亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氧化鋁基吸附劑除氟理論與技術(shù)研究進(jìn)展

        2024-11-21 00:00:00陳彩虹,伍昌年,王坤,尹翠琴,張良霄,高和氣

        摘要:水體中氟離子(F-)濃度過高會對環(huán)境和人體造成危害.吸附法除氟成本低廉、重復(fù)利用率高、除氟效果可觀,在地下水除氟領(lǐng)域得到廣泛應(yīng)用.氧化鋁基吸附材料具有豐富的表面活性位點(diǎn),對F-的親和力很強(qiáng),研究最為廣泛.闡述了兩種改性活性氧化鋁的方法及除氟基本原理,分析了影響吸附的主要影響因素,為氧化鋁基吸附除氟的后續(xù)研究提供參考,提出研究建議.

        關(guān)鍵詞:改性氧化鋁;吸附;氟;離子交換

        中圖分類號:TU991.26文獻(xiàn)標(biāo)志碼:A

        Research Progress in Theory and Technology of"Fluorine Removal by Alumina-based Adsorbents

        CHEN Caihong1, WU Changnian1, WANG Kun1,"YIN Cuiqin2, ZHANG Liangxiao2, GAO Heqi2

        (1. Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu"University, Hefei 230601, China;2. Hefei Water Supply Group Company Ltd., Hefei 230011, China)

        Abstract: Excessive concentration of fluoride ions (F -) in water can cause harm to the environment and human health. Common methods for fluoride removal in drinking water include adsorption, coagulation precipitation, electrochemical method, membrane separation, etc. The adsorption method has been widely used in the field of groundwater fluoride removal due to its low cost, high reuse rate, and significant fluoride removal effect. Alumina-based adsorption materials have rich surface active sites and strong affinity for fluoride ions, so they are one of the most widely studied adsorption materials at present. This paper describes the methods of metal modification and surface activation of Activated alumina and the basic principle of defluorination, analyzes the main factors affecting adsorption, such as pH, types of coexisting ions, temperature, adsorbent dosage, contact time, etc. which provides a reference for the follow-up research of alumina-based adsorption defluorination, and puts forward research suggestions.

        Key words: modified alumina; adsorption; Fluorine; ion exchange

        氟(F)是具有很強(qiáng)氧化性的鹵族元素,廣泛分布于自然環(huán)境及人體各組織、器官中,其中頭發(fā)、骨骼、牙齒中含氟量最多[1].人體中氟的攝入大多來自于飲用水.世衛(wèi)組織規(guī)定氟化物濃度上限值為1.5 mg/L,而人體中適宜的氟含量濃度為0.5~1.0 mg/L.氟元素對人體具有雙閾值效應(yīng),適當(dāng)攝入對身體有益,攝入過多會造成氟斑牙和氟骨病,攝入不足則會影響骨骼和機(jī)體發(fā)育,損壞牙質(zhì)健康,造成齲齒和骨質(zhì)疏松癥[2-3].中國高氟地區(qū)分布廣泛,尤其是東北、西北及經(jīng)濟(jì)落后的農(nóng)村地區(qū),如何改善水中氟污染成為國內(nèi)外研究熱點(diǎn)[4-5].

        飲用水除氟方法主要有吸附法、混凝沉淀法、電化學(xué)法、膜分離法等.混凝沉淀法適用范圍廣、沉淀效果較好,缺點(diǎn)在于沉淀過濾單元占地面積大,絮凝過程中會生成鋁和氟鋁復(fù)合物[6].電化學(xué)法無需添加藥劑、電極材料,運(yùn)行自動化程度高,但價(jià)格昂貴,技術(shù)設(shè)備開發(fā)難度較大,需要專業(yè)人員參與設(shè)計(jì)運(yùn)行[7].膜分離法幾乎能去除水中有機(jī)物、微生物、細(xì)菌等所有物質(zhì),自控程度高,然而膜系統(tǒng)能耗很高,產(chǎn)水率低,易產(chǎn)生大量濃鹽水導(dǎo)致膜污染,需結(jié)合其他技術(shù)進(jìn)行無害化處理[8].相較于其他方法,吸附法因吸附材料獲取方便、重復(fù)利用率高、二次污染小、除氟性能較好等優(yōu)點(diǎn),在地下水除氟領(lǐng)域具有很強(qiáng)的競爭力,具有環(huán)保性、經(jīng)濟(jì)性、高效性等特點(diǎn),是最常用的除氟方法之一[9].

        吸附法的除氟效果與吸附劑的種類及吸附程度密切相關(guān).常見的吸附劑有活性氧化鋁(Al2O3)、沸石、活性炭、粉煤灰、離子樹脂和殼聚糖[10].相較于傳統(tǒng)氧化鋁,改性后的氧化鋁基吸附劑比表面積較大,孔隙結(jié)構(gòu)發(fā)達(dá),表面活性位點(diǎn)豐富,對氟化物的親和力很高,具有較高的吸附性能和再生能力,是國內(nèi)外學(xué)者研究最多的吸附材料之一[11].

        1活性氧化鋁除氟原理

        1936年,在丘吉爾(前英國首相)收到的眾多專利中,有一篇首次提到氧化鋁可應(yīng)用于地下水除氟[12].氧化鋁具有多種同質(zhì)多晶體,常見的有α-Al2O3、β-Al2O3、θ-Al2O3、γ-Al2O3和δ-Al2O3.活性氧化鋁是γ-Al2O3晶相,是一種多孔性、高度分散的固體材料,比表面積較大,化學(xué)活性和吸附能力較好,在吸附領(lǐng)域應(yīng)用最多.氧化鋁基吸附劑除氟原理主要有靜電吸引、離子交換兩種機(jī)制[13-14].

        1.1靜電吸引

        溶液的pH范圍影響Al2O3電位的正負(fù)性,在特定的pH范圍和條件下,Al2O3的Zeta電位值為正值,即表面帶正電荷.由于離子在一定距離內(nèi)帶相反電荷并相互接觸會形成靜電引力,溶液中的F-會與Al2O3表面結(jié)合生成氟化物而實(shí)現(xiàn)水體除氟.

        例如,Tripathy等[15]在明礬浸漬Al2O3(AIAA)除氟的實(shí)驗(yàn)中發(fā)現(xiàn),pHlt;8.6時(shí),AIAA的Zeta電位值為正值,此時(shí)表面帶正電荷,通過靜電引力與溶液中的F-吸附結(jié)合.許乃才等[16]將氧化石墨烯(GO)和γ-Al2O3混合后通過水熱法制備GO-Al2O3吸附除氟,當(dāng)溶液pH≤10.0時(shí),GO-Al2O3表面的羥基被質(zhì)子化,吸附劑帶正電荷,對F-的靜電引力較強(qiáng),并通過靜電吸引和配體交換實(shí)現(xiàn)水體除氟.由于反應(yīng)不斷釋出的OH-與F-在吸附劑表面發(fā)生競爭吸附,溶液的Zeta電位下降,GO-Al2O3對F-的靜電引力不斷減弱.用AS代表Al2O3表面,吸附過程中質(zhì)子化(1)、靜電吸引(2)、配體交換(3)三個(gè)階段的反應(yīng)方程式分別為:

        AS-OH+H+AS-OH+2(1)

        AS-OH+2+F-AS-OH+2F-(2)

        AS-OH+2+F-AS-F+H2O(3)

        1.2離子交換

        Al2O3的結(jié)構(gòu)具有一定特殊性,由于第二層氧離子的數(shù)量是第一層的兩倍,且氧離子與鋁離子相連,鋁離子會暴露在Al2O3表面.在含氟水溶液中,Al2O3會通過化學(xué)吸附或解離在其表面形成大量Al-O和Al-OH官能團(tuán),F(xiàn)-與-OH發(fā)生取代反應(yīng)形成Al-F鍵,Al-F鍵具有更強(qiáng)的結(jié)合力吸附在Al2O3表面.離子交換的反應(yīng)過程為:AS-OH+FAS-F+OH[17].

        Wu等[18]將Fe-Al-Ce三金屬氧化物吸附劑應(yīng)用于飲用水除氟.研究發(fā)現(xiàn),三種金屬上的-OH基團(tuán)與F-之間均發(fā)生配體交換,有利于吸附除氟.當(dāng)F-的含量較高時(shí),Al-OH基團(tuán)與F-之間的交換反應(yīng)最為頻繁.He等[19]不僅證實(shí)Al2O3除氟實(shí)驗(yàn)中發(fā)生了離子交換,還綜合探究了吸附過程中不同陰離子的交換速率,用Fe2(SO4)3、Fe(NO3)3、FeCl3三種不同鐵鹽改性Al2O3分別制備S-Al2O3、N-Al2O3、Cl-Al2O3吸附劑.通過FTIR分析,F(xiàn)-初始濃度較高(200 mg/L)時(shí),鐵的摻雜削弱了Al2O3對F-的靜電吸引和絡(luò)合作用,S-Al2O3與Al2(SO4)3的離子交換率(51.5%)顯著高于Al2O3的離子交換率(21.3%).而當(dāng)F-濃度在較寬的范圍(5 200 mg/L)內(nèi)時(shí),SO2-4和F-離子交換貢獻(xiàn)率為46%~69%,成為吸附除氟的主要機(jī)制,而NO-3和Cl-對吸附的影響較弱.

        離子交換是鹽負(fù)載鋁吸附除氟的重要機(jī)制.不同條件下,陰離子間的吸附能在離子交換中起到關(guān)鍵性作用,交換速率也有所不同.

        2改性活性氧化鋁

        Al2O3吸附除氟雖在凈化飲用水領(lǐng)域運(yùn)用較為成熟,但仍存在吸附速率慢、吸附容量低、適用pH范圍窄等缺點(diǎn).常用的提高Al2O3吸附性能的改性方法有金屬改性、表面活化兩種[20].

        2.1金屬改性

        金屬離子與分子或離子結(jié)合形成新的穩(wěn)定絡(luò)合物的過程稱為絡(luò)合效應(yīng).在含氟水體中,金屬元素(M)對F-的選擇性、親和力較高,通過靜電吸引、離子交換等一系列反應(yīng)可生成氟化物(M-F)[21].利用這一特性,眾多學(xué)者用金屬陽離子對Al2O3進(jìn)行摻雜以提高其除氟效率.常用作改性的金屬元素主要有堿土金屬(鈣、鎂)、過渡金屬(銅、錳、鋯)、稀土金屬(鑭、鈰)等.

        Singh等[22]用鈣鎂改性Al2O3并在650、850 ℃溫度下煅燒,分別制備CMAA 650、CMAA 850吸附劑.實(shí)驗(yàn)發(fā)現(xiàn),由于Ca2+、Mg2+與Al2O3和F-之間發(fā)生絡(luò)合作用,且生成的離子絡(luò)合物與F-異性相吸,改性后的鋁基吸附劑吸附容量分別提升為2.74 mg/g、2.61 mg/g,而未經(jīng)改性的Al2O3吸附容量僅為2.48 mg/g.錳(Mn)和鋯(Zr)等過渡金屬的氧化物表面積較大,用于改性Al2O3能為吸附劑表面提供更多的吸附位點(diǎn).利用Mn2+與F-間的絡(luò)合效應(yīng),Gao等[23]制備了錳改性Al2O3吸附劑(MAA),相較于Al2O3直接吸附,MAA對F-的去除率提高了近30%.利用相同絡(luò)合原理,Kumari等[24]將鈣和鋯雙金屬同時(shí)負(fù)載于酸化后的Al2O3吸附除氟,稱制備的復(fù)合吸附劑為CAZ吸附劑.實(shí)驗(yàn)可知,CAZ在最佳反應(yīng)條件下對氟化物的去除率高達(dá)97%,而母體Al2O3的吸附率僅為74%.鑭(La)是最活潑的稀土元素,徐志穎等[25]將La負(fù)載于Al2O3上,La3+與F-之間強(qiáng)烈的絡(luò)合能力使得吸附劑除氟性能明顯提升.實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)pH=6.0時(shí)除氟效率最佳,堿性條件下OH-會與F-發(fā)生競爭吸附,除氟效果不理想.韓曉峰等[26]則結(jié)合了鑭和鎂元素的除氟優(yōu)勢,也將其應(yīng)用于改性Al2O3,改性后吸附劑表面吸附位點(diǎn)增多,孔隙結(jié)構(gòu)發(fā)達(dá),提高了對F-的吸附性能.

        堿土金屬氫氧化物堿性很強(qiáng),過渡金屬相對較弱,但改性后孔隙率和表面積較大,稀土元素性質(zhì)較活潑但成本較高.因此,需綜合考慮反應(yīng)條件選擇合適的金屬元素改性Al2O3.

        2.2表面活化

        表面活化即通過酸、堿、鹽溶液自身的氧化性質(zhì)浸漬Al2O3,以增加其表面活性位點(diǎn)的數(shù)量,從而增強(qiáng)對F-的吸附能力[27].

        Kumari等[24]用HNO3對Al2O3進(jìn)行酸化,改性后的Al2O3多孔性增強(qiáng),比表面積增大,對F-的吸附率明顯提高,吸附量從未經(jīng)過酸化處理的23.42~45.75 mg/g提升為74.18~97.43 mg/g.硫酸鹽在改性Al2O3的應(yīng)用中也受到了廣泛關(guān)注,徐雷等[28]將不同質(zhì)量分?jǐn)?shù)的Fe2 (SO4)3浸漬Al2O3吸附除氟,通過SEM分析,活化后吸附劑表面存在的SO2-4為反應(yīng)提供了更多的酸性位點(diǎn),且溶液釋放的OH-和SO2-4易與F-發(fā)生配位反應(yīng),部分離子表面攜帶的正電荷會與F-發(fā)生靜電吸引,使除氟效率明顯提升.為了使研究過程簡單化,Saleh等[29]還提出無需使用額外絡(luò)合劑的活化方法.利用硼良好的分散性,將MoCo催化劑負(fù)載于氧化鋁上用硼進(jìn)行修飾,硼的引入會使載體和催化劑保持酸性.推理認(rèn)為,硼摻雜后的吸附材料BET表面積增加,化學(xué)活性增強(qiáng),對水體中的F-具有一定吸附性.

        利用酸、堿、鹽等活化Al2O3會使其表面的孔隙和裂紋被均勻打開,吸附效率明顯提高,但反應(yīng)過程中可能會存在PO3-4、SO2-4等共存離子,對F-的吸附產(chǎn)生一定影響,需進(jìn)行更深一步的研究.

        3影響因素

        3.1pH

        溶液的pH控制系統(tǒng)內(nèi)的靜電相互作用,進(jìn)而影響吸附效率和除氟率.系統(tǒng)pH值較低,高濃度的H+會與F-生成HF絡(luò)合物從而阻礙吸附劑表面氟化物的去除;系統(tǒng)pH值較高,OH-對金屬元素具有一定親和力,也會影響吸附反應(yīng)的進(jìn)程[30-31].因此,合理控制pH條件在吸附反應(yīng)中十分重要.

        一些研究者從實(shí)驗(yàn)中總結(jié)原水接近中性時(shí)有利于吸附脫氟.侯佳卉等[32]用CeO2納米材料改性γ-Al2O3,吸附劑所適應(yīng)的pH范圍較廣,在中性條件下的除氟率在91%以上,且藥劑投加量減少,溶液環(huán)境相對簡單,因此,環(huán)境工程實(shí)例應(yīng)用中確定最佳除氟pH為7.隨著pH值的增高,吸附劑表面的OH-與F-發(fā)生競爭吸附,除氟效率迅速下降.

        3.2共存離子

        地下水中除F-外還含有Cl-、PO3-4、SO2-4、CO2-3和NO-3等離子,這些離子可能會與F-競爭活性吸附位點(diǎn),對吸附除氟過程產(chǎn)生一定影響.大量研究表明,溶液中共存離子對吸附F-影響最大的是PO3-4,其次是CO2-3和SO2-4,Cl-和NO-3對吸附反應(yīng)幾乎沒有影響[34-35].Kumar等[36]在探究納米Al2O3吸附F-的實(shí)驗(yàn)中發(fā)現(xiàn),PO3-4存在時(shí),納米Al2O3對氟化物的去除率低于SO2-4和CO2-3存在的條件下;而當(dāng)PO3-4和SO2-4同時(shí)存在時(shí),吸附劑表面陰離子發(fā)生競爭吸附,吸附效率顯著下降.Singh等[22]研究發(fā)現(xiàn),用Al2O3直接吸附F-時(shí),PO3-4的存在會使氟化物的去除率降低17%.經(jīng)鈣鎂改性后的Al2O3在650 ℃下煅燒(CMAA 650)吸附除氟時(shí),溶液中的PO3-4和SO2-4是內(nèi)球復(fù)合物形成離子,阻礙氟化物的去除.共存離子對吸附除氟干擾程度由強(qiáng)到弱分別為:PO3-4gt;SO2-4gt;NO-3gt;Cl-.

        相對于其他陰離子,PO3-4對吸附劑表面活性位點(diǎn)的親和力更強(qiáng),引起對F-的競爭吸附,同時(shí)三價(jià)陰離子具有較高的負(fù)電荷密度,可能會減少吸附劑表面吸附位點(diǎn)的數(shù)量,嚴(yán)重影響除氟效率.

        3.3溫度

        溫度是影響吸附反應(yīng)的重要因素,提高溫度,熱能的增加加劇粒子間的碰撞,吸附劑表面會暴露更多吸附位點(diǎn),同時(shí)溶液中游離的F-也會隨著溫度的升高吸附性能不斷增強(qiáng),使吸附容量變大[37-39].Liu等[40]在80~500 ℃內(nèi)用Al-Ce雜化物吸附F-,研究發(fā)現(xiàn),升高溫度吸附劑的吸附容量并不是一直增加,80 ℃和150 ℃時(shí)吸附性能較好.當(dāng)溫度繼續(xù)升高時(shí),金屬雜化物吸附劑的表面積減小,-OH基團(tuán)隨之減少,吸附能力逐漸下降.同理,Tian Z等[41]在層狀鋁基復(fù)合材料的不同溫度條件(30~70 ℃)吸附實(shí)驗(yàn)中也證實(shí),吸附溫度過高不利于脫氟,溫度為50 ℃時(shí)吸附性能最佳.這是由于溫度持續(xù)升高加劇了離子的熱運(yùn)動,鋁基復(fù)合吸附劑中F-發(fā)生解吸,導(dǎo)致吸附容量下降.而Liu等[42]在探究Mg、Al雙金屬除去氟化物的實(shí)驗(yàn)中發(fā)現(xiàn),在400~1 000 ℃內(nèi),吸附劑的吸附性能隨溫度的升高而增加.

        推理可知,在不同的氧化鋁基吸附F-的反應(yīng)過程中,吸附劑在特定的條件和溫度范圍內(nèi)吸附性能增強(qiáng),當(dāng)溫度過高時(shí),吸附反應(yīng)達(dá)到飽和點(diǎn),吸附能力反而受到影響.

        3.4吸附劑用量

        吸附劑用量的不同影響吸附反應(yīng)的發(fā)生,劑量增加,吸附劑的表面積增加,吸附容量也隨之升高[43-44].Kumari等[24]用鈣和鋯改性酸化后的Al2O3,探究2~16 g/L不同劑量吸附劑的除氟性能.結(jié)果發(fā)現(xiàn),吸附容量不隨吸附劑劑量的增加而一直提高,在適當(dāng)?shù)臈l件下加入6 g/L吸附劑,氟化物的去除效果最可觀.而不同的是,Kamble 等[45]將吸附劑劑量從0.5 g/L增加到8 g/L,吸附劑對F-的吸附能力反而從3.14 mg/g降至0.59 mg/g.分析認(rèn)為,飽和度容量是一個(gè)固定的值,在固定的氟化物濃度下,有限的氟化物表面有太多的吸附劑顆粒,吸附劑質(zhì)量的增加會導(dǎo)致飽和吸附容量下降.除了研究單一影響因素,Solanki等[46]聯(lián)合考慮劑量和pH相互作用的影響,F(xiàn)e/Al/Ca基吸附劑劑量固定為5 g/L,將溶液pH從3.0提高到7.0,吸附劑對F-的去除率從80.6%顯著提高到95.4%.由此可見,吸附劑用量對吸附過程有著重要影響.

        3.5接觸時(shí)間

        吸附劑與溶液的接觸時(shí)間對氟化物的去除具有顯著影響,是影響吸附容量的重要參數(shù)之一[47].Chatterjee等[48]研究了納米Al2O3在10 min~20 h不同接觸時(shí)間內(nèi)對溶液中F-的吸附能力.結(jié)果發(fā)現(xiàn),氟化物的去除率隨接觸時(shí)間的增長而提高.在前85 min內(nèi)吸附速率較快,氟化物的去除率高達(dá)92%,吸附過程在24 h內(nèi)達(dá)到平衡.Liu等[49]用鐵摻雜Al2O3吸附水中的諾氟沙星,同樣證實(shí)了增長接觸時(shí)間對氟化物吸附的促進(jìn)作用.但隨著接觸時(shí)間的增長,吸附劑對氟化物的去除率并不持續(xù)提高,Dayananda等[50]用CaO負(fù)載到介孔Al2O3上吸附F-,實(shí)驗(yàn)發(fā)現(xiàn),在前15 min內(nèi)吸附劑對F-的吸附速度很快,可以去除約82%的氟化物;之后吸附速度減慢,在30 min后達(dá)到吸附平衡,可吸附92%的氟化物.因此,合理控制吸附材料與溶液的接觸時(shí)間有利于吸附反應(yīng)的進(jìn)行.

        4結(jié)論與展望

        近年來國內(nèi)外學(xué)者對氧化鋁基吸附除氟的影響因素做了深入研究,用金屬元素負(fù)載活性氧化鋁或用酸、堿、鹽溶液浸漬氧化鋁可以增強(qiáng)吸附材料對氟離子的吸附能力.改性后的氧化鋁基吸附劑改變了傳統(tǒng)活性氧化鋁的表面特性和孔隙結(jié)構(gòu),吸附容量大幅度提升,提高了鋁氧化物在飲用水脫氟領(lǐng)域的適用性.

        雖然現(xiàn)階段氧化鋁基吸附除氟已取得一定研究成果,但仍存在一些問題需要完善:

        (1)氧化鋁基吸附劑的除氟原理并未完全達(dá)成共識,需進(jìn)行更深一步的探究,為地下水除氟提供更有利的依據(jù).

        (2)調(diào)控吸附劑的形貌和孔隙結(jié)構(gòu),設(shè)計(jì)分級多孔結(jié)構(gòu)、三維網(wǎng)狀結(jié)構(gòu)等特殊形貌增加吸附劑的比表面積從而提升吸附容量.

        (3)未來設(shè)計(jì)結(jié)構(gòu)穩(wěn)定、吸附性能優(yōu)異的新型氧化鋁基吸附材料,降低吸附材料的成本,提高吸附技術(shù)的成熟性和可靠性,仍將是活性氧化鋁飲用水除氟領(lǐng)域的重點(diǎn)方向.

        [參考文獻(xiàn)]

        [1]CIOSEK A,KOT K,KOSIK-BOGACKA D,et al.The effects of calcium,magnesium,phosphorus,fluoride,and lead on bone tissue[J].Biomolecules,2021,11(4):506.

        [2]何令令,何守陽,陳琢玉,等.環(huán)境中氟污染與人體氟效應(yīng)[J].地球與環(huán)境,2020,48(1):87-95.

        [3]LUSSI A,BUZALAF M A R,DUANGTHIP D,et al.The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents[J].European Archives of Paediatric Dentistry,2019,20:517-527.

        [4]郝啟勇,徐曉天,張心彬,等.魯西北陽谷地區(qū)淺層高氟地下水化學(xué)特征及成因[J].地球科學(xué)與環(huán)境學(xué)報(bào),2020,42(5):668-677.

        [5]LI M,QU X,MIAO H,et al.Spatial distribution of endemic fluorosis caused by drinking water in a high-fluorine area in Ningxia,China[J].Environmental Science and Pollution Research,2020,27:20281-20291.

        [6]XIA L,ZHANG W,CHE J,et al.Stepwise removal and recovery of phosphate and fluoride from wastewater via pH-dependent precipitation:Thermodynamics,experiment and mechanism investigation[J].Journal of Cleaner Production,2021,320:128872.

        [7]GUO J,ZHANG Y,SUN Q,et al.Theoretical and experimental insights into electron-induced efficient defluorination of perfluorooctanoic acid and perfluorooctane sulfonate by mesoporous plasma[J].Chemical Engineering Journal,2022,430:132922.

        [8]NUNES-PEREIRA J,LIMA R,CHOUDHARY G,et al.Highly efficient removal of fluoride from aqueous media through polymer composite membranes[J].Separation and Purification Technology,2018,205:1-10.

        [9]HE J,YANG Y,WU Z,et al.Review of fluoride removal from water environment by adsorption[J].Journal of Environmental Chemical Engineering,2020,8(6):104516.

        [10]HUANG X,HUANG L,ARULMANI S R B,et al.Research progress of metal organic frameworks and their derivatives for adsorption of anions in water:A review[J].Environmental Research,2022,204:112381.

        [11]PILLAI P,DHARASKAR S,PANDIAN S,et al.Overview of fluoride removal from water using separation techniques[J].Environmental Technology amp; Innovation,2021,21:101246.

        [12]ONUOHA U O.Evaluation of an activated alumina sorption system for removal of fluoride from water[D].Lubbok:Texas Tech University,1983.

        [13]曾淋林,周莉,王琦,等.不同氧化鋁引入料對高鋁玻璃熔制與性能的影響[J].硅酸鹽通報(bào),2020,39(5):1659-1664.

        [14]BARATHI M,KUMAR A S K,RAJESH N.Impact of fluoride in potable water-An outlook on the existing defluoridation strategies and the road ahead[J].Coordination Chemistry Reviews,2019,387:121-128.

        [15]TRIPATHY S S,BERSILLON J L,GOPAL K.Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina[J].Separation And Purification Technology,2006,50(3):310-317.

        [16]許乃才,劉忠.GO-Al2O3二元復(fù)合氧化物的制備及其吸附性能[J].無機(jī)鹽工業(yè),2017,49(11):22-25.

        [17]FORSTER A L B,ZHANG Y,WESTERMAN D C,et al.Improved total organic fluorine methods for more comprehensive measurement of pfas in industrial wastewater,river water,and air[J].Water Research,2023,235:119859.

        [18]WU X,ZHANG Y,DOU X,et al.Fluoride adsorption on an Fe-Al-Ce trimetal hydrous oxide:characterization of adsorption sites and adsorbed fluorine complex species[J].Chemical Engineering Journal,2013,223:364-370.

        [19]HE Y,HUANG L,SONG B,et al.Defluorination by ion exchange of SO2-4 on alumina surface:Adsorption mechanism and kinetics[J].Chemosphere,2021,273:129678.

        [20]CHU T P M,NGUYEN N T,VU T L,et al.Synthesis,characterization,and modification of alumina nanoparticles for cationic dye removal[J].Materials,2019,12(3):450.

        [21]SAMAL P,VUNDAVILLI P R,MEHER A,et al.Recent progress in aluminum metal matrix composites:A review on processing,mechanical and wear properties[J].Journal of Manufacturing Processes,2020,59:131-152.

        [22]SINGH P K,SAHARAN V K,GEORGE S.Studies on performance characteristics of calcium and magnesium amended alumina for defluoridation of drinking water[J].Journal Of Environmental Chemical Engineering,2018,6(1):1364-1377.

        [23]GAO Y,YOU K,F(xiàn)U J,et al.Manganese Modified Activated Alumina through Impregnation for Enhanced Adsorption Capacity of Fluoride Ions[J].Water,2022,14(17):2673.

        [24]KUMARI U,SIDDIQI H,BAL M,et al.Calcium and zirconium modified acid activated alumina for adsorptive removal of fluoride:performance evaluation,kinetics,isotherm,characterization and industrial wastewater treatment[J].Advanced Powder Technology,2020,31(5):2045-2060.

        [25]徐志穎,李曄,劉冬雪,等.載鑭活性氧化鋁的除氟及再生性能研究[J].化學(xué)工程,2022,50(2):1-4.

        [26]韓曉峰,李紅艷,孟慶蘭,等.負(fù)載鑭鎂活性氧化鋁的制備及除氟性能研究[J].環(huán)境工程,2015,33(7):56-60+71.

        [27]CACUA K,ORDOEZ F,ZAPATA C,et al.Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,583:123960.

        [28]徐雷,馬培根,丁文明.硫酸鐵改性活性氧化鋁除氟性能及機(jī)理探究[J].北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(6):18-24.

        [29]SALEH T A,AL-HAMMADI S A,AL-AMER A M.Effect of boron on the efficiency of MoCo catalysts supported on alumina for the hydrodesulfurization of liquid fuels[J].Process Safety and Environmental Protection,2019,121:165-174.

        [30]ZHOU N,GUO X,YE C,et al.Enhanced fluoride removal from drinking water in wide pH range using La/Fe/Al oxides loaded rice straw biochar[J].Water Supply,2022,22(1):779-794.

        [31]COLLEDGE G T,OUTRAM J G,MILLAR G J.Improved remediation of fluoride contaminated water using titania-alumina sorbents[J].Journal of Water Process Engineering,2022,49:103091.

        [32]侯佳卉,李紅艷,崔建國,等.納米CeO2輔助改性γ-Al2O3對水中氟離子的吸附研究[J].給水排水,2023,59(2):8-16.

        [33]張小磊,李尚明,李紅艷,等.負(fù)載鑭鎂改性活性氧化鋁的除氟性能[J].環(huán)境工程學(xué)報(bào),2016,10(8):4189-4195.

        [34]YOU K,LI P,F(xiàn)U J,et al.Fabrication of manganese-supported activated alumina adsorbent for defluoridation of water:a kinetics and thermodynamics study[J].Water,2021,13(9):1219.

        [35]HE Y,ZHANG L,AN X,et al.Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina:Adsorption isotherms,kinetics,thermodynamics and mechanism[J].Science Of The Total Environment,2019,688:184-198.

        [36]KUMAR E,BHATNAGAR A,KUMAR U,et al.Defluoridation from aqueous solutions by nano-alumina:characterization and sorption studies[J].Journal of Hazardous Materials,2011,186(2-3):1042-1049.

        [37]ALHASSAN S I,HE Y,HUANG L,et al.A review on fluoride adsorption using modified bauxite:Surface modification and sorption mechanisms perspectives[J].Journal of Environmental Chemical Engineering,2020,8(6):104532.

        [38]LI W,ZHANG T,LV L,et al.Room-temperature synthesis of MIL-100 (Fe) and its adsorption performance for fluoride removal from water[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,624:126791.

        [39]HUANG L,YANG Z,ZHANG Z,et al.Enhanced surface hydroxyl groups by using hydrogen peroxide on hollow tubular alumina for removing fluoride[J].Microporous and Mesoporous Materials,2020,297:110051.

        [40]LIU H,DENG S,LI Z,et al.Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water[J].Journal of Hazardous Materials,2010,179(1-3):424-430.

        [41]TIAN Z,GUO W,ZHANG Z,et al.Removal of fluorine ions from industrial zinc sulfate solution by a layered aluminum-based composite[J].Hydrometallurgy,2017,171:222-227.

        [42]LIU J,ZHAO P,XU Y,et al.Mg-Al mixed oxide adsorbent synthesized using FCT template for fluoride removal from drinking water[J].Bioinorganic Chemistry and Applications,2019,2019(3):1-11.

        [43]LI Y,YANG Y,QU G,et al.Reuse of secondary aluminum ash:Study on removal of fluoride from industrial wastewater by mesoporous alumina modified with citric acid[J].Environmental Technology amp; Innovation,2022,28:102868.

        [44]WANG R,WANG D,PENG W,et al.Removal of F- from water by magnetic floriform magnesium zirconium hydrotalcite-like material doped with Fe2O3 and ZrO2[J].Desalination,2022,544:116142.

        [45]KAMBLE S P,DESHPANDE G,BARVE P P,et al.Adsorption of fluoride from aqueous solution by alumina of alkoxide nature:Batch and continuous operation[J].Desalination,2010,264(1-2):15-23.

        [46]SOLANKI Y S,AGARWAL M,GUPTA S,et al.Application of synthesized Fe/Al/Ca based adsorbent for defluoridation of drinking water and its significant parameters optimization using response surface methodology[J].Journal of Environmental Chemical Engineering,2019,7(6):103465.

        [47]LIN J Y,CHEN Y L,HONG X Y,et al.The role of fluoroaluminate complexes on the adsorption of fluoride onto hydrous alumina in aqueous solutions[J].Journal of Colloid and Interface Science,2020,561:275-286.

        [48]CHATTERJEE S,DE S.Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane[J].Separation and Purification Technology,2014,125:223-238.

        [49]LIU W,ZHANG J,ZHANG C,et al.Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina:mechanisms,isotherms and kinetics[J].Chemical Engineering Journal,2011,171(2):431-438.

        [50]DAYANANDA D,SARVA V R,PRASAD S V,et al.Preparation of CaO loaded mesoporous Al2O3:Efficient adsorbent for fluoride removal from water[J].Chemical Engineering Journal,2014,248:430-439.

        [責(zé)任編輯馬云彤]

        四虎欧美国产精品| 十八禁无遮挡99精品国产| 亚洲国产精华液网站w| 国内少妇人妻丰满av| 亚洲AV无码中文AV日韩A| 日日高潮夜夜爽高清视频| 国产精品极品美女自在线观看免费| 日日碰狠狠添天天爽超碰97| 国产国拍亚洲精品福利| 在线观看高清视频一区二区三区| 丰满少妇高潮惨叫久久久| 亚洲小说区图片区另类春色| 久久精品亚洲中文无东京热| 国产成人av一区二区三| 无码精品一区二区三区在线| 成人性做爰aaa片免费看| 国产精品18久久久| 天天天综合网| 国产av一区二区三区国产福利| 国产三级视频不卡在线观看 | 精品人妻一区二区三区浪人在线 | jjzz日本护士| 亚洲一区二区三区资源| 8x国产精品视频| 欧美第一黄网免费网站| 日日噜噜夜夜狠狠2021| 亚洲精品中字在线观看| 国产精品www夜色视频| 热99精品| 日韩精品资源在线观看免费| 欧美性生交大片免费看app麻豆| 无码人妻丰满熟妇片毛片| 小13箩利洗澡无码免费视频| 毛片在线播放亚洲免费中文网| 一进一出一爽又粗又大| 无码午夜人妻一区二区三区不卡视频| 久久亚洲国产精品五月天| 青青草原综合久久大伊人精品| 免费a级毛片18以上观看精品| 无码的精品免费不卡在线| av免费在线手机观看|