摘 要:為促進(jìn)個體冷熱調(diào)節(jié)服裝(PTRC)在熱舒適性調(diào)節(jié)和建筑節(jié)能中的應(yīng)用與發(fā)展,系統(tǒng)介紹了個體冷卻服、加熱服的分類特性及進(jìn)展,比較分析了不同類型PTRC的優(yōu)缺點,提出了未來的發(fā)展方向??偨Y(jié)發(fā)現(xiàn):個體冷卻服存在笨重、便攜性差和冷卻效率低等問題,未來應(yīng)結(jié)合實際應(yīng)用場景,從多方面(面料、結(jié)構(gòu)、附加設(shè)備等)進(jìn)行綜合考慮,尋找更高能量密度的電池,降低服裝重量;對于個體加熱服,多驅(qū)動能源技術(shù)是未來的發(fā)展方向,應(yīng)充分結(jié)合不同學(xué)科知識實現(xiàn)服裝的智能化控制,滿足不同場景中的加熱需求;針對使用新型制造工藝與材料的動態(tài)調(diào)節(jié)技術(shù),優(yōu)化紡織材料的性能和生產(chǎn)工藝,建立全面的適用安全標(biāo)準(zhǔn)體系和評估方法,以促進(jìn)其商業(yè)化的發(fā)展進(jìn)程。
關(guān)鍵詞:人體熱舒適;個體冷熱調(diào)節(jié)服裝;冷卻系統(tǒng);新型紡織品;智能調(diào)節(jié);電加熱
中圖分類號:TS195.7
文獻(xiàn)標(biāo)志碼:A
文章編號:1009-265X(2024)09-0028-10
收稿日期:2023-12-29
網(wǎng)絡(luò)出版日期:2024-05-13
基金項目:教育部人文社會科學(xué)規(guī)劃項目(23YJAZH209)
作者簡介:陳雪(1996—),女,安徽阜陽人,碩士研究生,主要從事服裝舒適性與功能服裝方面的研究。
通信作者:于利靜,E-mail:yulijing79@163.com
高低溫的工作環(huán)境不僅降低了工作效率,且對人體健康造成了嚴(yán)重威脅[1]。近年來研究人員開發(fā)了系列的冷熱防護(hù)服裝,通過調(diào)節(jié)人體與服裝之間微環(huán)境的溫濕度,從而實現(xiàn)對人體熱濕舒適性的管理[2]。此外還有研究表明,在保持人體熱舒適前提下,室內(nèi)穿著個體冷熱調(diào)節(jié)服裝時,與穿著普通服裝相比,可以擴(kuò)展供熱通風(fēng)與空氣調(diào)節(jié)系統(tǒng)(Heating,ventilation and air conditioning,HVAC)的溫度設(shè)定點,從而節(jié)省15%~55%的建筑能耗[3]。
將進(jìn)行熱濕舒適性管理的服裝統(tǒng)稱為個體冷熱調(diào)節(jié)服裝(Personal thermal regulation clothing,PTRC),包括個體冷卻服和個體加熱服。個體冷卻服可分為主動式、被動式和混合式3類[4],個體加熱服根據(jù)加熱源不同可以分為化學(xué)加熱、電加熱、相變加熱、流體/空氣加熱服[2]。此外隨著材料科學(xué)的不斷發(fā)展,出現(xiàn)了可以在加熱和冷卻之間動態(tài)調(diào)節(jié)的新型PTRC,不消耗電能,具有巨大的節(jié)能潛力和應(yīng)用前景[5-6]。然而在PTRC的發(fā)展過程中,也面臨諸多挑戰(zhàn),例如PTRC存在著笨重、便攜性差、效率低及價格成本高等問題。此外在新型PTRC的生產(chǎn)過程中,一些可動態(tài)調(diào)節(jié)加熱與冷卻的紡織材料存在著加工工藝過于復(fù)雜,難以工業(yè)化生產(chǎn)等問題,且成本昂貴,這也限制了新型PTRC的大規(guī)模應(yīng)用與發(fā)展。因此為促進(jìn)PTRC在調(diào)節(jié)人體熱舒適與建筑節(jié)能等領(lǐng)域的應(yīng)用,本文綜述了不同類型PTRC的研究現(xiàn)狀,對其優(yōu)缺點進(jìn)行分析,并對未來PTRC的發(fā)展進(jìn)行了展望,以期能夠促進(jìn)PTRC的可持續(xù)發(fā)展和商業(yè)化進(jìn)程。
1 個體冷卻服裝
1.1 主動式冷卻服
主動式冷卻服裝包括風(fēng)冷服和液冷服,主要應(yīng)用在航空航天、軍事等領(lǐng)域。風(fēng)冷服通過將微型風(fēng)扇與服裝結(jié)合,利用環(huán)境空氣促進(jìn)人體表面的汗液蒸發(fā)和對流熱損失,提高熱舒適性[7],在干熱環(huán)境中具有較好的冷卻效果。但在濕熱環(huán)境下,風(fēng)冷服的冷卻效果不理想,甚至?xí)黾尤梭w負(fù)擔(dān)[8]。因此,研究人員常使用制冷裝置來預(yù)冷空氣,并將冷卻后的空氣通入人體表面,提高濕熱環(huán)境中的人體熱舒適性[4]。常見的制冷裝置包括空氣壓縮機(jī)[9]和熱電制冷裝置[10]。相較熱電制冷裝置來說,空氣壓縮機(jī)體積較大,限制了人體的活動范圍,因此更適用于工業(yè)生產(chǎn)中車間工人固定范圍內(nèi)的使用。而熱電制冷裝置因具有重量輕、結(jié)構(gòu)緊湊、性能可靠、對環(huán)境友好等優(yōu)點,而且可以實現(xiàn)高精度調(diào)控和微型化結(jié)構(gòu)設(shè)計,因此得到了研究人員的廣泛關(guān)注[11]。Lou等[10]開發(fā)了熱電空調(diào)服裝系統(tǒng),該服裝系統(tǒng)使用微型鼓風(fēng)機(jī)和熱電制冷裝置預(yù)冷環(huán)境風(fēng),并將環(huán)境風(fēng)經(jīng)過服裝內(nèi)表面的硅膠管道輸送至人體內(nèi)表面,使整件服裝輕巧且冷卻效果顯著,可以提供24.6 W的冷卻功率。此外,風(fēng)冷服的冷卻性能與許多因素有關(guān),主要包括風(fēng)溫、風(fēng)量及通風(fēng)部位等[12]。Zhao等[13]發(fā)現(xiàn)通風(fēng)部位的設(shè)計對通風(fēng)服的冷卻性能具有重要影響,應(yīng)將風(fēng)扇放置在人體出汗量較多的部位,例如人體下背部。Fan等[14]研究發(fā)現(xiàn)代謝率為1.2 met時通向人體背部的風(fēng)溫在26℃、風(fēng)量在11 L/s左右時最為舒適,而當(dāng)人體處于一定的體力勞動時(代謝率為2~4.7 met),風(fēng)溫在(24.5±1.5)℃左右時最為舒適[15]。
與風(fēng)冷服相比,液冷服傳熱效率更高。液冷服通過在服裝內(nèi)表面安置循環(huán)管道,通入水介質(zhì)進(jìn)行傳導(dǎo)降溫,其冷卻性能受到包括循環(huán)液體的溫度與流量、管道參數(shù)與覆蓋人體面積等因素的影響[16]。舒?zhèn)コ?sup>[17]提出了“熱不舒適時間占比”指標(biāo)來評價人體穿著液冷服時的熱舒適性,結(jié)果發(fā)現(xiàn)在1.5 h的持續(xù)冷卻中,熱不舒適時間占比達(dá)到了57.6%,其中液體溫度變化對人體熱不舒適的影響最為顯著。因此Shu等[18]為進(jìn)一步降低人體熱不舒適占比,促進(jìn)實現(xiàn)了液體進(jìn)口溫度的精準(zhǔn)調(diào)節(jié)控制,開發(fā)出了具有溫度調(diào)節(jié)系統(tǒng)的智能冷卻服裝,在服裝總重未增情況下,人體穿著舒適度明顯提高,持續(xù)工作時間延長了37%以上。Xu等[19]設(shè)計了一種基于熱電制冷的新型液冷服系統(tǒng),結(jié)果發(fā)現(xiàn)該系統(tǒng)可以提供最低15.7℃的水溫及340.4 W的冷卻功率。還有研究表明,當(dāng)進(jìn)水溫度控制在22℃左右時[20],可以顯著降低人體微氣候區(qū)域的溫濕度,能夠滿足35℃環(huán)境下的冷卻需求。
1.2 被動式冷卻服
被動式冷卻服包括相變冷卻服、蒸發(fā)冷卻服和輻射冷卻服。相變冷卻服利用相變材料(Phase change material,PCM)的相態(tài)變化吸收人體熱量,可以直接將PCM放置在服裝內(nèi)表面,或?qū)CM紡入進(jìn)纖維在織造成織物,或?qū)CM制作成整理劑涂覆在織物表面。相變冷卻服的冷卻效果主要取決于PCM的相變溫度、比熱、衣身覆蓋面積等[21]。通常情況下,PCM的數(shù)量越多、衣身覆蓋面積越大冷卻效果越好,但這會增加整件服裝的總重量。此外相變溫度也是影響冷卻效果的重要因素,因此為了探究相變溫度對冷卻效果的影響,Gao等[22]進(jìn)行了人體生理實驗,結(jié)果發(fā)現(xiàn)當(dāng)PCM相變溫度分別為24℃和28℃時,不能有效改善人體在高溫環(huán)境下的熱舒適性,應(yīng)進(jìn)一步減小相變溫度提高人體熱舒適性。Mneimneh等[23]研究表明當(dāng)相變溫度分別為14℃和20℃時,不僅能顯著降低核心溫度,且對于緩解截癱患者的熱應(yīng)激也具有顯著效果。
蒸發(fā)冷卻服通過將服裝與干冰結(jié)合,或者使用具有儲存水分能力的織物實現(xiàn)對人體的冷卻[24]。蒸發(fā)冷卻服的冷卻效果受到環(huán)境濕度、風(fēng)速等影響。就環(huán)境濕度來說,與干冰相結(jié)合的蒸發(fā)冷卻服在濕熱環(huán)境下冷卻效果更顯著,但這極易造成局部過冷。而對于具有儲存水分能力的蒸發(fā)冷卻服來說,在干燥環(huán)境下的冷卻效果更顯著[25]。Aarish等[26]研究發(fā)現(xiàn)在炎熱干燥的環(huán)境下,蒸發(fā)冷卻服不僅能夠最大限度的提高勞動生產(chǎn)率,且可以實現(xiàn)與環(huán)境溫差7℃的冷卻效果。其次環(huán)境風(fēng)速也是影響冷卻性能的重要因素,較大的風(fēng)速能夠快速加速水分蒸發(fā),從而實現(xiàn)優(yōu)異的冷卻性能。
輻射冷卻服通過采用特殊的材料或涂層等方法,實現(xiàn)對紅外輻射的選擇性阻擋與反射,從而減少人體熱吸收,實現(xiàn)降溫效果[27]。相對主動式冷卻服來說,輻射冷卻服的能耗很低,便攜性高且方便攜帶,但冷卻效果易受到環(huán)境溫濕度的影響。Cai等[28]介紹了一種可用于室外輻射冷卻的新型光譜選擇性納米復(fù)合紡織品,可以反射90%以上的太陽輻射,在同等條件下其表面溫度比普通紡織品如棉的溫度低5~13℃,具有廣泛的應(yīng)用前景。
1.3 混合式冷卻服
混合冷卻服是在服裝中嵌入了兩種或兩種以上的冷卻介質(zhì)(見圖1),與單一冷卻介質(zhì)相比,能在多變高溫環(huán)境中提供優(yōu)異的冷卻效果。韋帆汝等[29]探索了相變風(fēng)扇混合冷卻服在四種環(huán)境條件下的冷卻性能,研究發(fā)現(xiàn)在不同環(huán)境條件下,同時打開風(fēng)扇并安裝相變材料可以最大限度地提高人體熱舒適。之后,Wan等[30]搭建了一個數(shù)值模型以探究相變風(fēng)扇混合冷卻服與風(fēng)扇通風(fēng)服之間的冷卻效果差異。結(jié)果發(fā)現(xiàn)與風(fēng)扇通風(fēng)服相比,相變風(fēng)扇混合冷卻服顯著了降低人體的核心溫度和平均皮膚溫度。此外Wang等[31]探討了蒸發(fā)和風(fēng)冷相結(jié)合的混合冷卻服分別與風(fēng)冷服、蒸發(fā)冷卻服和液冷服之間的冷卻效果差異,結(jié)果發(fā)現(xiàn)與單一冷卻相比,穿著蒸發(fā)和風(fēng)冷相結(jié)合的混合冷卻服下的皮膚溫度最低,是最有效的冷卻策略。
2 個體加熱服裝
現(xiàn)有的個體加熱技術(shù)主要分為4類:電加熱服(Electric heating clothing,EHC)、化學(xué)加熱服裝(Chemical clothing,CHC)、相變材料加熱服(Phase change material heating clothing,PCMHC)、空氣/流體流動加熱服(Air heating clothing,AHC/Fluid heating clothing,F(xiàn)HC)[32]。其中EHC因其輕薄可洗、發(fā)熱效率高、不限制人體活動、能耗低等優(yōu)點具有廣泛的應(yīng)用前景。常用的電加熱介質(zhì)包括碳纖維、石墨烯、電阻絲、導(dǎo)電橡膠等[33-34]。冷環(huán)境下穿著EHC可以顯著改善人體的熱舒適性,且能源消耗較低,具有較大的應(yīng)用前景[35-36]。此外,隨著材料科學(xué)和納米技術(shù)的發(fā)展,更多的新型材料被開發(fā)出來,通過感受外界環(huán)境變化,材料自身做出反應(yīng),控制傳導(dǎo)、對流或輻射等傳熱途徑,提升人體熱舒適。一些先進(jìn)的制造技術(shù),例如使用復(fù)合結(jié)構(gòu)或孔隙結(jié)構(gòu),實現(xiàn)織物的高紅外反射率,能夠更有效的抑制人體熱損失,從而實現(xiàn)對人體的被動加熱[37-38]。
采用復(fù)合結(jié)構(gòu)設(shè)計的個體熱調(diào)節(jié)服裝不僅能夠冷卻或者加熱效果,也可實現(xiàn)在加熱和冷卻間的動態(tài)調(diào)節(jié)。Chai等[39]通過在聚乙烯膜(PE)上沉積金屬層形成雙層復(fù)合結(jié)構(gòu),并與服裝結(jié)合,在炎熱環(huán)境中下層的PE膜膨脹致使雙層致動器向外界環(huán)境方向彎曲,從而加強(qiáng)人體的輻射散熱,相反在冷環(huán)境下雙層致動器則向人體表面方向彎曲,抑制人體散熱并保持身體溫暖(見圖2),研究結(jié)果表明該服裝在冷熱兩側(cè)均可擴(kuò)大舒適區(qū)2℃以上,節(jié)省約30%的建筑能源。此外,形狀記憶材料作為一種智能活性材料,也可對外界刺激(熱、光、濕、電等)做出相應(yīng)的動態(tài)變化[40-41],與傳統(tǒng)紡織品相比具有更大熱舒適性優(yōu)勢。Roach等[42]設(shè)計了具有可逆形狀記憶能力的液晶彈性體(LCE)纖維的智能紡織品,當(dāng)外界溫度降低時關(guān)閉衣物孔隙,溫度升高時打開衣物孔隙,從而促進(jìn)人體的對流冷卻和汗液蒸發(fā),有利于人體的熱管理。
3 個體冷熱調(diào)節(jié)服裝的綜合比較
3.1 個體冷熱調(diào)節(jié)服裝的優(yōu)缺點
不同類型個體冷熱調(diào)節(jié)服裝(PTRC)的優(yōu)缺點如表1所示。與傳統(tǒng)HVAC系統(tǒng)相比,PTRC可以提供個性化的舒適方案以及更大的靈活性,但調(diào)節(jié)效果受材料選擇、服裝結(jié)構(gòu)設(shè)計以及使用環(huán)境等多種因素的綜合影響。在個體冷卻服的研發(fā)歷程中,服裝的重量大小及便攜性一直是研發(fā)者面臨的一個大問題,這不僅影響著個體冷卻服的冷卻性能和穿著便利[43],同時過大的服裝重量會對人體造成更大的負(fù)荷,從而導(dǎo)致人體產(chǎn)熱量增加,影響工作效率[44]。Yong等[45]和Critoph等[46]將冷卻服的有效冷卻功率與重量的比值定義為特定冷卻功率(SCP),較高的SCP反映了冷卻服更強(qiáng)的冷卻性和緊湊性。表2總結(jié)了各類冷卻服的SCP大小,其中風(fēng)扇與相變混合冷卻服、液冷服的SCP值比其他類型冷卻服更大,這表明其冷卻效率更高,可用于具有高冷卻需求的人群穿著。而風(fēng)冷服雖然重量較小,更輕便,但冷卻效率相對較低。此外,雖然已經(jīng)開發(fā)出了重量最低為556 g的制冷通風(fēng)服,但這是在不包含電池組重量的情況下,而所用的鋰電池組通常較為沉重,因此,在之后的發(fā)展中,尋找更高能量密度的電池組是必要的。
此外,在不同使用環(huán)境中,個體冷卻服的研發(fā)重點不一,應(yīng)從面料選擇、結(jié)構(gòu)設(shè)計和附加設(shè)備等多方面進(jìn)行綜合考慮[47]。對于建筑、環(huán)衛(wèi)、交通等戶外高溫場景中,服裝的輕便性是首要的,其次也要考慮面料的防曬性和透氣速干性,可考慮使用更為便攜輕巧的通風(fēng)冷卻和蒸發(fā)冷卻服。而對于醫(yī)用、化學(xué)、消防等場景,除了需要考慮服裝的降溫性能外,面料的抗菌性及柔軟舒適性是關(guān)鍵,同時要避免有害氣液體進(jìn)行服裝內(nèi),因此更適合采用封閉式的液體冷卻服和相變冷卻服。對于更為特殊的場景,例如軍事應(yīng)用等,冷卻服的持久性是必要的,此外更需要注意面料的強(qiáng)度和耐久性。
在個體加熱服的發(fā)展進(jìn)程中,主要聚焦于加熱技術(shù)改進(jìn)[50]和服裝舒適性提升[51-52]兩方面。隨著加熱技術(shù)的不斷發(fā)展,實現(xiàn)了對多種驅(qū)動能源的利用[53],進(jìn)一步提高了織物的加熱效率,且擴(kuò)展了應(yīng)用場景。例如,Guo等[54]開發(fā)了一種同時具有電熱和光熱轉(zhuǎn)換的復(fù)合加熱織物,在1.8 V的電壓下,溫度可達(dá)70℃,光照240 s后溫度可達(dá)74℃左右。這項技術(shù)為改善個人熱調(diào)節(jié)織物的性能和實現(xiàn)節(jié)能提供了一種新的途徑。然而,在該技術(shù)的實際應(yīng)用中,其發(fā)熱效率尚未得到充分的研究和驗證,例如在極端高溫或低溫環(huán)境條件下,其性能表現(xiàn)及長時間佩戴下的持久性和穩(wěn)定性等方面,需要更深入的調(diào)查和評估。此外,隨著智能化技術(shù)的迅速發(fā)展,在個體加熱服裝的設(shè)計中,可通過向服裝內(nèi)部嵌入傳感器或者智能控制系統(tǒng),實現(xiàn)更加精確的溫度調(diào)節(jié)和個性化的加熱設(shè)置,這將滿足更多人群的加熱需求,同時為個體加熱服的進(jìn)一步優(yōu)化和發(fā)展提供了新的可能性。
通過特殊復(fù)雜的織造技術(shù)或使用創(chuàng)新材料,也可以實現(xiàn)紡織品在加熱和冷卻間的動態(tài)調(diào)節(jié),且在零電能消耗的情況下,可以自動根據(jù)環(huán)境變化調(diào)節(jié)加熱與冷卻,這一技術(shù)在實現(xiàn)個體熱舒適性和能源效率方面具有重要意義[37]。例如,將具有不同功能的織物進(jìn)行復(fù)合,Chen等[55]將可拉伸電熱織物、彈性織物和熱致變色織物進(jìn)行復(fù)合組裝,實現(xiàn)了紡織品的溫度可視化和動態(tài)溫度調(diào)節(jié)功能,使得復(fù)合織物同時具有輻射冷卻和焦耳加熱的雙重?zé)嵴{(diào)節(jié)功能,且保持了復(fù)合織物的靈活性、透氣性和優(yōu)異的拉伸性,在醫(yī)療保健和個人熱管理領(lǐng)域具有巨大的潛力,為柔性可穿戴設(shè)備提供了廣泛的應(yīng)用前景。
3.2 個體冷熱調(diào)節(jié)服裝的能耗
傳統(tǒng)的HVAC系統(tǒng)可以保持室內(nèi)多數(shù)人員的熱舒適需求,但這需要消耗大量的建筑能源。在不影響人體熱舒適的前提下,在室內(nèi)穿著PTRC可以擴(kuò)展HVAC系統(tǒng)的溫度設(shè)定點,從而達(dá)到節(jié)省HVAC電能消耗的目的,同時PTRC所使用的調(diào)溫介質(zhì)一般都是清潔能源(水/空氣等),不會對環(huán)境造成壓力。在電力不足等特殊場景中,一些新型的PTRC可利用光能實現(xiàn)光熱能源之間的轉(zhuǎn)換,具有零電能消耗的優(yōu)勢。為量化PTRC在建筑節(jié)能上的表現(xiàn),在保持人體熱舒適的前提下,研究人員測試了室內(nèi)穿著PTRC時,HVAC溫度設(shè)定點的擴(kuò)展范圍,并計算了前后HVAC系統(tǒng)消耗的能源差值即可得到PTRC所節(jié)省的電能消耗占比。早期研究表明,室內(nèi)HVAC的加熱或冷卻溫度設(shè)定點擴(kuò)展1~2℃可節(jié)省超過15%以上的建筑節(jié)能[56],表3列出了部分PTRC的節(jié)能潛力,可節(jié)省的能耗范圍集中在15%~55%之間,可以看出PTRC具有較大的節(jié)能潛力。其次PTRC為穿著者提供了個性化的加熱和冷卻調(diào)節(jié)需求,也可以滿足更多人群的熱舒適需求。
然而,實現(xiàn)PTRC在建筑節(jié)能領(lǐng)域的廣泛應(yīng)用上目前還面臨一些挑戰(zhàn)。首先,較高的服裝生產(chǎn)成本限制了大規(guī)模的生產(chǎn)與應(yīng)用。且就目前已開發(fā)出的PTRC來說,如何在不影響穿著者行為活動的前提下提供更持久且便攜的能源供應(yīng)也是一個重要的問題。隨著光電材料的不斷發(fā)展,實現(xiàn)服裝與太陽能電池板的一體化已經(jīng)成為實現(xiàn)綠色環(huán)保的新途徑。但目前太陽能電池板的轉(zhuǎn)換效率和可靠性仍然存在挑戰(zhàn),需要深入研究以提高其能源轉(zhuǎn)換效率。在此背景下,除了考慮電池板性能的提升,更要關(guān)注當(dāng)太陽能電池板與服裝結(jié)合時,存在的柔性性能和穿著舒適性方面所面臨的一系列難題,由于太陽能電池板表面通常采用硬質(zhì)材料,因此平衡太陽能電池板與服裝之間的舒適性和功能性顯得尤為重要。在未來的研究中,應(yīng)綜合考慮材料科學(xué)與人體工程學(xué)等多方面因素,為太陽能電池板與服裝一體化的發(fā)展提供更為全面和可行的解決方案。
PTRC的能源轉(zhuǎn)換效率主要取決于所使用的技術(shù)和材料,為了評價不同PTRC間的能源轉(zhuǎn)換效率,將PTRC的制冷量/制熱量與其能源消耗值之間的比值定義為能效比(Coefficient of performance,COP),一般來說,COP值越大代表其加熱/冷卻轉(zhuǎn)換效率越高。表4列出了部分冷熱調(diào)節(jié)服裝的COP值,COP范圍多大于1.5,但在熱電效應(yīng)中,能源轉(zhuǎn)換效率相對較低,這受制于熱電材料和技術(shù)的發(fā)展,未來隨著材料科學(xué)和紡織技術(shù)的不斷發(fā)展,有望實現(xiàn)更高的能源轉(zhuǎn)換效率。
3.3 個體冷熱調(diào)節(jié)服裝的商業(yè)化發(fā)展
隨著社會的不斷進(jìn)步,人們越來越重視自身的熱舒適性調(diào)節(jié),而PTRC有望成為維持人體熱舒適的替代方案。但目前PTRC的商業(yè)化進(jìn)展還處于相對早期的階段,已商業(yè)化使用的服裝包括風(fēng)扇通風(fēng)服、相變冷卻服、電加熱服等。然而,風(fēng)扇通風(fēng)服和相變冷卻服在冷卻效率提高和服裝輕便性上還需進(jìn)一步提升。采用新型技術(shù)與材料的新型PTRC,由于其昂貴且復(fù)雜的生產(chǎn)加工技術(shù)限制了批量生產(chǎn)的可能性。且目前研究中缺少PTRC的標(biāo)準(zhǔn)使用安全規(guī)范,進(jìn)一步限制了其商業(yè)化進(jìn)程的腳步。未來應(yīng)從實際應(yīng)用的角度出發(fā),深入研究新型紡織材料的性能和制造工藝,以解決批量生產(chǎn)的難題。此外,建立全面的使用安全標(biāo)準(zhǔn)體系,并制定相應(yīng)的評估方法,這對于確保PTRC在商業(yè)應(yīng)用中的可持續(xù)發(fā)展至關(guān)重要。
4 結(jié)論與展望
PTRC對于保障人體在高低溫環(huán)境中的熱舒適性具有重要意義,因此提高冷熱調(diào)節(jié)服裝的轉(zhuǎn)換效率及促進(jìn)其商業(yè)化的發(fā)展是必要的。針對液冷服和風(fēng)冷服存在的穿著不便和笨重等問題,需進(jìn)一步提高其穿著舒適度和輕便性。而對于熱電冷卻服裝,應(yīng)進(jìn)一步提高冷熱轉(zhuǎn)換效率,從而實現(xiàn)更有效的降溫效果。同時,針對新型功能紡織材料,應(yīng)進(jìn)一步探討如何降低材料的生產(chǎn)加工成本,以及提高服裝的熱調(diào)節(jié)性能。通過以上的總結(jié)與分析,未來個體冷熱調(diào)節(jié)服裝的相關(guān)研究可從以下幾個方面展開:
a)在個體冷卻服中,應(yīng)充分發(fā)揮主觀能動性并結(jié)合實際應(yīng)用場景進(jìn)行優(yōu)化設(shè)計,從面料選擇、結(jié)構(gòu)設(shè)計和附加設(shè)備等方面綜合考慮冷卻服的設(shè)計,尋找更輕便的材料和高能量密度的電池組,實現(xiàn)服裝便攜性與高效性。
b)針對個體加熱服裝,應(yīng)提升加熱效率并增強(qiáng)其與多種驅(qū)動能源的結(jié)合,以增強(qiáng)服裝在各種環(huán)境下的適用性。同時應(yīng)充分結(jié)合不同學(xué)科領(lǐng)域的知識和先進(jìn)的計算機(jī)編程技術(shù)實現(xiàn)智能調(diào)節(jié)與個性化控制,滿足不同人群的加熱需求。
c)針對新型紡織材料與技術(shù),應(yīng)深入研究新型紡織材料的性能和制造工藝,并建立全面的使用安全標(biāo)準(zhǔn)體系,制定相應(yīng)的評估方法,促進(jìn)商業(yè)化發(fā)展進(jìn)程。
參考文獻(xiàn):
[1]HABIBI P, MORADI G, DEHGHAN H, et al. The impacts of climate change on occupational heat strain in outdoor workers: A systematic review[J]. Urban Climate, 2021, 36: 100770.
[2]YANG B, DING X, WANG F, et al. A review of intensified conditioning of personal micro-environments: Moving closer to the human body[J]. Energy and Built Environment, 2021, 2(3): 260-270.
[3]VESELY M, ZEILER W. Personalized conditioning and its impact on thermal comfort and energy performance-A review[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 401-408.
[4]ZHAO D, LU X, FAN T, et al. Personal thermal management using portable thermoelectrics for potential building energy saving[J]. Applied Energy, 2018, 218: 282-291.
[5]PENG L, SU B, YU A, et al. Review of clothing for thermal management with advanced materials[J]. Ce-llulose, 2019, 26(11): 6415-6448.
[6]FANG Y, ZHAO X, CHEN G, et al. Smart polyethylene textiles for radiative and evaporative cooling[J]. Joule, 2021, 5(4): 752-754.
[7]黨天華, 趙蒙蒙, 錢靜. 基于微型風(fēng)扇陣列的通風(fēng)服研發(fā)與測評[J]. 現(xiàn)代紡織技術(shù), 2022, 30(4): 214-221.
DANG Tianhua, ZHAO Mengmeng, QIAN Jing. Deve-lopment and evaluation of ventilation clothing based on micro fan array[J]. Advanced Textile Technology, 2022, 30(4): 214-221.
[8]吳國珊, 劉何清, 吳世先, 等. 不同環(huán)境下個體通風(fēng)服的制冷量[J]. 紡織學(xué)報, 2021, 42(10): 139-145.
WU Guoshan, LIU Heqing, WU Shixian, et al. Cooling capacity of personal ventilation systems in different environ-ments[J]. Journal of Textile Research, 2021, 42(10): 139-145.
[9]米立華. 氣冷服與體表空間內(nèi)流動傳熱模擬研究[D]. 湘潭: 湖南科技大學(xué), 2019.
MI Lihua. Simulation of Flow and Heat Transfer in Air Cooling Garment and Surface Space[D]. Xiangtan: Hunan University of Science and Technology, 2019.
[10]LOU L, SHOU D, PARK H, et al. Thermoelectric air conditioning undergarment for personal thermal manage-ment and HVAC energy saving[J]. Energy and Buildings, 2020, 226: 110374.
[11]曹海山. 熱電制冷技術(shù)進(jìn)展與展望[J]. 制冷學(xué)報, 2022, 43(4): 26-34.
CAO Haishan. Progress and prospect of thermoelectric refrigeration[J]. Journal of Refrigeration, 2022,43(4): 26-34.
[12]張昭華, 陳之瑞, 李璐瑤, 等. 人體局部皮膚的氣流敏感性及其影響因素[J]. 紡織學(xué)報, 2021, 42(12): 125-130.
ZHANG Zhaohua, CHEN Zhirui, LI Luyao, et al.[J]. Airflow sensitivity of human local human skin and its influencing factor[J]. Journal of Textile Research, 2021, 42 (12): 125-130.
[13]ZHAO M, GAO C, WANG F, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. InternaxDCkHy48/amYrbltQGu22HUmys6UfEDyqeAD40R5Zac=tional Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
[14]FAN C, ZHANG Z, LI L. Sensitivity and preference of local airflows beneath garments with personalised tem-peratures and velocities[J]. Building and Environment, 2023, 234:110128.
[15]DING Y, ZHANG Z, CHEN Z. Effect of local ventilation temperature and speed under garments on the thermal response of humans at different metabolic rates[J]. Applied Ergonomics, 2023, 113: 104102.
[16]GUO T, SHANG B, DUAN B, et al. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015, 49: 47-54.
[17]舒?zhèn)コ? 便攜式液冷服系統(tǒng)設(shè)計及其熱舒適性研究[D]. 武漢: 華中科技大學(xué), 2021.
SHU Weicheng. Design of Portable Liquid Cooling Garment and Its Thermal Comfort Study[D]. Wuhan: Huazhong University of Science and Technology, 2021.
[18]SHU W, ZHANG X, YANG X, et al. A smart tem-perature-regulating garment for portable, high-efficiency and comfortable cooling[J]. Journal of Electronic Pac-kaging, 2022, 144(3): 031010.
[19]XU Y, LI Z, WANG J, et al. Man-portable cooling garment with cold liquid circulation based on thermoel-ectric refrigeration[J]. Applied Thermal Engineering, 2022, 200: 117730.
[20]ZHANG M, LI Z, WANG Q, et al. Research on refrigerant optimization and characteristic parameters based on thermoelectric refrigeration cooling garment[J]. Applied Thermal Engineering, 2022, 212: 118606.
[21]GAO C, KUKLANE K, HOLMéR I. Cooling vests with phase change material packs: The effects of temperature gradient, mass and covering area[J]. Ergonomics, 2010, 53(5): 716-723.
[22]GAO C, KUKLANE K, HOLMéR I. Cooling vests with phase change materials: The effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6): 1207-1216.
[23]MNEIMNEH F, GHADDAR N, GHALI K, et al. Experiment study for evaluation of phase change material cooling vest's effectiveness at two melting points used by people with paraplegia during exercise[J], 2020, 11: 1-9.
[24]RYKACZEWSKI K. Rational design of sun and wind shaded evaporative cooling vests for enhanced personal cooling in hot and dry climates[J]. Applied Thermal Engineering, 2020, 171: 115122.
[25]MALEY M, MINETT G M, BACH A J, et al. Extending work tolerance time in the heat in protective ensembles with pre-and per-cooling methods[J]. Applied Ergono-mics, 2020, 85: 103064.
[26]AARISH M, MAHMOOD R, MAHMOOD M, et al. Study on an evaporative cooling vest for farm workers[J]. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 2020, 6: 116-121.
[27]ZENG S, PIAN S,SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling.[J]. Science, 2021, 373 (6555): 692-696.
[28]CAI L, SONG A Y, LI W, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials, 2018, 30 (35): 1802152.
[29]韋帆汝, 王發(fā)明. 基于相變材料與微型通風(fēng)風(fēng)扇的新型個體混合冷卻服在溫?zé)岘h(huán)境下的制冷效果研究[J]. 絲綢, 2016, 53(3): 1-8.
WEI Fanru, WANG Faming. The cooling performance of a portable hybrid personal cooling system(PCS) based on phase change materials and micro-ventilation fans in a warm environment[J]. Journal of Silk, 2016,53(3): 1-8.
[30]WAN X, WANG F, UDAYRAJ. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018, 126: 636-648.
[31]WANG F, SONG W. An investigation of thermophy-siological responses of human while using four personal cooling strategies during heatwaves[J]. Journal of Thermal Biology, 2017, 70: 37-44.
[32]SONG W, WANG F, ZHANG C, et al. On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment[J]. Building and Environment, 2015, 94: 704-713.
[33]SORA S, HAE-HYUN C, BIN K Y, et al. Evaluation of body heating protocols with graphene heated clothing in a cold environment[J]. International Journal of Clothing Science and Technology, 2017, 29(6): 830-844.
[34]XU J, GAO L, XIAO M, et al. Isogeometric topology optimization for rational design of ultra-lightweight archi-tected materials[J]. International Journal of Mechanical Sciences, 2020, 166: 105103.
[35]UDAYRAJ, LI Z, KE Y, et al. A study of thermal comfort enhancement using three energy-efficient persona-lized heating strategies at two low indoor temperatures[J]. Building and Environment, 2018, 143: 1-14.
[36]楊玉桐. 冷環(huán)境下局部電加熱對人體熱反應(yīng)的影響[D].上海: 東華大學(xué),2021.
YANG Yutong. Effect o6+asxoy3Y8M6FyQJX93FWQ==f Local Electric Heating on Human Thermal Response in Cold Environment[D]. Shanghai: Donghua University, 2021.
[37]HSU P, LIU X, LIU C, et al. Personal thermal manage-ment by metallic nanowire-coated textile[J]. Nano letters, 2015, 15(1): 365-371.
[38]WEI X, XIAO Y. Polyester fabric impregnated with carbon nanotubes directly to form a flexible heating fabric[J]. Journal of Physics: Conference Series, 2022, 2206(1): 012041.
[39]CHAI J, KANG Z, YAN Y, et al. Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation[J]. Cell Reports Physical Science, 2022, 3(7): 100958.
[40]MELOCCHI A, UBOLDI M, CEREA M, et al. Shape memory materials and 4D printing in pharmaceutics[J]. Advanced Drug Delivery Reviews, 2021, 173: 216-237.
[41]WANG Y, YU X, LIU R, et al. Shape memory active thermal-moisture management textiles[J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107037.
[42]ROACH D, YUAN C, KUANG X, et al. Long liquid crystal elastomer fibers with large reversible actuation strains for smart textiles and artificial muscles[J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19514-19521.
[43]SHAID A, WANG L, ISLAM S, et al. Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile[J]. Applied Thermal Engineering, 2016, 107: 602-611.
[44]TANG J, LIU Y, DU H, et al. The effects of portable cooling systems on thermal comfort and work performance in a hot environment[J]. Building Simulation, 2021, 14(6):1667-1683.
[45]YONG L, SUMATHY K. Performance analysis of a continuous multi-bed adsorption rotary cooling system[J]. Applied Thermal Engineering, 2005, 25(2/3): 393-407.
[46]CRITOPH R, METCALF S. Specific cooling power intensification limits in ammonia-carbon adsorption refri-geration systems[J]. Applied Thermal Engineering, 2004, 24(5/6): 661-678.
[47]辛麗莎,李俊,王云儀. 防護(hù)服裝功能設(shè)計模式研究[J]. 紡織學(xué)報, 2011, 32(11): 119-125.
XIN Lisha, LI Jun, WANG Yunyi. Research on func-tional design pattern of protective clothing[J].Journal of Textile Research, 2011,32(11): 119-125.
[48]YANG Y, STAPLETON J, DIAGNE B, et al. Man-portable personal cooling garment based on vacuum desic-cant cooling[J]. Applied Thermal Engineering, 2012, 47: 18-24.
[49]ZHANG M, LI Z, XU Y, et al. Design and research of liquid cooling garments in thermal environment[J]. International Journal of Refrigeration, 2022, 139: 136-147.
[50]XIAO Y, ZHANG L R, LI L X. Investigation of processing factors affecting flexible heating wire by coating polyester yarns with carbon nanotubes[J]. IOP Confer-ence Series: Materials Science and Engineering, 2020, 770(1): 012051.
[51]CHEN X, ZHANG Z, YANG Y. Preferred local electrical heating and its effect on overall thermal response[J]. International Journal of Clothing Science and Technology, 2023, 35(4): 526-544.
[52]王富香. 人體姿勢對電加熱服加熱效果及著裝人體熱舒適的影響研究[D].上海: 東華大學(xué), 2023.
WANG Fuxiang. Effect of Human Postures on The Heating Performance and Thermal Comfort of Human Body in Electric Heating Suit[D]. Shanghai: Donghua University, 2023.
[53]LIU X, JIN X, LI L, et al. Air-permeable, multi-functional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electro-thermal and photothermal conversion performance[J]. Journal of Materials Chemistry A, 2020, 8(25): 12526-12537.
[54]GUO Z, SUN C, WANG J, et al. High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management[J]. ACS Applied Materials Interfaces, 2021,13(7): 8851-8862.
[55]CHEN W, WEI X, LIU W, et al. Dual-functional thermal management textiles for dynamic temperature regulation based on ultra-stretchable spiral conductive composite yarn with 500%-strain thermal stability and durability[J]. Materials Horizons, 2024, 11(3): 792-802.
[56]HOYT T, ARENS E, ZHANG H. Extending air tempera-ture setpoints: Simulated energy savings and design considerations for new and retrofit buildings[J]. Building and Environment, 2015, 88: 89-96.
[57]LI Z, KE Y, YANG B et al.Personal cooling strategies to improve thermal comfort in warm indoor environments: Comparison of a conventional desk fan and air ventilation clothing[J]. Energy and Buildings, 2018, (174): 439-451.
[58]KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nanoPE) passive cooling mate-rial for personal thermal comfort management under uniform indoor environments[J]. Building and Environment, 2018, 145: 85-95.
[59]VISSERS D. The Human Body as Sensor for Thermal Comfort Control[D]. Eindhoven University of Technology, 2012.
[60]LOU L, ZHOU Y, YAN Y, et al. Wearable cooling and dehumidifying system for personal protective equipment (PPE)[J]. Energy and Buildings, 2022, 276: 112510.
[61]HONG S, GU Y, SEO J K, et al. Wearable thermo-electrics for personalized thermoregulation[J]. Science Advances, 2019, 5(5): 0536.
Review of personal cold and heat regulating clothing
CHEN Xue1, YU Lijing2, ZHANG Zhaohua1
(1.College of Fashion and Art Design, Donghua University, Shanghai 200051, China; 2.College of Design and Art, Liuzhou Institute of Technology, Liuzhou 545616, China)
Abstract: Adjusting the temperature and humidity of the microenvironment between the human body and clothing can effectively enhance thermal comfort and improve work efficiency in extreme temperature environments. Moreover, it offers significant advantages in terms of building energy efficiency. To further advance the application and progress of personal thermal regulating clothing in enhancing human thermal comfort and improving building energy efficiency, this paper systematically introduced the classification, characteristics, and current research progress of various types of personal thermal regulating clothing, including personal cooling clothing, personal heating clothing, and dynamically regulated clothing. The paper also summarized the advantages and disadvantages of different types of personal thermal regulating clothing, and conducted a comprehensive comparative analysis to propose potential future development directions for this type of clothing.Personal cooling clothing encompasses three primary categories: active, passive, and hybrid cooling ones. Compared to active cooling garments, liquid cooling clothing (passive cooling) has higher cooling efficiency and is suitable for individuals with greater cooling needs. Hybrid cooling clothing, which combines two or more cooling mediums, can provide superior cooling effects in dynamically changing high-temperature environments. In comparison to single cooling mediums, hybrid cooling demonstrates more significant cooling effects and thermal comfort. Future research and development should concentrate on enhancing the cooling efficiency of cooling clothing, improving garment portability, and fostering sustainable energy practices. This involves exploring lighter materials and higher energy-density batteries. Additionally, integrating solar panels into clothing design should be considered to save energy consumption and achieve sustainable development. In the development of personal heating clothing, electric heating clothing has gained widespread attention from researchers due to its advantages of being lightweight, thin, washable, and having high heating efficiency. With the advancement of heating technology, further exploration is needed to enhance the heating efficiency of heating fabrics in low-temperature environments and to implement various drive energy technologies to meet heating demands in diverse scenarios. Additionally, there should be exploration into the smart development of heating clothing by incorporating sensors or intelligent control systems to achieve precise temperature regulation and personalized heating control, so as to cater to the heating needs of different individuals. In recent years, new types of personal thermal regulation clothing that can dynamically adjust between heating and cooling have also been developed, capable of rapidly responding to real-time changes in human physiology and the environment. These textiles can monitor real-time changes in human physiology and the environment, providing rapid responses. However, in practical applications, the complex manufacturing processes and high production costs of these garments limit the possibility of mass production. Furthermore, there is a need to further improve the efficiency of heating and cooling and enhance dynamic response rates. In summary, the future development of personal thermal regulation clothing should focus on innovation and advancements in garment portability, efficient energy conversion, intelligent applications, and sustainable development.
Keywords: human thermal comfort; personal cold and heat regulating clothing; cooling systems; new textiles; smart regulation; electric heating