG Jie, JIA Binbin, ZHANG Yonghu, et al."Research progress of Calligonum in China[J].Gansu Science and Technology, 2014, 30(15): 145-148, 144.
[12] 魏良民, 李康."沙拐棗幼苗生長規(guī)律及與其抗旱性關系研究[J].干旱區(qū)研究, 1994, 11(3): 47-51.
WEI Liangmin, LI Kang."The study on the development of seeding in Calligonum caput-medusae and its relationship with plant drought resistance[J].Arid Zone Research, 1994, 11(3): 47-51.
[13] 張佃民, 毛祖美."新疆的沙拐棗灌木荒漠[J].干旱區(qū)研究, 1989, 6(2): 13-18.
ZHANG Dianmin, MAO Zumei."A study on the calligonum desert in Xinjiang[J].Arid Zone Research, 1989, 6(2): 13-18.
[14] 種培芳, 李毅, 蘇世平."干旱脅迫下不同地理種源蒙古沙拐棗(Calligomum mongolicum)光合及熒光特性比較[J].中國沙漠, 2014, 34(5): 1301-1306.
CHONG Peifang, LI Yi, SU Shiping."The responses of photosynthetic and chlorophyll fluorescence to water stress in three provenances of calligomum mongolicum[J].Journal of Desert Research, 2014, 34(5): 1301-1306.
[15] 趙小仙, 李毅, 蘇世平, 等."3個地理種群蒙古沙拐棗同化枝解剖結(jié)構(gòu)及抗旱性比較[J].中國沙漠, 2014, 34(5): 1293-1300.
ZHAO Xiaoxian, LI Yi, SU Shiping, et al."Drought resistance analysis based on anatomical structures of assimilating shoots of Calligonum mongolicum from three geographic populations[J].Journal of Desert Research, 2014, 34(5): 1293-1300.
[16] 潘航, 馮纓, 王喜勇, 等.nbsp;荒漠環(huán)境下10種沙拐棗的生理特征比較研究[J].草業(yè)學報, 2017, 26(6): 68-75.
PAN Hang, FENG Ying, WANG Xiyong, et al."Examination and comparison of the physiological characteristics of ten Calligonum species in a desert environment[J].Acta Prataculturae Sinica, 2017, 26(6): 68-75.
[17] 邱真靜, 李毅, 種培芳, 等."基于PEG脅迫響應的不同地理種源沙拐棗抗旱性評價[J].中國沙漠, 2011, 31(5): 1231-1237.
QIU Zhenjing, LI Yi, CHONG Peifang, et al."Comprehensive evaluation on drought resistance of Calligonum mongolicum turcz.from different geographical provenance based on its response to PEG osmotic stress[J].Journal of Desert Research, 2011, 31(5): 1231-1237.
[18] 黃彩變, 曾凡江, 雷加強."極端干旱區(qū)頭狀沙拐棗對水分條件變化的生理生態(tài)響應[J].植物研究, 2015, 35(2): 225-232.
HUANG Caibian, ZENG Fanjiang, LEI Jiaqiang."The ecophysiological response of Calligonum caput-medusae to different water condition in extremely arid region[J].Bulletin of Botanical Research, 2015, 35(2): 225-232.
[19] 宋聰, 曾凡江, 劉波, 等."不同水分條件對頭狀沙拐棗幼苗形態(tài)特征及生物量的影響[J].生態(tài)學雜志, 2012, 31(9): 2225-2233.
SONG Cong, ZENG Fanjiang, LIU Bo, et al."Influence of water condition on morphological characteristics and biomass of Calligonum caput-medusae Schrenk seedlings[J].Chinese Journal of Ecology, 2012, 31(9): 2225-2233.
[20] 蘇培璽, 嚴巧娣."C4荒漠植物梭梭和沙拐棗在不同水分條件下的光合作用特征[J].生態(tài)學報, 2006, 26(1): 75-82.
SU Peixi, YAN Qiaodi."Photosynthetic characteristics of C4 desert species Haloxylon ammodendron and Calligonum mongolicum under different moisture conditions[J].Acta Ecologica Sinica, 2006, 26(1): 75-82.
[21] Xu G Q, Li Y."Rooting depth and leaf hydraulic conductance in the xeric tree Haloxyolon ammodendron growing at sites of contrasting soil texture[J].Functional Plant Biology, 2008, 35(12): 1234.
[22] 李從娟, 李彥, 馬健, 等."干旱區(qū)植物根際土壤養(yǎng)分狀況的對比研究[J].干旱區(qū)地理, 2011, 34(2): 222-228.
LI Congjuan, LI Yan, MA Jian, et al."Nutrition in the rhizosphere of five xerophytic plants[J].Arid Land Geography, 2011, 34(2): 222-228.
[23] 馮起."半濕潤地區(qū)改良風沙土土壤性質(zhì)研究[J].水土保持通報, 1998, 18(4): 1-6.
FENG Qi."Properties of ameliorated sandy land soil in semi-humid area[J].Bulletin of Soil and Water Conservation, 1998, 18(4): 1-6.
[24] 鄭博文, 胡順軍, 周智彬, 等."古爾班通古特沙漠南緣風沙土土壤水分特征與毛管水最大上升高度[J].干旱區(qū)地理, 2020, 43(4): 1059-1066.
ZHENG Bowen, HU Shunjun, ZHOU Zhibin, et al."Maximum height of capillary rising water and characteristic of soil moisture in the southern edge of Gurbantunggut Desert[J].Arid Land Geography, 2020, 43(4): 1059-1066.
[25] Huang G, Li C H, Li Y."Phenological responses to nitrogen and water addition are linked to plant growth patterns in a desert herbaceous community[J].Ecology and Evolution, 2018, 8(10): 5139-5152.
[26] 張學禮, 胡振琪, 初士立."土壤含水量測定方法研究進展[J].土壤通報, 2005, 36(1): 118-123.
ZHANG Xueli, HU Zhenqi, CHU Shili."Methods for measuring soil water content: a review[J].Chinese Journal of Soil Science, 2005, 36(1): 118-123.
[27] Tariq A, Pan K W, Olatunji O A, et al."Phosphorous application improves drought tolerance of Phoebe zhennan[J].Frontiers in Plant Science, 2017, 8: 1561.
[28] 付培立."熱帶喀斯特森林常綠和落葉樹木水力結(jié)構(gòu)、水分關系以及光合能力的對比研究[D].北京: 中國科學院研究生院, 2011.
FU Peili."Comparative study on hydraulic structure, water relationship and photosynthetic capacity of evergreen and deciduous trees in tropical Karst forest[D].Beijing: Graduate University of Chinese Academy of Sciences, 2011.
[29] 張喜英."葉水勢反映冬小麥和夏玉米水分虧缺程度的試驗(簡報)[J].植物生理學通訊, 1997, 33(4): 249-253.
ZHANG Xiying."A report on diagnosis of soil water deficiency of wheat and maize using leaf water potential[J].Plant Physiology Communications, 1997, 33(4): 249-253.
[30] 張中峰, 黃玉清, 莫凌, 等."巖溶植物光合-光響應曲線的兩種擬合模型比較[J].武漢植物學研究, 2009, 27(3): 340-344.
ZHANG Zhongfeng, HUANG Yuqing, MO Ling, et al."Comparison of two Photosynthesis-light response curve-fitting models of the Karst plant[J].Journal of Wuhan Botanical Research, 2009, 27(3): 340-344.
[31] 葉子飄, 李進省."光合作用對光響應的直角雙曲線修正模型和非直角雙曲線模型的對比研究[J].井岡山大學學報(自然科學版), 2010, 31(3): 38-44.
YE Zipiao, LI Jinsheng."Comparative investigation light response of photosynthesis on non-rectangular hyperbola model and modified model of rectangular hyperbola[J].Journal of Jinggangshan University (Natural Science), 2010, 31(3): 38-44.
[32] Bielinis E, Józwiak W, Robakowski P."Modelling of the relationship between the SPAD values and photosynthetic pigments content in Quercus petraea and Prunus serotina leaves[J].Dendrobiology, 2015, 73: 125-134.
[33] Markwell J, Osterman J C, Mitchell J L."Calibration of the Minolta SPAD-502 leaf chlorophyll meter[J].Photosynthesis Research, 1995, 46(3): 467-472.
[34] Zhou Y H, Lam H M, Zhang J H."Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice[J].Journal of Experimental Botany, 2007, 58(5): 1207-1217.
[35] Panda S K, Chaudhury I, Khan M H."Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves[J].Biologia Plantarum, 2003, 46(2): 289-294.
[36] Das K, Samanta L, Chainy G."A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals[J].Indian Journal of Biochemistry amp; Biophysics, 2000, 37(3): 201-204.
[37] Heath R L, Packer L."Photoperoxidation in isolated chloroplasts[J].Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198.
[38] Elstner E F, Heupel A."Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.)[J].Planta, 1976, 130(2): 175-180.
[39]Wang Q, Cheng F, Luo X, et al."Effects of growth years on the polysaccharide content in Radix Ophiopogonis[J].Medicinal Plant, 2013, 4(5): 52-53, 56.
[40] Bates L S, Waldren R P, Teare I D."Rapid determination of free proline for water-stress studies[J].Plant and Soil, 1973, 39(1): 205-207.
[41] Chouj D, Karwowska R, Ciszewska A, et al."Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants[J].Acta Physiologiae Plantarum, 2008, 30(5): 679-687.
[42] 李吉躍, 張建國."北方主要造林樹種耐旱機理及其分類模型的研究(Ⅰ)——苗木葉水勢與土壤含水量的關系及分類[J].北京林業(yè)大學學報, 1993, 15(3): 1-11.
LI Jiyue, ZHANG Jianguo."Studies on classification models and mechanisms of drought tolerance of chief afforestation species in the northern part of China (Ⅰ)—the classification of relationships between seedling leaf water potential and soil water content[J].Journal of Beijing Forestry University, 1993, 15(3): 1-11.
[43] 付愛紅, 陳亞寧, 李衛(wèi)紅, 等."干旱、鹽脅迫下的植物水勢研究與進展[J].中國沙漠, 2005, 25(5): 744-749.
FU Aihong, CHEN Yaning, LI Weihong, et al."Research advances on plant water potential under drought and salt stress[J].Journal of Desert Research, 2005, 25(5): 744-749.
[44] 羅杰, 周光良, 胡庭興, 等."干旱脅迫對潤楠幼苗生長和生理生化指標的影響[J].應用與環(huán)境生物學報, 2015, 21(3): 563-570.
LUO Jie, ZHOU Guangliang, HU Tingxing, et al."Effects of drought stress on growth and physiological parameters of Machilus pingii seedlings[J].Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 563-570.
[45] 陳少瑜, 郎南軍, 李吉躍, 等."干旱脅迫下3樹種苗木葉片相對含水量、質(zhì)膜相對透性和脯氨酸含量的變化[J].西部林業(yè)科學, 2004, 33(3): 30-33, 41.
CHEN Shaoyu, LANG Nanjun, LI Jiyue, et al."Changes of leaf relative water content, relative plasma membrane permeability and proline content of seedlings of three species under drought stress[J].Yunnan Forestry Science and Technology, 2004, 33(3): 30-33, 41.
[46] 付曉玥, 閆建成, 梁存柱, 等."干旱與半干旱區(qū)一年生植物水勢對模擬降水變化的響應[J].內(nèi)蒙古大學學報(自然科學版), 2012, 43(2): 160-167.
FU Xiaoyue, YAN Jiancheng, LIANG Cunzhu, et al."Water potentials of annual plants response to simulated rainfall in arid and semiarid regions[J].Journal of Inner Mongolia University (Natural Science Edition), 2012, 43(2): 160-167.
[47] 徐崢靜茹."干旱復水對岷江柏幼苗生理特性影響的初步研究[D].成都: 成都理工大學, 2017.
XU Zhengjingru."A Preliminary Study on Effects of Drought-rewatering on Physiological Characteristics of Cupressus Chengiana S.Y.Hu[D].Chengdu: Chengdu University of Technology, 2017.
[48] 賈榮亮."超旱生植物紅砂和珍珠光合作用生態(tài)適應性研究[D].蘭州: 中國科學院寒區(qū)旱區(qū)環(huán)境與工程研究所, 2006.
JIA Rongliang."Study on Ecological Adaptability of Photosynthesis of Super-xerophytes Red Sand and Pearl[D].Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006.
[49] 雷澤湘, 艾天成, 李方敏, 等."草莓葉片葉綠素含量、含氮量與SPAD值間的關系[J].湖北農(nóng)學院學報, 2001,(2): 138-140.
LEI Zexiang, AI Tiancheng, LI Fangmin, et al."The relationships between SPAD readings and the contents of chlorophyll and nitrogen in strawberry leaves[J].Journal of Hubei Agricultural College, 2001,(2): 138-140.
[50] Bowler C, Montagu M V, Inze D."Superoxide dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116.
[51] 蔣明義, 郭紹川."水分虧缺誘導的氧化脅迫和植物的抗氧化作用[J].植物生理學通訊, 1996, 32(2): 144-150.
JIANG Mingyi, GUO Shaochuan."Oxidative stress induced by water deficiency and antioxidant effect of plants[J].Plant Physiology Communications, 1996, 32(2): 144-150.
[52] 蔣明義, 荊家海, 王韶唐."滲透脅迫對水稻幼苗膜脂過氧化及體內(nèi)保護系統(tǒng)的影響[J].植物生理學報, 1991, 17(1): 80-84.
JIANG Mingyi, JING Jiahai, WANG Shaotang."Effects of osmotic stress on membrane-lipid peroxidation and endogenous protective systems in ricse seedlings[J].Physiology and Molecular Biology of Plants, 1991, 17(1): 80-84.
[53] 白娟, 龔春梅, 王剛, 等."干旱脅迫下荒漠植物紅砂葉片抗氧化特性[J].西北植物學報, 2010, 30(12): 2444-2450.
BAI Juan, GONG Chunmei, WANG Gang, et al."Antioxidative characteristics of Reaumuria soongorica under drought stress[J].Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(12): 2444-2450.
[54] Placer Z A, Cushman L L, Johnson B C."Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems[J].Analytical Biochemistry, 1966, 16(2): 359-364.
[55] Mller I M, Jensen P E, Hansson A."Oxidative modifications to cellular components in plants[J].Annual Review of Plant Biology, 2007, 58: 459-481.
[56] 尹麗, 劉永安, 謝財永, 等."干旱脅迫與施氮對麻瘋樹幼苗滲透調(diào)節(jié)物質(zhì)積累的影響[J].應用生態(tài)學報, 2012, 23(3): 632-638.
YIN Li, LIU Yongan, XIE Caiyong, et al."Effects of drought stress and nitrogen fertilization rate on the accumulation of osmolytes in Jatropha curcas seedlings[J].Chinese Journal of Applied Ecology, 2012, 23(3): 632-638.
[57] Chaves M M, Oliveira M M."Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture[J].Journal of Experimental Botany, 2004, 55(407): 2365-2384.
[58] Ashraf M, Foolad M R."Roles of glycine betaine and proline in improving plant abiotic stress resistance[J].Environmental and Experimental Botany, 2007, 59(2): 206-216.
Study on the effect of N fertilization on drought resistance of Calligonum caput-medusae seedlings
LI Jinyao1,XU Guiqing2,WANG Lisheng3,LYU Ping3,SHI Dongfang4,ZHENG Weihua5
(1. ""College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi 830052, China; 2. Fukang Desert Ecological Experimental Station, Chinese Academy of Sciences, Fukang Xinjiang 831505, China; 3. General Work Station of Forestry and Grassland, XPCC, Urumqi 830013, China; 4. Xinjiang Ruiyixin Ecological Garden Technology Co., Ltd., Urumqi 830000, China; 5. Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China)
Abstract:【Objective】 An important afforestation tree in arid region.
【Methods】 To explore the effects of nitrogen fertilizer on drought resistance of Calligonum caput-medusae Schrenk seedlings, ""Two groups of water treatments (deficit water supply and normal water supply) and two groups of nitrogen treatments (no nitrogen application and nitrogen application) were set up in pot experiment to determine the physiological and biochemical indexes of assimilated branches of seedlings.
【Results】 "(1) Compared with normal water supply, the relative water content (RWC), midday water potential (Ψm), maximum stomatal conductance (gs), chlorophyll content (Chl), apparent quantum efficiency (Φ) and soluble sugar (SS) contents of assimilated branches were significantly decreased under deficit water supply."The content of proline (Pro) increased significantly."(2) Compared with no N application group, N application slowed down the relative water content of the assimilated branches of A."capulosa seedlings under deficit and normal water supply, but it was not significant; Compared with normal water supply, nitrogen application under deficit water supply reduced the assimilative branch water potential of A."capillata seedlings."(3) Under normal water supply, the contents of Pro and SS were increased by nitrogen application, while the contents of malondialdehyde (MDA) were significantly decreased (Plt;0.05)."Under deficient water supply, nitrogen application increased the content of superoxide dismutase (SOD), Pro and SS (Plt;0.05), but significantly decreased the content of MDA (Plt;0.05).
【Conclusion】 "The physiological activity of Jujube japonica seedlings is affected by the availability of soil water, and nitrogen application can reduce the effect of drought stress on them."Nitrogen application increases the activity of antioxidant enzymes and the concentration of cytosoles in the deficient and normal water supply, and helps the seedlings to overcome oxidative stress, reduce damage and increase osmoregulatory substances.
Key words:Calligonum caput-medusae; fertilization; drought resistance; physiology and biochemistry
Fund projects:Commissioned Project of Forestry and Grassland Work Station of Xinjiang Production and Construction Corps \"Evaluation of No-Irrigation Vegetation Restoration Effectiveness of Damaged Ecological Public Welfare Forests in the Southern Margin of Junggar Basin\" (E1400209);Project of National Natural Science Foundation of China (NSF), \"Groundwater Dependence and Future Prospects of Typical Scrub in Oasis Desert Transition Zone \"and\" Accumulation of Large Aggregates of Soil Water Stability and Its Driving Mechanism during Oasisization\" (32171874, 42271068)
Correspondence author: XU Guiqing (1976-), male, from Xinjiang, associate researcher, Ph. D., master's supervisor, research direction: plant physiological ecology in arid region.(E-mail)xugq@ms.xjb.ac.cn
收稿日期(Received):
2024-02-15
基金項目:
新疆生產(chǎn)建設兵團林業(yè)和草原工作總站委托項目“準噶爾盆地南緣兵團受損生態(tài)公益林免灌植被恢復成效評價”(E140020901);國家自然科學基金項目“綠洲荒漠過渡帶典型灌叢的地下水依賴性及其存續(xù)前景”,“綠洲化過程中土壤水穩(wěn)性大團聚體的累積與其驅(qū)動機制研究”(32171874,42271068)
作者簡介:
李金瑤(1998-),女,河南人,在讀碩士研究生,研究方向植物生理學。(E-mail)865268214@qq.com
通訊作者:
徐貴青(1976-),男,新疆人,副研究員,博士,碩士生導師,研究方向干旱區(qū)植物生理生態(tài)學,
(E-mail)xugq@ms.xjb.ac.cn