摘要:基于多智能體系統(tǒng)良好的應(yīng)用前景,研究了無(wú)向加權(quán)拓?fù)湎乱活?lèi)特殊一般線性多智能體系統(tǒng)目標(biāo)能控的圖論條件。利用圖論和矩陣論知識(shí),得到了系統(tǒng)目標(biāo)能控的充分條件。然后,通過(guò)實(shí)例分析得到了系統(tǒng)目標(biāo)能控的充要條件。結(jié)果顯示在領(lǐng)導(dǎo)者-跟隨者連通拓?fù)湎?,多智能體系統(tǒng)是目標(biāo)能控的當(dāng)且僅當(dāng)含有跟隨者目標(biāo)節(jié)點(diǎn)的連通分量是目標(biāo)能控的,并且同樣的結(jié)論適用于非領(lǐng)導(dǎo)者-跟隨者連通拓?fù)洹?/p>
關(guān)鍵詞:多智能體系統(tǒng);目標(biāo)能控性;無(wú)向拓?fù)洌活I(lǐng)導(dǎo)者-跟隨者連通拓?fù)?/p>
中圖分類(lèi)號(hào): TP273+.5;O231.1文獻(xiàn)標(biāo)識(shí)碼: A
收稿日期:2022-12-06;修回日期:2023-01-28
基金項(xiàng)目:國(guó)家自然科學(xué)基金(62373205,62033007);山東省泰山學(xué)者特聘教授人才支持計(jì)劃(tstp20230624,ts20190930);山東省泰山學(xué)者攀登計(jì)劃和青島大學(xué)系統(tǒng)科學(xué)+聯(lián)合攻關(guān)項(xiàng)目(XT2024101)
第一作者:紀(jì)亞楠(1998-),女,山東青島人,碩士研究生,主要研究方向?yàn)槿后w智能的分析與控制。
通信作者:紀(jì)志堅(jiān)(1973-),男,山東青島人,博士,教授,主要研究方向?yàn)槎嘀悄荏w網(wǎng)絡(luò)系統(tǒng),復(fù)雜網(wǎng)絡(luò)的分析與控制等。
Graph-theoretic Conditions for Target Controllability of Multi-agent System in Undirected Topology
JI Ya′nan,JI Zhijian
(Qingdao University a. School of Automation; b. Shandong Key Laboratory of Industrial
Control Technology, Qingdao 266071, China)
Abstract:Based on the good application prospects of multi-agent systems, we study the graph-theoretic conditions of target controllability for a class of special general linear multi-agent systems under undirected weighted topology. By using the knowledge of graph and matrix theory, a sufficient condition for the target controllability of the system is obtained. Then, through the analyses on actual examples, we obtain a necessary and sufficient condition of target controllability for the system. The results show that under the leader-follower connected topology, the multi-agent system is target controllable if and only if the connected component containing the follower target nodes is target controllable, and the same conclusion applies to the non leader-follower connected topology.
Keywords: multi-agent system; target controllability; undirected topology; leader-follower connected topology
0 引言
近年來(lái),大量學(xué)者對(duì)分布式人工智能產(chǎn)生了濃厚的興趣,多智能體系統(tǒng)作為分布式人工智能的一個(gè)分類(lèi)[1],逐漸成為一個(gè)研究熱點(diǎn),并在很多領(lǐng)域問(wèn)題的研究和解決上起了重要作用[2-4]。隨著時(shí)間的推移,人們對(duì)多智能體系統(tǒng)進(jìn)行了越來(lái)越深入的研究[1-20],提出了許多十分有價(jià)值的結(jié)論?,F(xiàn)實(shí)生活中,我們總是期望能通過(guò)控制少部分個(gè)體使群體中的每一個(gè)個(gè)體達(dá)到我們所期望的狀態(tài),而多智能體系統(tǒng)的能控性研究能幫助我們完成這一設(shè)想。
2004年,Tanner[14]研究了多智能體系統(tǒng)的能控性問(wèn)題,結(jié)合圖論和矩陣論等知識(shí),提出了領(lǐng)導(dǎo)者-跟隨者框架下系統(tǒng)能控的一些代數(shù)和圖論條件,這個(gè)框架的提出在多智能體系統(tǒng)能控性的研究中起了重要作用。Ji等[13]在2009年研究了領(lǐng)導(dǎo)者-跟隨者框架下多智能體協(xié)調(diào)的互連拓?fù)?,并提出了領(lǐng)導(dǎo)者-跟隨者連通拓?fù)涞母拍?,本文利用這一概念研究了多智能體系統(tǒng)的目標(biāo)能控性。多智能體系統(tǒng)能控性的研究目的在于使全部智能體達(dá)到我們所期望的狀態(tài),而目標(biāo)能控性研究?jī)H需要使部分智能體達(dá)到我們所期望的狀態(tài)。
多智能體系統(tǒng)的目標(biāo)能控性是指在有限時(shí)間內(nèi),存在控制輸入,從系統(tǒng)任意初始狀態(tài),能得到任意目標(biāo)終端狀態(tài)[15]。2010年,Mesbahi等[21]研究了多智能體網(wǎng)絡(luò),主要分析了網(wǎng)絡(luò)化動(dòng)態(tài)系統(tǒng),提出了綜合的圖論方法。研究多智能體系統(tǒng)的目標(biāo)能控性可采用圖論或代數(shù)方法等,其中圖論方法較代數(shù)方法更為直觀。近期,許多學(xué)者對(duì)系統(tǒng)的目標(biāo)能控性研究進(jìn)行了深入的探討[15-17]。2020年,Guan等[15]研究了固定和切換拓?fù)湎露嘀悄荏w系統(tǒng)的目標(biāo)能控性。2021年,Lu等[16]針對(duì)切換有符號(hào)網(wǎng)絡(luò)的強(qiáng)目標(biāo)能控性進(jìn)行了討論,2022年,Lu等[17]考慮了有限域上時(shí)變拓?fù)涠嘀悄荏w系統(tǒng)的強(qiáng)目標(biāo)能控性。Guan等[15]和Lu等[17]的研究均考慮的一階多智能體系統(tǒng),而在現(xiàn)實(shí)生活中,一個(gè)智能體可能含有多種狀態(tài),因此,研究一般線性多智能體系統(tǒng)是必要且有價(jià)值的。
本文的主要貢獻(xiàn)是給出了一類(lèi)特殊一般線性多智能體系統(tǒng)目標(biāo)能控的直觀圖論條件。首先,考慮了領(lǐng)導(dǎo)者-跟隨者連通拓?fù)?,最終得到:若每一個(gè)連通分量是目標(biāo)能控的,則多智能體系統(tǒng)是目標(biāo)能控的。通過(guò)進(jìn)一步分析,我們得到在領(lǐng)導(dǎo)者-跟隨者連通拓?fù)湎?,含有跟隨者目標(biāo)節(jié)點(diǎn)的連通分量是目標(biāo)能控的等價(jià)于多智能體系統(tǒng)是目標(biāo)能控的。最終,我們發(fā)現(xiàn)這一充要條件同樣適用于非領(lǐng)導(dǎo)者-跟隨者連通拓?fù)?。本文給出的多智能體系統(tǒng)目標(biāo)能控的相關(guān)圖論條件,是通過(guò)將拓?fù)鋱D分為一個(gè)個(gè)子圖(連通分量),考慮每一個(gè)子圖的特點(diǎn)和目標(biāo)能控性,來(lái)得到該拓?fù)鋱D的目標(biāo)能控性,這對(duì)考慮復(fù)雜拓?fù)鋱D的目標(biāo)能控性具有一定的意義。
1 預(yù)備知識(shí)
4 結(jié)論
針對(duì)無(wú)向加權(quán)拓?fù)湎碌囊活?lèi)特殊一般線性多智能體系統(tǒng),本文通過(guò)圖論和矩陣論的相關(guān)知識(shí),研究了系統(tǒng)的目標(biāo)能控性,并得到了一些結(jié)論。首先,如果圖的互連拓?fù)湟约邦I(lǐng)導(dǎo)者、跟隨者、目標(biāo)節(jié)點(diǎn)位置是固定的,則改變圖中節(jié)點(diǎn)的標(biāo)號(hào)不改變多智能體系統(tǒng)的目標(biāo)能控性。我們還得到在領(lǐng)導(dǎo)者-跟隨者連通拓?fù)湎碌拿恳粋€(gè)連通分量是目標(biāo)能控的,那么多智能體系統(tǒng)是目標(biāo)能控的。通過(guò)舉例分析,得到同樣在領(lǐng)導(dǎo)者-跟隨者連通拓?fù)湎?,多智能體系統(tǒng)是目標(biāo)能控的當(dāng)且僅當(dāng)含有跟隨者目標(biāo)節(jié)點(diǎn)的連通分量是目標(biāo)能控的。最后,我們發(fā)現(xiàn)這個(gè)充要條件適用于一般拓?fù)浣Y(jié)構(gòu)。今后,我們將進(jìn)一步探索一般線性多智能體系統(tǒng)的目標(biāo)能控性,而不僅僅局限于這一特殊的一般線性多智能體系統(tǒng),同時(shí),探索多智能體系統(tǒng)目標(biāo)能控的相關(guān)代數(shù)條件也是十分有價(jià)值的。
參考文獻(xiàn):
[1]武海鷹, 王緒安. 分布式人工智能與多智能體系統(tǒng)研究[J]. 微機(jī)發(fā)展, 2004, 14(3):80-82.
WU H Y, WANG X A. Research on multi-agent system and distributed AI[J]. Microcomputer Development, 2004, 14(3):80-82.
[2]DAI X K, TANG W J, WANG Y F, et al. A study of an intelligent battlefield damage assessment system based on a multi-agent system[J]. International Journal of Plant Engineering and Management, 2008, 13(1):41-46.
[3]COSTANTINI S, DE GASPERIS G, MIGLIARINI P. Multi-agent system engineering for emphatic human-robot interaction[C]//2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). Sardinia, Italy: IEEE, 2019:36-42.
[4]李瑞敏, 史其信. 基于多智能體系統(tǒng)的城市交通控制與誘導(dǎo)集成化研究[J]. 公路交通科技, 2004, 21(5):109-112.
LI R M, SHI Q X. Research on integration of urban traffic control and route guidance based on mult-agent[J]. Journal of Highway and Transportation Research and Development, 2004, 21(5):109-112.
[5]LIN K, JI Z. Dynamic event-triggered consensus of general linear multi-agent systems with adaptive strategy[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(8):3440-3444.
[6]TIAN C, LIU K, JI Z. Adaptive event-triggered consensus of multi-agent systems with general linear dynamics[J]. International Journal of Systems Science, 2022, 53(8):1744-1755.
[7]張志偉, 紀(jì)志堅(jiān). 有向路徑下的一類(lèi)多智能體系統(tǒng)的能控性分析[J]. 復(fù)雜系統(tǒng)與復(fù)雜性科學(xué), 2022, 19(2):63-70.
ZHANG Z W, JI Z J. Controllability of multi-agent system based on directed paths[J]. Complex Systems and Complexity Scienc, 2022, 19(2):63-70.
[8]SUN Y, JI Z, LIU Y, et al. On stabilizability of multi-agent systems[J]. Automatica, 2022, 144:1-13.
[9]GUAN Y, JI Z, ZHANG L, et al. Controllability of multi-agent systems under directed topology[J]. International Journal of Robust and Nonlinear Control, 2017, 27(18):4333-4347.
[10] JI Z, LIN H, YU H. Leaders in multi-agent controllability under consensus algorithm and tree topology[J]. Systems amp; Control Letters, 2012, 61(9):918-925.
[11] CHAO Y, JI Z. Necessary and sufficient conditions for multi-agent controllability of path and star topologies by exploring the information of second-order neighbors[J]. IMA Journal of Mathematical Control and Information, 2021, 38(1):1-14.
[12] GUO J, JI Z, LIU Y. Sufficient conditions and limitations of equivalent partition in multiagent controllability[J]. Science China Information Sciences, 2022, 65(3):1-15.
[13] JI Z, WANG Z, LIN H, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12):2857-2863.
[14] TANNER H G. On the controllability of nearest neighbor interconnections[C]//The 43rd IEEE Conference on Decision and Control (CDC). Nassau, Bahamas: IEEE, 2004:2467-2472.
[15] GUAN Y, WANG L. Target controllability of multiagent systems under fixed and switching topologies[J]. International Journal of Robust and Nonlinear Control, 2019, 29(9):2725-2741.
[16] LU Z, GUAN Y. Strong targeted controllability of switching signed networks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 69(3):1109-1113.
[17] LU Z, ZHANG Z, JI Z. Strong targeted controllability of multi-agent systems with time-varying topologies over finite fields[J]. Automatica, 2022, 142:1-5.
[18] 王瀟, 紀(jì)志堅(jiān).基于MAS的無(wú)人機(jī)新型編隊(duì)算法[J].復(fù)雜系統(tǒng)與復(fù)雜性科學(xué), 2019, 16(2): 60-68.
WANG X, JI Z J.A new UAV formation algorithm based on MAS[J].Complex Systems and Complexity Science, 2019, 16(2): 60-68.
[19] 國(guó)俊豪, 紀(jì)志堅(jiān). 基于 NE 結(jié)果的多智能體系統(tǒng)模型及其能控性[J]. 復(fù)雜系統(tǒng)與復(fù)雜性科學(xué), 2021, 18(4): 50-57.
GUO J H, JI Z J. A multi-agent system model based on NE results and its controllability[J]. Complex Systems and Complexity Science, 2021, 18(4): 50-57.
[20] LI Z, REN W, LIU X, et al. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[J]. International Journal of Robust and Nonlinear Control, 2013, 23(5): 534-547.
[21] MESBAHI M, EGERSTEDT M. Graph Theoretic Methods in Multiagent Networks[M]. Princeton and Oxford: Princeton University Press, 2010.
(責(zé)任編輯 李 進(jìn))