摘要 為提高骨磨削手術(shù)的安全性,提出采用低溫噴霧冷卻對骨磨削過程進行熱控制。搭建可三維運動的骨磨削實驗平臺,采用直徑為 4 mm 的醫(yī)用金剛石球狀磨頭以 20 000 r/min 高轉(zhuǎn)速在骨表面磨削加工。 磨具前、后進給方式下磨削力值相近,當磨削深度為 0.5 mm 時磨削平均功率約為 1.75 W。為降低磨削熱引起的熱損傷影響,將低溫生理鹽水噴霧(13 ℃,400 mL/h)輸送到磨削區(qū),并考察噴霧射流方向和磨頭進給方向?qū)δハ鳒囟鹊墓餐绊?。研究結(jié)果表明:低溫噴霧冷卻能使骨磨削溫升低于 4.0 ℃,低于神經(jīng)組織熱損傷溫升閾值 6.0 ℃,但噴霧的射流方向?qū)囟葓鲇休^大的影響。當噴嘴位于磨具上方時,有利于向后進給;位于磨具前方時,有利于向前進給;位于磨具側(cè)面時,對進給方向的影響較小。
關(guān)鍵詞 骨磨削;噴霧冷卻;噴射方向;磨削溫度;磨削力
中圖分類號 TG58; TG74 文獻標志碼 A
文章編號 1006-852X(2024)06-0798-09
DOI 碼 10.13394/j.cnki.jgszz.2023.0238
收稿日期 2023-11-10 修回日期 2024-01-14
磨削作為一種精密加工方法,在零件加工方面有著廣泛的運用。目前,骨組織磨削已是骨外科臨床上常見和基本的應用之一,有關(guān)骨磨削特性的研究逐漸增多[1-2] 。骨組織磨削通常采用表面有金剛石磨粒的微型球狀磨頭,由于磨削是能量密集型的加工方式,加工過程會產(chǎn)生很多磨削熱[3] ,熱量積聚會使得生物組織產(chǎn)生熱損傷[4] 。皮質(zhì)骨為常見的骨磨削對象,其導熱系數(shù) 0.38~2.3 W/(m·K) 遠低于金剛石磨具的導熱系數(shù)14~16.3 W/(m·K)[5] ,這使得大量的磨削熱量很容易積聚在局部骨組織中,造成生物組織局部高溫甚至熱損傷。大量研究表明,熱損傷程度與溫度和暴露時間有關(guān)。當溫度超過 70 ℃ 時,骨組織立即壞死。隨著暴露時間的延長,在較低的溫度(55 和 47 ℃)下分別暴露30 和 60 s,骨組織也會出現(xiàn)不可逆的細胞死亡[5-8] 。多數(shù)文獻將47 ℃ 作為骨組織出現(xiàn)熱損傷的閾值[9] ,而大腦組織、神經(jīng)以及血管對溫度更敏感,其熱損傷臨界溫度為 43 ℃[6,10,11] ??紤]人體體溫為 37 ℃,則神經(jīng)組織出現(xiàn)熱損傷的溫升閾值僅為 6 ℃。骨磨削操作通常用于經(jīng)鼻腔入路的顱底腫瘤摘除手術(shù),骨磨削區(qū)旁分布有重要的視神經(jīng)和三叉神經(jīng)等,因此控制好骨磨削的溫升十分重要。
骨加工冷卻方法的研究主要集中在冷卻劑的選擇、冷卻劑溫度、冷卻劑輸送和噴射方式等方面[12-15] 。在醫(yī)學上,通常采用生理鹽水作為冷卻劑。在骨磨削中,骨組織逐層去除,切削深度較小,因此通常采用外部冷卻法[16-18] 。ENOMOTO 等 [16]采用流量為 180 mL/h、溫度為 20 ℃ 的水作為冷卻液,對骨磨削過程進行外部滴管冷卻來研究磨削冷卻機理。SASAKI 等[17]提出將噴霧冷卻技術(shù)應用于骨磨削過程能提高冷卻能力,同時有助于清理手術(shù)區(qū)域,提升手術(shù)視野。LI 等[18]采用外部冷卻法,對比了骨磨削過程中采用空氣冷卻、生理鹽水澆注冷卻和噴霧冷卻時的冷卻效果,最高磨削溫度分別為 43.8、52.6、70.1℃,證實了噴霧冷卻的有效性。
有學者研究了低溫生理鹽水用于骨加工的可行性。TAKENAKA 等[19]研究了骨鉆孔時采用常溫和低溫生理鹽水沖洗冷卻對頸椎板成形術(shù)后上肢麻痹 (upper-limb (C-5) palsy, ULP) 發(fā)生率的影響。79 例手術(shù)中采用室溫生理鹽水(平均溫度為 25.6℃),80 例手術(shù)中采用低溫生理鹽水(平均溫度為 12.1℃)。研究結(jié)果表明,在鉆孔過程中采用低溫生理鹽水可顯著降低 ULP的發(fā)生率,因此可推薦其作為預防 ULP 的簡單方法。在先前的研究[20]中,初步探索了低溫噴霧冷卻技術(shù)用于骨磨削的可行性,發(fā)現(xiàn)噴嘴的噴射方向可能會對磨削溫度有影響。
在實際臨床過程中,醫(yī)生手持磨具的運動方向是可變的。為考察噴霧的射流方位與磨具的進給方式對磨削溫度的共同影響,設(shè)計了 3 種不同的噴嘴布置方式(磨具上方、前方和側(cè)面),研究磨具沿不同方向進給時低溫噴霧的冷卻效果。
1
骨磨削實驗研究
通過實驗研究了低溫噴霧冷卻條件下噴嘴位置和進給方向?qū)悄ハ骼鋮s效果的共同影響。以下為實驗裝置、實驗設(shè)計和實驗過程的詳細闡述。
1.1
實驗裝置
設(shè)計并搭建了三維運動的骨磨削平臺以及低溫噴霧 的 發(fā) 生 裝 置, 如 圖 1a 所 示 。 利 用 3 個 線 性 模 塊(型號:HIWINKK5002P-300A1-F2)驅(qū)動磨具在骨樣本表面沿 X、Y 和 Z 軸方向移動,線性滑塊的定位精度為 0.02 mm,可滿足加工深度的精度要求。實驗過程中,采用直徑為 4 mm,粒度#150 的球狀金剛石磨頭(廣州阿奎拉精密工具有限公司,型號 32120060),如圖 1b所示。
采用新鮮牛皮質(zhì)骨為加工對象,其機械性能和熱性能均與人體皮質(zhì)骨相似[5] 。骨樣本加工成長方體形,尺寸約為 25 mm × 15 mm × 6 mm。 進一步,利用高精度銑床對骨樣本表面進行銑加工,使其上下表面的粗糙度 R a <0.6 μm。
低溫噴霧冷卻系統(tǒng)由預冷的生理鹽水和加壓空氣混合而成,通過內(nèi)徑為 2.1 mm 的微噴嘴,實現(xiàn)磨削區(qū)低溫射流冷卻。生理鹽水的溫度由恒溫器調(diào)節(jié),保證其在噴嘴出口處的溫度為 13 ℃,流速閥調(diào)節(jié)冷卻液流量為 400 mL/h。
由于生理鹽水出口溫度低于環(huán)境溫度,在本研究中將其定義為低溫生理鹽水。將三維力傳感器 (DJSW-40,中國) 連接到數(shù)據(jù)采集系統(tǒng),該系統(tǒng)以 100 Hz 的頻率采集施加在骨樣本上沿 X, Y 和 Z 軸方向的力。同時,在 骨 樣 本 內(nèi) 部 埋 入 直 徑為 0.1 mm 的 K 型 熱 電 偶(Omega Inc.,TT-K-36) 實時測量磨削溫度。
1.2
實驗設(shè)計
參考文獻 [20-21] 設(shè)定磨削深度 a c 為 0.5 mm,轉(zhuǎn)速 ω為 20 000 r/min, 進 給 速 度 v 為 10 mm/min。 磨 具 沿Y 軸方向進給,定義+Y 方向為向前進給,?Y 方向為向后進給,如圖 2 所示。在外科手術(shù)中,由于磨削空間的限制,磨具與水平面的夾角 α 通常設(shè)定為 30°(圖 2)。
當磨削表面有冷卻液作用時,磨削槽正下方的溫度往往最高,因此從骨樣本底部分別埋入 2 個熱電偶TC1 和 TC2、TC3 和 TC4,用于測量向前、向后進給時的磨削溫度。熱電偶頂端與磨削槽底面相距 h(h=0.6 mm),h 略大于磨削深度 a c (a c =0.5 mm),以避免定位誤差引起熱電偶尖端被損傷。在所有實驗中,h值保持一致,即所有的溫度測量值均來自同一深度,溫度測量結(jié)果接近最高溫且具有可比性。
設(shè)計了 3 種不同的噴嘴布置方式,分別置于磨具的上方、前方和側(cè)面,如圖 3 所示。上方和前方的噴嘴布置于 Y-Z 平面,噴嘴與磨具軸線的夾角分別為 50°和90°。側(cè)面的噴嘴落于 X-Z 平面,噴嘴軸線與 X 軸的夾角為 30°。噴嘴與噴射表面相距 10 mm。采用 3 種噴嘴方位和 2 個進給方向,共設(shè)計了 6 組實驗 (3 × 2),每組實驗重復 3 次,以研究噴嘴位置和進給方向共同影響下噴霧的冷卻作用。表 1 列出了實驗設(shè)計方案。
1.3
實驗過程
在相同的噴嘴方位下,同一骨樣本上進行 2 次不同進給方向的磨削實驗,如圖 4b 所示。為保證磨削槽能處于熱電偶的正上方,需要對磨削路徑進行提前定位。實驗前,采用直徑為 1 mm 的鉆頭在骨樣本上的兩端打 4 個定位通孔 1~4,沿 X 軸孔距為 6 mm,沿 Y 軸孔距為 15 mm,如圖 4a 所示。此外,在孔 1 和孔 2、孔3 和孔 4 的連線上分別鉆 2 個盲孔,用于埋入熱電偶測量磨削溫度。
2
結(jié)果與分析
2.1
磨削力
在骨磨削過程中,磨具會受到 3 個正交方向的力(如圖 5 所示),分別為 F t 切向磨削力,用于去除材料;F a 軸向磨削力,磨具進給時受到的阻力; F n 法向磨削力,是工件對磨具的支撐力。磨削過程中能量消耗主要來源于切向力 F t 產(chǎn)生的扭矩和軸向力 F a 沿進給方向的做功,當磨削深度不變時,法向力 F n 在 Z 軸方向不做功。通常,采用式(1)計算磨削過程消耗的功率[22] 。
P = T r ω+F a v (1)
式中:T r 為扭矩(T r = F t r),ω 為轉(zhuǎn)速 (取 20 000r/min), F a 為軸向力,v 為進給速度 (取10 mm /min)。與鉆削過程類似,扭矩項在功率消耗中占主導地位,因此可以通過測量扭矩和轉(zhuǎn)速來簡單地估計機械功率。
由于電機產(chǎn)生的振動與系統(tǒng)共振耦合,磨削力的原始曲線輪廓白噪聲較多,為了求出平均磨削力,對原始數(shù)據(jù)進行了 10 Hz 低通濾波。圖 6 給出了一組濾波后的典型測力數(shù)據(jù)。F X 、F Y 和 F Z 分別為工件在 X、Y和 Z 軸等 3 個方向的受力。根據(jù)坐標的對應關(guān)系,F(xiàn) X =F t ,F(xiàn) Y = F a ,F(xiàn) Z = F n 。
選取磨削過程中的一段時間(70 s)作為計算區(qū)間求取磨削力的平均值。向前進給時,各個力的平均值 F X = 0.37 N,F(xiàn) Y = ?0.72 N,F(xiàn) Z = 1.38 N。向后進給時,F(xiàn) X = 0.46 N,F(xiàn) Y = 0.78 N,F(xiàn) Z = 1.67 N。值得注意的是,磨削力 F X 、F Y 和 F Z 的符號只體現(xiàn)了磨削力的方向。因磨具保持相同的旋轉(zhuǎn)方向,切向力F X 恒為正值。前、后進給時,軸向力 F Y 分別沿?Y 和 + Y 方向,F(xiàn) Y 值符號發(fā)生變化。
當磨具與水平面的夾角固定為 30°,磨削深度為0.5 mm,只改變進給方向時,磨具與骨樣本的接觸面為同一曲面,如圖 7 所示。對于球形磨具,磨粒的線速度(即切向速度)與其旋轉(zhuǎn)半徑 r'(磨粒繞磨具刀柄軸線旋轉(zhuǎn)的半徑)成正比,因此接觸區(qū)的磨粒線速度。在磨削參數(shù)不變的情況下,理論上,前、后進給時接觸面上參與磨削的磨粒線速度分布是接近的。在磨削加工中,磨削力與磨粒的切向速度有一定的對應關(guān)系,通常來講,較大的切向速度對應較小的磨削力??紤]到骨組織具有非均質(zhì)性,以及潤滑液的影響,前、后進給時的磨削切向力應該是接近的。根據(jù)圖 6 的測力結(jié)果,向前、向后進給時,切向力(F X )分別為 0.37 和 0.46 N,兩者較相近,這與磨削理論是吻合的。根據(jù)式(1),磨具向前和向后進給時,磨削消耗的功率約為 1.60 和 1.90 W。
2.2
磨削溫度
圖 8 所示為一組典型的溫度數(shù)據(jù),磨具在骨樣本表面進給,隨著磨具與熱電偶 TC1 和 TC2 的相對位置變化,瞬態(tài)溫度分布均呈現(xiàn)先升后降的趨勢。為比較不同工況下的冷卻效果,以不同實驗工況下熱電偶的溫升值(ΔT)作為比較對象,對溫度測量結(jié)果進行了統(tǒng)計分析。
利用同一工況下 3 組重復實驗的測溫數(shù)據(jù),計算#1~#6 實驗的平均溫升值與標準偏差,結(jié)果如圖 9 所示。由圖 9 可知:在低溫噴霧冷卻下,本實驗骨磨削的最大溫升值<4.0 ℃,不超過神經(jīng)熱損傷的溫升閾值 6.0 ℃。
當噴嘴位于磨具上方(#1、#2)與側(cè)面(#5、#6)時,同組實驗的 2 個測點溫度(TC1 和 TC2、TC3 和TC4)溫升較一致,當磨具向前進給時,#1 和#5 的溫度值較接近,而當磨具向后進給時,#2 的溫度明顯低于#6,這可能是因為磨具向后進給時,上方的冷卻液更易進入磨削區(qū),而從側(cè)面靠磨具的旋轉(zhuǎn)力進入磨削區(qū)的冷卻液相對少些。
當噴嘴置于磨具前方(#3、#4)時,同組實驗的 2個測點溫度表現(xiàn)出較大的差異。向前進給(#3)時,TC2 的溫度明顯低于 TC1,向后進給(#4)時,TC4 的溫度明顯高于 TC3。 這是由于噴嘴的噴射方向與磨具的進給方向比較接近,向前進給時磨削區(qū)在前方利于冷卻,而向后進給時磨削區(qū)在后方冷卻液難以進入。
2.3
噴嘴布置方式的影響
為考查噴嘴布置方式對溫度的影響,在固定的進給方向下進行了溫度分析。圖 10 為磨具向前進給時,TC1 和 TC2 的測溫比較。
上方和側(cè)面的噴嘴下溫度分布較為相近,前方的噴嘴下 TC2 的降溫明顯,這是因為噴嘴的噴灑區(qū)域是一個面,除了磨具與骨樣本的接觸弧區(qū),前方的噴嘴還有部分冷卻液會噴在骨樣本上,出現(xiàn)骨內(nèi)部的預冷效果(圖 10b)。
圖 11 為磨具向后進給時,TC3 和 TC4 的測溫比較。由圖 11 可知:當噴嘴置于上方時,磨削溫度最低。究其原因可能是兩方面的:其一,與砂輪類似,高速旋轉(zhuǎn)的磨頭會產(chǎn)生氣障效應,當噴嘴置于上方時,向后進給的方式有助于磨削液進入磨削區(qū);其二,冷卻液從上往下噴射,容易在磨削槽內(nèi)積聚,這對于骨組織又有冷卻作用。
所討論的 3 種噴嘴布置方式中,上方與前方噴嘴處于 Y-Z 平面,側(cè)面噴嘴處于 X-Z 平面。側(cè)面噴嘴與磨具的進給方向(Y 方向)處于垂直平面,因此進給方向?qū)δハ鳒囟炔町愑绊懽钚?。上方和前方噴嘴與磨具進給方向在同一平面,進給方向的影響大些,尤其是噴嘴置于前方時,前、后進給的磨削溫度差異非常明顯,這主要是因為噴嘴與磨削區(qū)域的相對位置關(guān)系,使得磨具向后移動時,噴霧難以進入磨削區(qū),如圖 12 所示。
3
結(jié)論
采用低溫噴霧冷卻技術(shù)研究骨磨削過程中的磨削溫度和磨削力的情況,得出以下結(jié)論:
(1)采用直徑為 4 mm 的球狀金剛石磨具進行骨磨削,當磨削深度為0.5 mm 時,平均切向磨削力為0.42 N,軸向磨削力為 0.75 N,法向磨削力為 1.53 N,磨削消耗的平均功率約為 1.75 W。
(2)在低溫噴霧的冷卻作用下,磨削的最高溫升低于 4.0 ℃,這能有效抑制生物組織出現(xiàn)熱損傷。當噴嘴置于上方和側(cè)面時,同組實驗的 2 個熱電偶溫度較一致,而當噴嘴置于前方時,2 個熱電偶的溫度有較大的差異。這表明,當噴嘴置于上方和側(cè)面時,冷卻效果更為穩(wěn)定。
(3)噴嘴的布置方式和進給方式耦合對磨削溫度有較大的影響。當噴嘴置于上方時,有利于向后進給;當噴嘴置于前方時,有利于向前進給;當噴嘴置于側(cè)面時,前、后進給的溫度差異不大。
在一定的實驗工況下,本研究著重考察了噴嘴方向與磨具沿 ± Y 軸的進給方向耦合對冷卻效果的影響??紤]到醫(yī)生手持磨具進行骨磨削時進給方向具有一定的不確定性,后續(xù)需針對不同的進給方向展開研究。低溫噴霧的冷卻效果還與噴霧性能有很大關(guān)系,供氣壓力、冷卻液流量以及噴嘴結(jié)構(gòu)會對噴霧速度場和對流換熱能力產(chǎn)生影響,后續(xù)可基于粒子圖像測速技術(shù)(particle image velocimetry,PIV)對生理鹽水噴霧射流的動力學特性進行研究。
參考文獻:
[1]吳茂忠, 王成勇, 鄭李娟, 等. 生物組織磨削加工研究 [J]. 金剛石與磨料磨具工程,2022,42(2):137-149.
WU Maozhong, WANG Chengyong, ZHENG Lijuan, et al. Research on
grinding of biological tissue [J]. Diamond amp; Abrasives Engineering,2022,42(2):137-149.
[2]王成勇, 陳志樺, 陳華偉, 等. 生物骨材料切除理論研究綜述 [J]. 機械工程學報,2021,57(11):2-32.
WANG Chengyong, CHEN Zhihua, CHEN Huawei, et al. A review on
cutting mechanism for bone material [J]. Journal of Mechanical
Engineering,2021,57(11):2-32.
[3]朱歡歡, 李厚佳, 張利華, 等. 切入式磨削燒傷仿真預測與控制方法研究 [J]. 金剛石與磨料磨具工程,2019,39(5):44-49.
ZHU Huanhuan, LI Houjia, ZHANG Lihua, et al. Study on simulation
prediction and control method of burns in plunge grinding [J]. Diamond
amp; Abrasives Engineering,2019,39(5):44-49.
[4]ZHANG L H, TAI B L, ZHANG K B, et al. Thermal model to investigate
the temperature in bone grinding for skull base neurosurgery [J]. Medical
Engineering amp; Physics,2012,35(10):1391-1398.
[5]MURAT C, SERDAR K, ERKAN B, et al. Investigation of thermal
damage in bone drilling: Hybrid processing method and pathological
evaluation of existing methods [J]. Journal of the Mechanical Behavior of
Biomedical Materials,2022,126:105030.
[6]YANG Y Y, YANG M, LI C H, et al. Machinability of ultrasonic
vibration-assisted micro-grinding in biological bone using nanolubricant
[J]. Frontiers of Mechanical Engineering,2023,18(1):1-16.
[7]LIU Y, BELMONT B, WANG Y W, et al. Notched K-wire for low
thermal damage bone drilling [J]. Medical Engineering amp; Physics,2017,45:25-33.
[8]PALMISANO A C, TAI B L, BELMONT B, et al. Heat accumulation
during sequential cortical bone drilling [J]. Journal of Orthopaedic
Research,2016,34:463-470.
[9]PANDEY R K, PANDA S S. Drilling of bone: A comprehensive review
[J]. Journal of Orthopaedic Trauma,2013,4(1):15-30 .
[10]GHOLAMPOUR S, DROESSLER J, FRIM D. The role of operating
variables in improving the performance of skull base grinding [J].
Neurosurgical Review,2022,45:2431-2440.
[11]GHOLAMPOUR S, HASSANALIDEH HH, GHOLAMPOUR M, et al.
Thermal and physical damage in skull base drilling using gas cooling
modes: FEM simulation and experimental evaluation [J]. Computer
[12]Methods and Programs in Biomedicine,2021(212): 106463.
YANG M, LI C H, ZHANG Y B, et al. Research on microscale skull
grinding temperature field under different cooling conditions [J]. Applied
Thermal Engineering,2017,126:525-537.
[13]YANG M, LI C H, ZHANG Y B, et al. Experimental research on
microscale grinding temperature under different nanoparticle jet
minimum quantity cooling [J]. Materials and Manufacturing Process,2017,32(6):589-597.
[14]YANG M, LI C H, LUO L, et al. Predictive model of convective heat
transfer coefficient in bone micro-grinding using nanofluid aerosol
cooling [J]. International Communications in Heat and Mass Transfer,2021,125:105317.
[15]孫建, 錢煒, 丁子珊. 基于 FLUENT 的微量潤滑磨削流場仿真研究 [J].機電工程,2021,38(7):865-872.
SUN Jian, QIAN Wei, DING Zishan. Minimal quantities lubricant
grinding based on FLUENT flow field simulation [J]. Journal of
Mechanical amp; Electrical Engineering,2021,38(7):865-872.
[16]ENOMOTO T, SHIGETA H, SUGIHARA T, et al. A new surgical
grinding wheel for suppressing grinding heat generation in bone resection
[J]. CIRP Annals-ManufacturingTechnology,2014,63(1):305-308.
[17]SASAKI M, MORRIS S, GOTO T, et al. Spray-irrigation system
attached to high-speed drills for simultaneous prevention of local heating
and preservation of a clear operative field in spinal surgery [J].
Neurologia Medico-chirurgica,2010,50(10):900-904.
[18]LI C H, ZHAO H Y, MA H L, et al. Simulation study on effect of cutting
parameters and cooling mode on bone-drilling temperature field of
superhard drill [J]. International Journal of Advanced Manufacturing
Technology,2015,81(9/10/11/12):2027-2038.
[19]TAKENAKA S, HOSONO N, MUKAI Y, et al. The use of cooled saline
during bone drilling to reduce the incidence of upper-limb palsy after
cervical laminoplasty: Clinical article [J]. Journal of Neurosurgery-spine,2013,19(4):420-427.
[20]ZHANG L H, TAI B L, WANG A C, et al . Mist cooling in neurosurgical
bone grinding [J]. CIRP Annals- Manufacturing Technology,2013,62(1):367-370.
[21]DANDA A, KUTTOLAMADOM M A, TAI B L. A mechanistic force
model for simulating haptics of hand-held bone burring operations [J].
Medical Engineering and Physics,2017,49: 7-13.
[22]SHIH A J, TAI B L, ZHANG L H, et al. Prediction of bone grinding
temperature in skull base neurosurgery [J]. CIRP Annals- Manufacturing
Technology,2012,61(1):307-310.
作者簡介
張麗慧,女,1987 年生,博士、副教授。主要研究方向:生物醫(yī)學磨削加工。
E-mail:lhzhang@usx.edu.cn
(編輯:趙興昊)
Experimental"study"on"bone"grinding"temperature"and"force"under"low
temperature"spray"cooling
ZHANG Lihui
1 , XIE Shuo 1 , LUO Mingfa 1 , WANG Xudong 2 , YANG Huichuang 1
(1. School of Mechanical and Electrical Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China)
(2. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China)
Abstract
Objectives:"Bone tissue grinding is one of the common and basic applications in orthopedic surgery clinics.The grinding process is energy-intensive and generates a lot of grinding heat. The accumulation of this heat may causethermal damage to biological tissues. This paper presents experimental research to investigate the bone-grinding heatand the cooling method. Methods:"The combined influence of nozzle position and feed direction on the cooling effect ofbone grinding under cryogenic spray cooling conditions is experimentally investigated. A bone grinding platform withthree-dimensional motion, as well as a cryogenic spray generation device, is designed and constructed. A spherical dia-mond grinding head with a diameter of 4 mm and a grit size of #150 is utilized. Fresh bovine cortical bone is used as theprocessing sample. The temperature at the nozzle outlet is 13 ℃, and the flow rate valve regulates the coolant flow rateto 400 mL/h. A three-dimensional force transducer (DJSW-40, China) is connected to a data acquisition system, whichcaptures the forces applied to the bone sample along the X, Y, and Z directions at a frequency of 100 Hz. Simultaneously,a 0.1 mm diameter type K thermocouple (Omega Inc., TT-K-36) is embedded inside the bone sample to measure thegrinding temperature in real-time. Three different nozzle arrangements were designed: above, in front of, and to the sideof the abrasive tool, with the nozzles 10 mm away from the spray surface. Six sets of experiments (3×2) were designedusing three nozzle orientations and two feeding directions. Each set of experiments was repeated three times to study thecooling effect of the spray under the combined influence of nozzle orientation and feed direction. Results:"(1) Duringbone grinding, the abrasive tool is subjected to three orthogonal directional forces, namely F X (the tangential grindingforce used for removing material), F Y (the axial grinding force, representing the resistance of the abrasive tool during itsfeed), and F Z (the normal grinding force, which serves as the support force of the workpiece on the abrasive tool). Forforward feed, the average values of the individual forces are: F X = 0.37 N, F Y = -0.72 N, F Z = 1.38 N. For backward feed,F(xiàn) X = 0.46 N, F Y = 0.78 N, F Z = 1.67 N. Since the grinding tool remains in the same rotational direction, the tangentialforce F X is consistently positive. For forward/backward feed, the axial force F Y is in the -Y and +Y directions respect-ively, thus the sign of the F Y value changes. When feeding forward/backward, the tangential force (F X ) is 0.37 N and0.46 N, respectively, which are relatively similar to each other, in accordance with the grinding theory. The power con-sumed for grinding is approximately 1.6 W and 1.9 W for forward and backward feed, respectively. (2) The nerve tissueis more heat-sensitive than bone tissue. Taking the human body's 37 ℃ as the base temperature, the threshold for the oc-currence of thermal injury is 43 ℃, so the temperature rise threshold for thermal injury of nerve tissue is 6 ℃. In our ex-periment, the maximum temperature rise of bone under low-temperature spray cooling was lower than 4 ℃, indicatingthat the cooling method is effective. The effect of the nozzle arrangement was investigated under a fixed forward orbackward feeding direction. When the abrasive tool is fed forward, the cooling of the thermocouple under the frontnozzle is obvious. This is because, in addition to the contact arc area between the abrasive tool and the bone sample, aportion of the coolant from the front nozzle is sprayed onto the bone sample surface, resulting in a pre-cooling effectwithin the bone. When the abrasive tool is fed backward, the grinding temperature is lowest when the nozzle is placedabove. For the different nozzle orientations, the side nozzles are in a perpendicular plane to the feed direction (Y-direc-tion) of the grinding tool, so the feed direction has the least influence on the grinding temperature. The upper and frontnozzles are in the same plane as the feed direction of the abrasive tool, so the influence of the feed direction is more sig-nificant. Conclusions: (1) The average tangential grinding force is 0.42 N, axial grinding force is 0.75 N, normal grind-ing force is 1.53 N, and the average power consumed by grinding is approximately 1.75 W when bone grinding is per-formed at a depth of 0.5 mm using a spherical diamond abrasive tool with a diameter of 4 mm. (2) Under the cooling ef-fect of the cryogenic spray, the maximum temperature rise of grinding is less than 4 ℃, which can effectively preventthe occurrence of thermal damage in biological tissues. The temperatures of the two thermocouples in the same set ofexperiments were more consistent when the nozzle was placed above or side, while there was a significant difference inthe temperatures of the two thermocouples when the nozzle was placed in front. This indicates that the cooling effect ismore uniform when the nozzle is placed above and to the side. (3) The coupling of the nozzle arrangement and the feed-ing mode has a greater impact on the grinding temperature. When the nozzle is placed on top, it is favorable to back-ward feeding; when the nozzle is placed in front, it is conducive to forward feeding; and when the nozzle is placed onthe side, there is no significant difference in the temperature between forward and backward feeding.
Key"words
bone grinding;spray cooling;injection direction;grinding temperature;grinding force