亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        羊源Lactobacillus plantarum對(duì)腹瀉羔羊腸道菌群及腸道黏膜屏障的調(diào)控作用

        2024-09-30 00:00:00李碧波吳克師曉龍閆奕凝李嘉豪段國(guó)慶李熊任彥鵬董佳寧張春香任有蛇
        畜牧獸醫(yī)學(xué)報(bào) 2024年8期

        摘 要: 旨在研究Lactobacillus plantarum對(duì)腹瀉羔羊血清抗氧化能力和空腸菌群及空腸黏膜屏障損傷的調(diào)控作用。本試驗(yàn)選用24只剛斷奶的羔羊,采用完全隨機(jī)試驗(yàn)設(shè)計(jì)隨機(jī)分為4組,分別為對(duì)照組(C組)、腹瀉組(D組)、腹瀉+抗生素處理組(DA組)、腹瀉+植物乳桿菌處理組(DL組),每組6個(gè)重復(fù),在正式試驗(yàn)第1天開始對(duì)D組、DA組和DL組羔羊分別灌服20 mL ETEC K99菌液,持續(xù)8 d。在第9天早上,DA組羔羊注射氟苯尼考進(jìn)行調(diào)控,DL組羔羊灌服植物乳桿菌菌液進(jìn)行調(diào)控,持續(xù)4 d。試驗(yàn)第1、9、13天空腹采集羔羊血液用于檢測(cè)羔羊血清抗氧化指標(biāo)以及二胺氧化酶(DAO)和D-乳酸(D-LA)濃度;屠宰后采集羔羊空腸內(nèi)容物以測(cè)定菌群組成,采集空腸組織用于檢測(cè)腸道黏膜屏障相關(guān)蛋白和黏膜蛋白,阿利新藍(lán)(AB)染色研究酸性黏液的變化。結(jié)果表明:1)大腸桿菌處理8 d后,D、DA和DL三組羔羊糞便均不成形,且三組羔羊血清中DAO和D-LA濃度顯著高于C組(Plt;0.05),說明腹瀉模型構(gòu)建成功;2)在第9天,與C組相比,D、DA和DL組羔羊血清中T-AOC、SOD顯著降低(Plt;0.05),MDA含量顯著升高(Plt;0.05);與第9天相比,DA和DL組羔羊在第13天時(shí)其抗氧化能力顯著增加(Plt;0.05),DAO、D-LA濃度和MDA顯著降低(Plt;0.05);3)與C組相比,D組羔羊空腸組織Occludin、Claudin1和MUC2蛋白表達(dá)量顯著下降(Plt;0.05),MUC2蛋白表達(dá)量顯著降低(Plt;0.05);與D組相比,DA組羔羊空腸組織Occludin蛋白表達(dá)量顯著提高(Plt;0.05),但Claudin1蛋白和MUC2蛋白的表達(dá)量有所降低(Pgt;0.05);DL組羔羊空腸組織Occludin蛋白、Claudin1蛋白以及MUC2蛋白表達(dá)量顯著高于DA組;4)與C組相比,D和DA組羔羊空腸內(nèi)容物中菌群Chao值和 Shannon值均顯著降低(Plt;0.05),DL羔羊空腸內(nèi)容物中菌群Chao值和Shannon值有所增加(Pgt;0.05)。C、D和DL組羔羊空腸中Firmicutes豐度均顯著高于DA組(Plt;0.05)。C、D和DA組Actinobacteriota豐度都顯著高于DL組(Plt;0.05)。D組羔羊空腸中Proteobacteria豐度略高于C和DL組(Pgt;0.05),DA組羔羊空腸中Proteobacteria豐度顯著高于C、D和DL組(Plt;0.05)。經(jīng)相關(guān)性分析發(fā)現(xiàn),與MUC2表達(dá)相關(guān)的微生物較多,Proteobacteria與空腸MUC2的表達(dá)顯著負(fù)相關(guān)(Plt;0.05),F(xiàn)irmicutes和Verrucomicrobiota與空腸MUC2的表達(dá)顯著正相關(guān)(Plt;0.05),NK4A214_group 與MUC2表達(dá)量顯著正相關(guān)(Plt;0.05),Escherichia-Shigella與MUC2的表達(dá)顯著負(fù)相關(guān)(Plt;0.05)。綜上表明,ETEC K99誘發(fā)羔羊腹瀉,腹瀉羔羊血清抗氧化能力和空腸內(nèi)容物微生物多樣性降低、空腸黏膜屏障蛋白表達(dá)量降低。相比于抗生素治療,灌服Lactobacillus plantarum增加了空腸內(nèi)容物菌群多樣性,促進(jìn)空腸酸性黏液及黏膜組織屏障蛋白的表達(dá)??傮w而言,Lactobacillus plantarum對(duì)羔羊腹瀉改善效果更佳。

        關(guān)鍵詞: 植物乳桿菌;羔羊;抗氧化能力;腸道黏膜屏障;腸道菌群

        中圖分類號(hào):S858.26

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):0366-6964(2024)08-3552-18

        收稿日期:2024-01-25

        基金項(xiàng)目:山西省高等學(xué)校科技創(chuàng)新項(xiàng)目(2021L175);山西省博士畢業(yè)生、博士后研究人員來晉工作獎(jiǎng)勵(lì)資金科研項(xiàng)目(SXBYKY2021037);山西農(nóng)業(yè)大學(xué)科技創(chuàng)新基金項(xiàng)目(2020BQ53);山西省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)(2023CYJSTX14)

        作者簡(jiǎn)介:李碧波(1988-),男,山西晉城人,博士,主要從事反芻動(dòng)物胃腸道健康研究,E-mail: libibo1988@126.com;吳 克(1993-),男,河南商丘人,碩士生,主要從事動(dòng)物環(huán)境生理與健康養(yǎng)殖研究,E-mail:wuke1227@163.com。李碧波與吳克為同等貢獻(xiàn)作者

        通信作者:任有蛇,主要從事動(dòng)物生殖生理研究,E-mail: rys925@126.com;張春香,主要從事動(dòng)物生殖生理研究,E-mail: chunxiangzhang@sxau.edu.cn

        Sheep-derived Lactobacillus plantarum Regulates the Bacterial Community and Mucosal

        Barrier in Jejunum of Diarrheic Lambs

        LI" Bibo, WU" Ke, SHI" Xiaolong, YAN" Yining, LI" Jiahao, DUAN" Guoqing, LI" Xiong, REN" Yanpeng, DONG" Jianing, ZHANG" Chunxiang*, REN" Youshe*

        (College of Animal Science, Shanxi Agricultural University, Taigu 030801, China)

        Abstract: The aim of the experiment was to investigate the mitigatingregulating effect of Lactobacillus plantarum on diarrhea lambs in indexes including the damage of anti-oxidative capacity in serum, jejunal microbiota, and jejunal mucosal barrier damagein diarrhea lambs.[Methods]" Twenty-four newly weaned lambs were selected and distributed into four groups using a completely randomized experimental design: the control group (C), the diarrhea group (D), the group of antibiotic-treated under diarrhea (DA), and the group of Lactobacillus plantarum-treated under diarrhea (DL), with six replicates in each group. Lambs in groups D, DA and DL were dosed with 20 mL of ETEC K99 starting on the first day of the formal trial for 8 d consecutively. On the morning of the ninth day, lambs in group DA were injected regulated with florfenicol, and lambs in group DL were regulated by dosinggavaged with Lactobacillus plantarum, and the regulationabove treatment lasted for 4 consecutive days. The blood was collected fasting on days 1, 9 and 13 of the trial for the detection of serum antioxidant indexes as well as diamine oxidase (DAO) and D-lactic acid (D-LA) concentration in lambs. After slaughter the jejunal content was collected to determine the composition of bacterial community. The jejunal mucosal were collected to explore the expression of intestinal mucosal barrier-associated proteins and mucus proteins.[Results] Alisin Blue staining was uesd to study the changes of acidic mucus. The results showed that: 1) After 8 d of ETEC K99 treatment, the feces of lambs in D, DA and DL were all shapeless, and the concentrations of DAO and D-LA in the serum of lambs in the three groups were significantly higher than those in group C (Plt;0.05), which indicated that the model of diarrhea had been successfully constructed; 2) On the 9th day, compared with that of group C, the T-AOC and SOD in serum of lambs in D, DA and DL groups decreased significantly (Plt;0.05), and the MDA content increased significantly (Plt;0.05). Compared to on the 9th day, the antioxidant capacity of lambs in DA and DL groups increased significantly on the 13th day (Plt;0.05), but there were significant decrease on the concentration of DAO, D-LA and MDA in serum of lambs in these two groups (Plt;0.05); 3) Compared to group C, the expression of Occludin ,Claudin1 and MUC2 protein in group D decreased significantly (Plt;0.05). Compared with group D, the expression of Occludin protein in jejunal tissues of DA lambs was significantly higher (Plt;0.05), but the expression of Claudin1 and MUC2 proteins reduced slightly (Pgt;0.05). The expression of Occludin, Claudin1 and MUC2 protein in DL group were significantly higher than that of DA group (Plt;0.05). 4) Compared with group C, the Chao and Shannon values of the bacterial community in the jejunal content of lambs in D and DA decreased significantly (Plt;0.05), and while increased in DL group (Pgt;0.05).The abundances of Firmicutes in the jejunum of lambs from C, D and DL groups were significantly higher than in DA group (Pgt;0.05). The abundances of Actinobacteriota in the jejunum of lambs was significantly higher in C, D and DA than in DL group (Plt;0.05). The abundances of Proteobacteria in the jejunum of lambs was a little higher in D group than in C and DL groups (Pgt;0.05), while the abundances of Proteobacteria in the jejunum of lambs in group DA was significantly higher than in C, D and DL groups(Plt;0.05). Correlation analysis revealed that more microorganisms associated with MUC2 expression and the phylum Proteobacteria abundance was significantly negatively correlated with the expression of MUC2 protein (Plt;0.05), while the phylaabundance of Firmicutes and Verrucomicrobiota were significantly positively correlated with the expression of MUC2 protein (Plt;0.05). NK4A214_group had a significant positive correlation with MUC2 expression (Plt;0.05) and Escherichia-Shigella was significantly negatively correlated with MUC2 expression (Plt;0.05). In conclusion, ETEC K99 induced diarrhea in lambs, decreased serum antioxidant capacity and microbial diversity of jejunal content, and inhibited the expression of jejunal mucus barrier protein. Compared to antibiotic therapy, gavaging Lactobacillus plantarum increases the diversity of jejunal contents flora and promotes the expression of jejunal acidic mucus and mucus tissue barrier proteins. Above all, Lactobacillus plantarum had a better effect in improving lamb diarrhea.

        Key words: Lactobacillus plantarum; lambs; anti-oxidative capacity; mucosal barrier of jejunum; bacterial community

        *Corresponding authors: REN Youshe,E-mail: rys925@126.com;ZHANG Chunxiang,E-mail: chunxiangzhang@sxau.edu.cn

        斷奶是羔羊、犢牛等哺乳動(dòng)物生長(zhǎng)發(fā)育的關(guān)鍵階段之一。斷奶時(shí)哺乳動(dòng)物幼畜從以吸吮富含營(yíng)養(yǎng)且易消化的母乳為主轉(zhuǎn)向以采食固體飼料為主,其消化道形態(tài)功能和微生物區(qū)系發(fā)生劇烈變化。斷奶期在飼料營(yíng)養(yǎng)結(jié)構(gòu)改變、環(huán)境應(yīng)激和病原菌入侵等因素的綜合影響下,羔羊極易發(fā)生腹瀉,導(dǎo)致其生長(zhǎng)滯后甚至死亡,造成羔羊生產(chǎn)效率低下,帶來巨大的經(jīng)濟(jì)損失[1]。大腸桿菌引起的腹瀉通常使用抗生素治療,但抗生素的應(yīng)用會(huì)產(chǎn)生許多副作用,如腸屏障功能障礙和耐藥細(xì)菌的出現(xiàn)等,這些副作用會(huì)降低抗生素的有效性[2-3]。益生菌被認(rèn)為是抗生素的可持續(xù)替代品,可用于預(yù)防和緩解人和其他動(dòng)物腹瀉[4]。

        乳酸菌是益生菌中的一類。乳酸菌具有如下特性:產(chǎn)生各種抗菌肽,改善腸道內(nèi)環(huán)境;產(chǎn)生抗菌物質(zhì)抑制病原體繁殖,從而降低腸道通透性、炎癥和氧化損傷[5]。乳酸菌參與機(jī)體的抗氧化系統(tǒng),通過清除部分ROS,從而起到降低機(jī)體氧化損傷的效果[6]。Yue等[7]研究證明,植物乳桿菌通過下調(diào)促炎細(xì)胞因子、上調(diào)抗炎細(xì)胞因子和增加Short chain fatty acids(SCFAs)的產(chǎn)生,減輕了腸毒素性大腸桿菌誘導(dǎo)的腹瀉。體外和動(dòng)物試驗(yàn)表明,乳酸菌可能可以阻止大腸桿菌在腸道定植,并且可能產(chǎn)生對(duì)抗腸毒素的物質(zhì),且在體外試驗(yàn)中還發(fā)現(xiàn)乳酸菌對(duì)細(xì)胞連接和黏膜完整性具有保護(hù)作用[8]。體內(nèi)研究表明,乳酸菌可以減少動(dòng)物和人類腸道中大腸桿菌、腸球菌或輪狀病毒菌株的攻擊[9]。此外,乳酸菌定植能夠通過加強(qiáng)頂端連接復(fù)合體、恢復(fù)微絲結(jié)構(gòu)和降低過敏原特異性免疫球蛋白水平,改善腸道上皮屏障[10]。在腸道微生物方面,乳酸菌可以改善腸道菌群結(jié)構(gòu)增加厚壁菌門(Firmicutes)和產(chǎn)短鏈脂肪酸菌等有益菌[11],并且乳酸菌可以激活抑制炎癥反應(yīng)的受體(如PPAR-γ),抑制炎癥相關(guān)信號(hào)通路(如TLR4),從而降低促炎細(xì)胞因子的產(chǎn)生,緩解炎癥反應(yīng)[12-14]。此外,乳酸菌還可以促進(jìn)緊密連接蛋白、黏蛋白和水通道蛋白表達(dá),促進(jìn)分泌黏液的細(xì)胞分化以保證腸道屏障的完整性[15]。因此,乳酸菌可以極大的改善腸道環(huán)境,促進(jìn)動(dòng)物健康生長(zhǎng)。

        目前,關(guān)于乳酸菌對(duì)羔羊腹瀉緩解機(jī)制的研究較少。本試驗(yàn)選擇斷奶羔羊?yàn)樵囼?yàn)動(dòng)物通過ETEC K99構(gòu)建腹瀉模型,利用從成年羊瘤胃內(nèi)篩選的植物乳桿菌來緩解腹瀉羔羊的癥狀,探究植物乳桿菌對(duì)ETEC K99誘發(fā)羔羊空腸損傷的調(diào)控作用,以及對(duì)空腸屏障及空腸菌群的影響,旨在為植物乳桿菌作為飼料添加劑在生產(chǎn)中的應(yīng)用提供理論基礎(chǔ)。

        1 材料與方法

        1.1 試驗(yàn)材料

        植物乳桿菌菌液:本試驗(yàn)所用植物乳桿菌(Lactobacillus plantarum)菌株,來自本實(shí)驗(yàn)室從羊瘤胃篩選出來的羊源植物乳桿菌G9。取活化三代培養(yǎng)至指數(shù)期的植物乳桿菌菌液按照1∶100的比例與新鮮的De Man, Rogosa 和 Sharpe(MRS)液體培養(yǎng)基混合,過夜培養(yǎng)使菌液中活菌數(shù)達(dá)到1×1010 CFU·mL-1。將篩選的另1株植物乳桿菌G10復(fù)蘇活化三代,兩株菌按相同操作步驟培養(yǎng)相同時(shí)間,通過分析兩株菌對(duì)ETEC K99的抑菌圈大小比較兩株菌的抑菌效果差異。

        大腸桿菌凍干粉:Escherichia coli (E. coli)來自山西農(nóng)業(yè)大學(xué)動(dòng)物醫(yī)學(xué)學(xué)院,將大腸桿菌菌液過夜培養(yǎng)后,經(jīng)冷凍離心機(jī)7 000×g離心20 min后得到菌體,將菌體制成凍干粉,使凍干粉的活菌數(shù)達(dá)到1×1011 CFU·g-1。

        氟苯尼考注射液(FFC):在獸藥店購買由山東德信生物科技有限公司生產(chǎn)的氟苯尼考注射液,生產(chǎn)批號(hào):20220501。

        1.2 試驗(yàn)設(shè)計(jì)與飼養(yǎng)管理

        本試驗(yàn)在山西農(nóng)業(yè)大學(xué)山西省肉羊繁育工程研究中心進(jìn)行。選用24只剛斷奶的羔羊,采用完全隨機(jī)試驗(yàn)設(shè)計(jì)隨機(jī)分為4組,分別為對(duì)照組(C組)、腹瀉組(D組)、腹瀉+抗生素處理組(DA組)、腹瀉+植物乳桿菌處理組(DL組),每組6個(gè)重復(fù)。每只羊每天飼喂300 g羔羊補(bǔ)充料,干草自由采食。通過糞便評(píng)分判斷羔羊是否腹瀉,糞便評(píng)分標(biāo)準(zhǔn)為0分:正常;1分:半成形;2分:松散,但停留在漏糞板上;3分:水性,通過漏糞板,糞便評(píng)分≥1被認(rèn)為是腹瀉[16]。經(jīng)預(yù)試驗(yàn),當(dāng)每只羔羊灌服ETEC K99菌液濃度達(dá)到1011 CFU·mL-1、每天3次、每次20 mL時(shí)可以致羔羊腹瀉。預(yù)飼期每天8:00、12:00、16:00飼喂代乳粉和羔羊補(bǔ)充料,代乳粉飼喂量為每只300 mL·次-1,每天3次,羔羊補(bǔ)充料每只羊300 g·d-1,為期8 d。正式試驗(yàn)期間每天投喂羔羊補(bǔ)充料300 g,不飼喂代乳粉,第1天開始,于每天8:00、12:00和16:00對(duì)D、DA和DL組羔羊灌服20 mL由ETEC K99凍干粉制成的濃度為1×1011 CFU·mL-1的菌液,C組灌服20 mL生理鹽水,持續(xù)8 d。第9天DA組羔羊肌肉注射2 mL(8:00)氟苯尼考,每天1次,持續(xù)4 d;DL組羔羊灌服植物乳桿菌,每次20 mL,每天3次(8:00、12:00和16:00),C組繼續(xù)灌服生理鹽水20 mL每天3次(8:00、12:00和16:00),持續(xù)4 d。每天下午更換飲水,每周消毒1次。

        1.3 樣品采集與指標(biāo)測(cè)定

        1.3.1 血液樣品采集與指標(biāo)測(cè)定

        正式試驗(yàn)開始第1天早晨空腹采血并開始記錄羔羊糞便;在第8天中午開始對(duì)腹瀉組(D組)進(jìn)行禁食不禁水,在第9天早上對(duì)當(dāng)天羔羊糞便進(jìn)行糞便評(píng)分并對(duì)羔羊進(jìn)行空腹采血對(duì)D組羔羊進(jìn)行屠宰;在試驗(yàn)第12天對(duì)所有羔羊進(jìn)行禁食不禁水,試驗(yàn)第13天對(duì)所有羔羊進(jìn)行空腹采血、屠宰。血液樣品進(jìn)行37℃水浴靜置30 min后3 500×g離心15 min,分裝上層血清并保存在-80℃超低溫冰箱,用于檢測(cè)血清中抗氧化能力以及二胺氧化酶(DAO)和D-乳酸(D-LA)濃度。采用水溶性四氮唑-1(WST-1)法測(cè)定血清超氧化物歧化酶(SOD)活性,采用硫代巴比妥酸法測(cè)定丙二醛(MDA)含量,采用比色法檢測(cè)血清谷胱甘肽過氧化物酶(GSH-Px)活性和血清總抗氧化能力(T-AOC),上述指標(biāo)中測(cè)定血清中SOD、T-AOC、GSH-Px和MDA指標(biāo)所用試劑盒均購自南京建成生物工程研究所,具體操作參考試劑盒說明書。血清中DAO和D-LA濃度采用酶聯(lián)免疫法(ELISA)檢測(cè),試劑盒購自上海酶聯(lián)生物科技有限公司,具體操作參考試劑盒說明書。上述所用測(cè)定儀器為全功能微孔板檢測(cè)儀(SynergyH1)。

        1.3.2 空腸組織采集與指標(biāo)測(cè)定

        于試驗(yàn)第9天空腹采血后對(duì)D組羔羊進(jìn)行屠宰,于試驗(yàn)第13天對(duì)其余組羔羊空腹采血后進(jìn)行屠宰。屠宰后,采集羔羊空腸組織,空腸組織剪至大小為0.5 cm×0.5 cm,直接放入卡諾氏固定液內(nèi)放在4℃保存用于后續(xù)空腸黏液染色檢測(cè),每個(gè)組4只羊,每只羊做1張切片,利用阿利新藍(lán)(AB)染色后,酸性黏液被染成藍(lán)色,在10倍鏡下非連續(xù)挑選5個(gè)視野進(jìn)行拍照,在ImageJ軟件中進(jìn)行測(cè)量統(tǒng)計(jì)[15,17]。取空腸組織大小為0.5 cm×0.5 cm,經(jīng)蒸餾水清洗2次后用去RNA酶水沖洗后放入2 mL無菌無酶凍存管立即放入液氮速凍,將速凍的凍存管分揀后放入超低溫冰箱內(nèi),用于后續(xù)Western blot檢測(cè)蛋白表達(dá)量。將0.2 g凍存的空腸組織、1 mLRIPA裂解液、10 μL蛋白酶抑制劑和10 μL廣譜磷酸酶抑制劑混合于1.5 mL離心管后,加入鎬珠在均漿機(jī)中均漿80 s,在低溫高速離心機(jī)中4 ℃ 12 000×g離心20 min,上清即為提取的蛋白原液,采用Western blot檢測(cè)蛋白原液中的Claudin1、Occludin、MUC2和β-actin蛋白表達(dá)量。

        1.3.3 空腸內(nèi)容物采集與指標(biāo)測(cè)定

        采集羔羊空腸中段內(nèi)容物分裝于2 mL無菌無酶凍存管后立即放入液氮內(nèi)速凍,內(nèi)容物用后續(xù)空腸菌群檢測(cè)。根據(jù)OMG-soil試劑盒(E. Z.N.A. Soil DNA Kit Omega Bio-Tek 美國(guó))說明書進(jìn)行微生物群落總基因組DNA抽提,使用1%的瓊脂糖凝膠鑒定抽提的基因組DNA的質(zhì)量,使用NanoDrop2000(美國(guó)Thermo Scientific公司)測(cè)定DNA濃度和純度,DNA擴(kuò)增和回收參考Liu等[12]的方法。

        使用NEXTFLEX Rapid DNA-Seq Kit對(duì)純化后的PCR產(chǎn)物進(jìn)行建庫:1)接頭鏈接;2)使用磁珠篩選去除接頭自連片段;3)利用PCR擴(kuò)增進(jìn)行文庫模板的富集;4)磁珠回收PCR產(chǎn)物得到最終的文庫。利用Illumina平臺(tái)進(jìn)行測(cè)序(上海美吉生物醫(yī)藥科技有限公司)。測(cè)序結(jié)束在美吉生物云平臺(tái)進(jìn)行分析。

        使用Fastp軟件[18]對(duì)原始序列進(jìn)行質(zhì)控后,利用FLASH軟件[19]質(zhì)控后的序列進(jìn)行拼接,拼接完成后利用Qiime2流程中的DADA2插件對(duì)拼接的序列進(jìn)行降噪處理,降噪后的序列即為ASVs[20-21]。為使每個(gè)樣本的平均序列覆蓋率達(dá)到99.09%,將所有樣本序列抽平至2 000,并基于 silva138/16S_bacteria物種注釋庫以classify-sklearn(Naive Bayes)物種注釋方法對(duì)ASVs進(jìn)行物種注釋分類學(xué)分析,利用美吉生物云平臺(tái),采用Mothur軟件[22]通過Chao 、Shannon指標(biāo)等計(jì)算Alpha多樣性;并采用one-way ANOVA進(jìn)行Alpha多樣性的組間差異分析;基于Bray-curtis距離算法的PCoA分析檢驗(yàn)樣本間菌群結(jié)構(gòu)的相似性。通過美吉生物云平臺(tái)將抗氧化指標(biāo)、MDA含量、DAO和D-LA濃度與空腸內(nèi)容物優(yōu)勢(shì)菌群進(jìn)行Spearman相關(guān)性分析。

        1.4 數(shù)據(jù)統(tǒng)計(jì)分析

        試驗(yàn)數(shù)據(jù)經(jīng)Excel 2016初步處理后,應(yīng)用SPSS 26統(tǒng)計(jì)分析軟件進(jìn)行分析。方差分析one-way ANOVA進(jìn)行,并通過Duncan′s法進(jìn)行多重比較,結(jié)果用平均數(shù)(Mean)和標(biāo)準(zhǔn)誤(SEM)表示。Plt;0.05 為差異顯著,0.05≤P≤0.1為有升高或降低趨勢(shì),利用GraphPad Prism8進(jìn)行作圖。

        2 結(jié) 果

        2.1 植物乳桿菌抑菌效果

        通過對(duì)課題組篩選出來的兩株植物乳桿菌進(jìn)行抑菌試驗(yàn)發(fā)現(xiàn),兩株植物乳桿菌均可以有效地抑制ETEC K99的生長(zhǎng)。植物乳桿菌G9和植物乳桿菌G10菌液抑菌效果均顯著高于植物乳桿菌G10菌液上清(Plt;0.05),且顯著高于兩株植物乳桿菌菌液的混合液的抑菌效果(Plt;0.05),但與植物乳桿菌G9菌液上清抑菌效果差異不顯著(Pgt;0.05,圖1)。相比植物乳桿菌G10,植物乳桿菌G9菌液抑制ETEC K99生長(zhǎng)效果更佳。

        2.2 羔羊腹瀉模型的建立

        通過觀察所有羔羊糞便并對(duì)糞便進(jìn)行評(píng)分,糞便評(píng)分表明D和DA組均有60%以上羔羊糞便評(píng)分gt;1,且DL組有80%以上羔羊糞便評(píng)分gt;1(圖2、表1)。檢測(cè)羔羊血清中DAO和D-LA濃度發(fā)現(xiàn),相比C組,D、DA和DL組在第9天羔羊血清中DAO和D-LA濃度顯著高于C組(Plt;0.05);第9天時(shí),D、DA和DL組羔羊血清中DAO濃度顯著高于第1天時(shí)羔羊血清中DAO濃度(Plt;0.05),D組羔羊血清中D-LA濃度顯著高于第1天(Plt;0.05),第9天時(shí),DA和DL組羔羊血清中D-LA濃度略高于第1天。C組羔羊血清中 DAO和D-LA濃度在3個(gè)時(shí)間點(diǎn)差異均不顯著(Pgt;0.05,表2)。通過以上結(jié)果可知,對(duì)羔羊持續(xù)8 d灌服ETEC K99菌液可以成功誘導(dǎo)羔羊腹瀉。

        2.3 植物乳桿菌對(duì)大腸桿菌誘導(dǎo)腹瀉羔羊血清抗氧化能力的影響

        由表3可知,在第9天,與C組相比,D、DA和DL組羔羊血清中T-AOC和SOD顯著降低(Plt;0.05),且DA和DL組羔羊血清中MDA顯著升高(Plt;0.05),GSH-Px差異不顯著(Pgt;0.05)。在第

        13天,DA和DL組羔羊血清中GSH-Px、SOD、MDA、T-AOC差異不顯著(Pgt;0.05),但DL組羔羊血清中GSH-Px、SOD和T-AOC指標(biāo)均略高于DA組(Pgt;0.05)。第9天時(shí),D、DA和DL組羔羊血清中SOD顯著低于第1天(Plt;0.05),而三組羔羊血清中MDA顯著高于第1天(Plt;0.05);而對(duì)于T-AOC,D和DL組羔羊在第9天顯著低于第1天(Plt;0.05);在第13天,DA組和DL組羔羊血清中T-AOC、SOD顯著高于第9天 (Plt;0.05),MDA顯著低于第9天(Plt;0.05)??股睾椭参锶闂U菌均可以改善因腹瀉引起的血清抗氧化能力降低。

        2.4 植物乳桿菌對(duì)大腸桿菌誘導(dǎo)腹瀉羔羊空腸緊密連接蛋白及黏蛋白(MUC2)的影響

        通過阿利新藍(lán)(AB)染色對(duì)空腸組織中酸性黏液進(jìn)行染色,結(jié)果如圖3所示,酸性黏液被染成藍(lán)色,相比C組,D組酸性黏膜蛋白占比差異不顯著(Pgt;0.05);相比D組,DA組和DL組酸性黏液增多但不顯著(Pgt;0.05)。對(duì)各組空腸黏膜組織中緊密連接蛋白和黏蛋白2(MUC2)檢測(cè)發(fā)現(xiàn),相比C組,D組羔羊空腸黏膜組織Occludin、Claudin1和MUC2蛋白表達(dá)量顯著下降(Plt;0.05),且DA組和DL組Occludin蛋白表達(dá)量顯著高于D組(Plt;0.05);但DA和DL組羔羊空腸黏膜組織Claudin1和MUC2蛋白表達(dá)量顯著低于C組(Plt;0.05)。相比DA組,DL組羔羊空腸黏膜組織Claudin1、Occludin和 MUC2蛋白表達(dá)量顯著增加(Plt;0.05)(圖4)。ETEC K99誘發(fā)的羔羊腹瀉會(huì)降低空腸緊密連接蛋白和MUC2蛋白的表達(dá)量,降低酸性黏液占比;相比于抗生素,植物乳桿菌可以顯著提高緊密連接蛋白和MUC2蛋白表達(dá)量,且促進(jìn)酸性黏液增加效果更佳。

        2.5 植物乳桿菌對(duì)大腸桿菌誘導(dǎo)腹瀉羔羊空腸菌群結(jié)構(gòu)的影響

        由表4可知,與C組相比,D組羔羊空腸內(nèi)容物中菌群Chao值顯著降低(Plt;0.05),Shannon值降低但不顯著(Pgt;0.05),說明腹瀉顯著降低了菌群豐度。DL組羔羊空腸菌群Chao值和Shannon值與C組差異不顯著(Pgt;0.05)。相比于D組,DA組羔羊空腸中菌群Chao和 Shannon顯著下降,但DL組Chao值顯著升高(Plt;0.05),Shannon值差異不顯著(Pgt;0.05)。相比DA組,DL組羔羊空腸中菌群Chao值和Shannon值顯著高于DA組(Plt;0.05)。各組的空腸內(nèi)容物菌群的Coverage指數(shù)均在0.99以上,說明各樣品測(cè)序深度足夠。PCOA和ANOSIM分析表明,C、D和DL組不能完全分開,DA組與其他三組完全分開,其物種組成與其他三組有顯著差異(Plt;0.05)(圖5)。相比抗生素,植物乳桿菌提高空腸菌群豐富度和多樣性更佳。

        本試驗(yàn)采集羔羊空腸內(nèi)容物,共計(jì)24個(gè)。對(duì)24個(gè)樣本進(jìn)行16S rDNA測(cè)序發(fā)現(xiàn),空腸內(nèi)容物共發(fā)現(xiàn)19個(gè)菌門,F(xiàn)irmicutes(61.69%)、Actinobacteriota(20.67%)、Proteobacteria(7.48%)和Bacteroidetes(3.44%)是豐度最高的四大菌門。DL組羔羊空腸內(nèi)容物Firmicutes豐度顯著高于DA組(Plt;0.05),C、D和DL組之間差異不顯著(Pgt; 0.05)。DL組羔羊空腸內(nèi)容物Actinobacteriota豐度顯著低于C、D和DA組(Plt;0.05),且C、D和DA組之間差異不顯著(Pgt;0.05)。DA組羔羊空腸內(nèi)容物Proteobacteria豐度顯著高于C、D和DL組(Plt;0.05),且C、D和DL組之間差異不顯著(Pgt;0.05)。各組羔羊空腸Bacteroidetes豐度差異不顯著(Pgt;0.05),但DL組略高于其他組(Pgt;0.05,圖6)。在屬水平上TOP5的物種包括:Bifidobacterium、Aeriscardovia、Christensenellaceae_R-7_group、Escherichia-Shigella、Saccharofermentans。進(jìn)行比較后發(fā)現(xiàn)D和DA組Escherichia-Shigella顯著高于C和DL組(Plt;0.05)。DA組羔羊空腸內(nèi)容物中Aeriscardovia豐度顯著低于C、D和DL組(Plt;0.05),且D和DL組羔羊空腸內(nèi)容物中Aeriscardovia豐度顯著低于C組(Plt;0.05)。C、D和DL組羔羊空腸內(nèi)容物中Christensenellaceae_R-7_group豐度差異不顯著,且DA組羔羊空腸內(nèi)容物中Christensenellaceae_R-7_group豐度略低于D、DL和C組(Pgt;0.05)。DA組羔羊空腸內(nèi)容物中Bifidobacterium 豐度顯著高于C、D和DL組(Plt;0.05),且C、D和DL組之間差異不顯著(Pgt;0.05,圖7)。ETEC K99 誘發(fā)羔羊腹瀉,會(huì)引起羔羊空腸菌群多樣性降低,致病菌(如Escherichia-Shigella)顯著增加,益生菌減少(如Christensenellaceae_R-7_group);相比抗生素,植物乳桿菌降低Escherichia-Shigella,增加Christensenellaceae_R-7_group和Aeriscardovia豐度效果更佳。

        2.6 主要優(yōu)勢(shì)菌與羔羊血清抗氧化指標(biāo)、血清DAO和D-LA濃度以及空腸黏膜屏障蛋白相關(guān)性分析

        將羔羊空腸內(nèi)容物中優(yōu)勢(shì)菌門和菌屬與血清中T-AOC、GSH-Px活性、SOD活力、MDA含量、 DAO濃度、 D-LA濃度以及空腸黏膜組織中蛋白Occludin、Claudin1和MUC2的表達(dá)量進(jìn)行Spearman相關(guān)性分析可知(|R|gt;0.5,Plt;0.05)。Firmicutes和Verrucomicrobiota與空腸黏膜屏障蛋白蛋白MUC2顯著正相關(guān);Proteobacteria與空腸黏膜屏障蛋白MUC2顯著負(fù)相關(guān)。Spirochaetota與空腸黏膜屏障蛋白Occludin顯著正相關(guān)。Synergistota與羔羊血清中SOD顯著正相關(guān),Elusimicrobiota與羔羊血清中GSH-Px顯著負(fù)相關(guān)(圖8)。在屬水平上,進(jìn)行相關(guān)性分析(|R|gt;0.5,Plt;0.05)發(fā)現(xiàn),Chlamydia、Marvinbryantia等菌屬與T-AOC顯著正相關(guān);Clostridium_sensu_stricto_1與T-AOC顯著負(fù)相關(guān),Chlamydia 和norank_f_norank_o_Claosridia_UCG-014與GSH-Px顯著負(fù)相關(guān),yntrophococcus、Marvinbryantia等屬與MDA顯著負(fù)相關(guān)。Syntrophococcus與D-LA顯著正相關(guān);Lachnospiraceae_NK3A20_group與DAO顯著正相關(guān)。NK4A214_group、Lachnospiraceae_XPB1014_group等屬與Occludin和MUC2表達(dá)量顯著正相關(guān),Erysipelotrichaceae_UCG-006與Claudin1顯著正相關(guān),Escherichia-Shigella、Erysipelotrichaceae_UCG-002、Solobacterium等菌屬與MUC2表達(dá)量顯著負(fù)相關(guān)。羔羊血清抗氧化能力以及空腸緊密連接蛋白和MUC2蛋白表達(dá)量與空腸菌群關(guān)系密切,且與MUC2蛋白表達(dá)量相關(guān)菌群較多(圖9)。

        3 討 論

        本試驗(yàn)采用ETEC K99構(gòu)建羔羊腹瀉模型,主要研究植物乳桿菌對(duì)腹瀉羔羊血清抗氧化能力、空腸菌群變化和空腸黏膜屏障的影響。腸道組織損傷與氧化應(yīng)激密切相關(guān),而血清中SOD、T-AOC和GSH-Px等可以反映動(dòng)物機(jī)體的抗氧化能力,血清中MDA含量是反映氧化應(yīng)激的重要指標(biāo)[23-24]。SOD是一種重要的清除氧自由基的酶,可以阻止過氧化反應(yīng)[25]。GSH-Px可以清除細(xì)胞內(nèi)有害的代謝物從而保護(hù)細(xì)胞膜結(jié)構(gòu)和功能的完整性[26]。MDA是脂質(zhì)氧化的最終產(chǎn)物,其濃度間接反映了對(duì)膜系統(tǒng)的損傷程度[27]。本試驗(yàn)發(fā)現(xiàn),D、DA和DL組羔羊血清中第9天時(shí)MDA含量顯著升高,SOD、T-AOC水平顯著降低,GSH-Px在三個(gè)組中均有所下降。因此,在第9天時(shí),D、DA和DL組羔羊發(fā)生了氧化應(yīng)激。在第13天時(shí),DA和DL組羔羊血清中MDA顯著低于第9天,并且SOD、T-AOC顯著升高,GSH-Px有所上升。植物乳桿菌可以通過激活Nrf2途徑增加抗氧化酶的分泌,并且有研究中指出植物乳桿菌提高血清抗氧化和體液免疫;促進(jìn)腸道菌群代謝,這可能與乳酸菌自身酶系統(tǒng)和代謝產(chǎn)物有關(guān)[28-30]。GSH-Px保護(hù)腸道免受內(nèi)毒素和ROS等的損傷,并且GSH-Px的活性和一些微量元素有關(guān)[31] 。D-乳酸(D-LA)和二胺氧化酶(DAO)是檢測(cè)腸道完整性的重要指標(biāo)[32],當(dāng)腸道完整性受損時(shí),D-乳酸和DAO被腸上皮細(xì)胞吸收到血液中,導(dǎo)致血清中D-乳酸和DAO濃度增加[33]。在本研究中發(fā)現(xiàn)在第9天時(shí),相比于C組, D、DA和DL組羔羊血清中DAO濃度和D-LA濃度顯著升高,并且顯著高于第1天;相比第9天,第13天時(shí),DA和DL組DAO濃度和D-LA濃度顯著降低,這些結(jié)果與Xu等[32]結(jié)果相似。Liu等[34]研究發(fā)現(xiàn),植物乳桿菌可以提高腸道完整性,這也可能是血清中DAO和D-乳酸濃度降低及抗氧化指標(biāo)水平增加的原因之一。

        腸道屏障功能一般由上皮細(xì)胞黏液層緊密連接(TJs)結(jié)構(gòu)調(diào)節(jié),TJs結(jié)構(gòu)由不同跨膜蛋白組裝,如Occludin、Claudin1等[35]。在本試驗(yàn)中D組空腸緊密連接蛋白Occludin和Claudin1表達(dá)量顯著降低,DA和DL組Occludin蛋白表達(dá)顯著增加,DL組Claudin1蛋白的表達(dá)增加,這與Tang等[35]研究結(jié)果相似。植物乳桿菌分泌的一些代謝物和生物活性因子與腸道免疫受體相互作用調(diào)節(jié)上皮細(xì)胞功能促進(jìn)腸道屏障完整[36]。但DA組Claudin1蛋白表達(dá)出現(xiàn)了下降,這可能是由于抗生素的使用損傷了腸道結(jié)構(gòu)引起的[32]。黏液層在保護(hù)腸道中起著重要作用,病原菌需通過黏液層達(dá)到上皮,黏液中的蛋白可以限制病原菌的生長(zhǎng)和侵入[37]。MUC2是杯狀細(xì)胞分泌的一種主要腸道O-糖化蛋白,MUC2之間可以通過二硫鍵形成網(wǎng)狀聚合物,該聚合物是黏蛋白形成黏液層的主要框架,某些腸道疾病可以引起其表達(dá)異常[38]。本試驗(yàn)結(jié)果顯示,相比D組,DA和DL組酸性黏液增加,并且DL組MUC2蛋白表達(dá)顯著增加,但DA組MUC2蛋白表達(dá)有所下降,這與王譽(yù)穎等[38]的研究結(jié)果相似。有研究同樣指出,乳桿菌可以促進(jìn)黏液蛋白的分泌,促進(jìn)腸道健康,這也可能是DL組比DA組酸性黏液蛋白較多的原因[39]。相比于抗生素,植物乳桿菌更利于促進(jìn)腸道黏膜屏障蛋白的完整性。

        腸道菌群由數(shù)以百萬計(jì)的微生物組成,通過各種代謝物,對(duì)宿主的營(yíng)養(yǎng)吸收、代謝和免疫等生理過程起著關(guān)鍵作用[40]。腸道菌群失衡被普遍認(rèn)為是腹瀉的主要原因,在牛的研究中發(fā)現(xiàn)牛腹瀉時(shí)腸道菌群發(fā)生了變化[41-42]。在本研究中發(fā)現(xiàn),相比C組,D組羔羊空腸內(nèi)容物菌群的Chao值和 Shannon值顯著降低,說明腹瀉羔羊空腸內(nèi)容物菌群豐富度和多樣性降低,ETEC K99破壞了羔羊空腸微生物的動(dòng)態(tài)平衡,這一結(jié)果和Kim E T等[43]的試驗(yàn)結(jié)果一致??股匾驯粡V泛用于治療大腸桿菌引起的腹瀉,但是抗生素的過度使用和誤用會(huì)引起腸道菌群失衡,而且動(dòng)物源性的大腸桿菌表現(xiàn)出對(duì)各種抗生素的耐藥性[4,44]。本研究發(fā)現(xiàn),抗生素調(diào)節(jié)腹瀉羔羊?qū)ζ淇漳c菌群豐富度和多樣性沒有改善作用,但DA組中Bifidobacterium 豐度增加,原因可能是在此抗生素下該菌屬可以大量繁殖生長(zhǎng)。

        益生菌可定居在腸道以多種方式抑制腸道疾病,多數(shù)益生菌可以發(fā)酵產(chǎn)酸降低腸道內(nèi)酸堿度,從而降低一些病原體的含量[45-46]。有報(bào)告證實(shí),使用益生菌可以通過腸道菌群保持腸道屏障完整性,避免腸道結(jié)構(gòu)和功能的紊亂[47],并且研究表明添加益生菌可以下調(diào)炎癥因子的表達(dá)[48]。在菌群與腸道屏障的研究中指出,腸道黏膜屏障的完整性和Proteobacteria的豐度有關(guān),Proteobacteria豐度的增加可以破壞原有的腸道黏膜屏障,增加腸道的通透性,引發(fā)腸道炎癥[49]。本研究結(jié)果表明:相比C組,D和DA組Proteobacteria豐度增加,DL組Proteobacteria豐度減少。通過將抗氧化指標(biāo)、DAO和D-LA濃度和空腸黏膜屏障蛋白表達(dá)量與空腸菌群進(jìn)行相關(guān)性分析發(fā)現(xiàn),空腸黏膜屏障蛋白MUC2與Firmicutes和Verrucomicrobiota顯著正相關(guān),與Proteobacteria顯著負(fù)相關(guān)。空腸黏膜屏障蛋白Occludin與Spirochaetota顯著正相關(guān)。羔羊血清中SOD活力與Synergistota顯著正相關(guān),GSH-Px與Elusimicrobiota顯著負(fù)相關(guān)。Yang等[50]研究發(fā)現(xiàn)Proteobacteria的增加與降低腸道屏障完整性和機(jī)體抗氧化能力聯(lián)系密切,李嘉輝等[51]研究指出Proteobacteria的增加不利于腸道形態(tài)健康。Firmicutes的增加與腸道免疫密切相關(guān)[52],植物乳桿菌屬于Firmicutes,植物乳桿菌可以提高M(jìn)UC2的表達(dá)水平[28];對(duì)Verrucomicrobiota研究發(fā)現(xiàn),Verrucomicrobiota不僅與多糖降解有關(guān),還可改善代謝狀態(tài)和黏液層厚度[53-54],這也可能是MUC2蛋白與Firmicutes和Verrucomicrobiota相關(guān)性高的原因。在屬水平上,Aeriscardovia、NK4A214_group、Lachnospiraceae_XPB1014_group、DNF00809 等有利于腸道屏障健康,Escherichia-Shigella 等屬的存在會(huì)嚴(yán)重?fù)p傷腸道屏障。先前研究表明Aeriscardovia屬于放線菌門,參與促進(jìn)腸道屏障完整性,提高免疫功能和代謝[55]。Aeriscardovia可以與 Bifidobacterium協(xié)同,且大量試驗(yàn)證明其能夠通過碳水化合物發(fā)酵產(chǎn)生大量短鏈脂肪酸(SCFAs)和乳酸,從而促進(jìn)腸上皮細(xì)胞代謝和MUC2的表達(dá)[56-57]。有研究表明Lachnospiraceae_XPB1014_group 和DNF00809分別與丁酸產(chǎn)生和乙酸產(chǎn)生正相關(guān)[58-59]。Demirtas等[58]的研究報(bào)告中指出DNF00809和Acetitomaculum與異戊酸鹽的產(chǎn)生呈正相關(guān)。NK4A214_group于瘤胃球菌科參與結(jié)構(gòu)碳水化合物和淀粉的降解,且NK4A214_group有助于揮發(fā)酸(SCFAs)和IL-10的產(chǎn)生,降低炎癥因子[60-61]。研究表明SCFAs可以促進(jìn)TJ蛋白的表達(dá),降低腸道通透性,并且SCFAs可以幫助其他抗菌因子更容易地進(jìn)入病原體細(xì)胞發(fā)揮抗菌作用,促進(jìn)腸道健康[28,62]。

        綜上所述,一方面植物乳桿菌提高腹瀉羔羊的抗氧化能力,增加酸性黏液產(chǎn)生,提高緊密連接蛋白和黏膜蛋白MUC2的表達(dá),改善空腸腸道屏障。另一方面,相比抗生素,植物乳桿菌可以調(diào)控腹瀉引起的羔羊空腸菌群結(jié)構(gòu)失衡,降低了Proteobacteria的數(shù)量,增加Firmicutes,增加菌群的豐富度和多樣性,增加有益菌群的豐度。因此,植物乳桿菌調(diào)節(jié)羔羊腹瀉很可能是通過調(diào)控腸道菌群結(jié)構(gòu),促進(jìn)腸道菌群多樣性及其代謝,從而緩解腹瀉引起的機(jī)體抗氧化能力下降和腸道屏障損傷,并且相比抗生素更有利于保護(hù)腸道健康。

        4 結(jié) 論

        植物乳桿菌和抗生素都能夠提高羔羊血清抗氧化能力,降低DAO和D-LA濃度,但相比抗生素,植物乳桿菌能更好地促進(jìn)緊密連接蛋白和黏膜蛋白MUC2的表達(dá),提高菌群豐富度和多樣性。因此,植物乳桿菌不僅能改善ETEC K99誘導(dǎo)的羔羊腹瀉,緩解腹瀉對(duì)空腸屏障的損傷,保護(hù)腸道健康,并且在提高腸道完整性和改善菌群結(jié)構(gòu)要優(yōu)于抗生素,本試驗(yàn)的菌株或許可以成為抗生素的代替品。

        參考文獻(xiàn)(References):

        [1] 楊檸芝,李 婷,王 燕,等.斷奶前后非特異病原性腹瀉羔羊生長(zhǎng)生理及腸道菌群差異性比較[J].中國(guó)農(nóng)業(yè)科學(xué),2021,54(2):422-434.

        YANG N Z,LI T,WANG Y,et al.Comparison of growth physiology and gut microbiota between healthy and diarrheic lambs in pre-and post-weaning period[J].Scientia Agricultura Sinica,2021,54(2):422-434.(in Chinese)

        [2] RAHEEM A,LIANG L,ZHANG G Z,et al.Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation[J].Front Immunol,2021,12:616713.

        [3] SUNDERLAND S J,SARASOLA P,ROWAN T G,et al.Efficacy of danofloxacin 18% injectable solution in the treatment of Escherichia coli diarrhoea in young calves in Europe[J].Res Vet Sci,2003,74(2):171-178.

        [4] WU Y Y,NIE C X,LUO R Q,et al.Effects of multispecies probiotic on intestinal microbiota and mucosal barrier function of neonatal calves infected with E. coli K99[J].Front Microbiol,2022,12:813245.

        [5] ERGINKAYA Z,KONURAY-ALTUN G.Potential biotherapeutic properties of lactic acid bacteria in foods[J].Food Biosci,2022,46:101544.

        [6] 李 維,孫開濟(jì),孫玉麗,等.乳酸菌緩解腸道氧化應(yīng)激研究進(jìn)展[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2016,28(1):9-14.

        LI W,SUN K J,SUN Y L,et al.Research progress in relieve effect of lactobacillus in intestinal oxidative stress[J].Chinese Journal of Animal Nutrition,2016,28(1):9-14.(in Chinese)

        [7] YUE Y,HE Z J,ZHOU Y H,et al.Lactobacillus plantarum relieves diarrhea caused by enterotoxin-producing Escherichia coli through inflammation modulation and gut microbiota regulation[J].Food Funct,2020,11(12):10362-10374.

        [8] CLEMENTS M L,LEVINE M M,BLACK R E,et al.Lactobacillus prophylaxis for diarrhea due to enterotoxigenic Escherichia coli[J].Antimicrob Agents Chemother,1981,20(1):104-108.

        [9] FERNáNDEZ S,F(xiàn)RAGA M,CASTELLS M,et al.Effect of the administration of Lactobacillus spp. strains on neonatal diarrhoea,immune parameters and pathogen abundance in pre-weaned calves[J].Benef Microbes,2020,11(5):477-488.

        [10] ZHANG Z W,LV J L,PAN L,et al.Roles and applications of probiotic Lactobacillus strains[J].Appl Microbiol Biotechnol,2018,102(19):8135-8143.

        [11] LIU S,ZHAO W J,LAN P,et al.The microbiome in inflammatory bowel diseases:from pathogenesis to therapy[J].Protein Cell,2021,12(5):331-345.

        [12] LIU B,WANG C J,HUASAI S,et al.Compound probiotics improve the diarrhea rate and intestinal microbiota of newborn calves[J].Animals (Basel),2022,12(3):322.

        [13] ROCHA-RAMíREZ L M,PéREZ-SOLANO R A,CASTAóN-ALONSO S L,et al.Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages[J].J Immunol Res,2017,2017:4607491.

        [14] ROUDSARI N M,LASHGARI N A,ZANDI N,et al.PPARγ:a turning point for irritable bowel syndrome treatment[J].Life Sci,2020,257:118103.

        [15] ZHAO J F,ZHAO R F,CHENG L,et al.Peroxisome proliferator-activated receptor gamma activation promotes intestinal barrier function by improving mucus and tight junctions in a mouse colitis model[J].Dig Liver Dis,2018,50(11):1195-1204.

        [16] CHENG Y,YANG C,TAN Z L,et al.Changes of intestinal oxidative stress,inflammation,and gene expression in neonatal diarrhoea kids[J].Front Vet Sci,2021,8:598691.

        [17] GUO W L,MAO B Y,CUI S M,et al.Protective effects of a novel probiotic Bifidobacterium pseudolongum on the intestinal barrier of colitis mice via modulating the Pparγ/STAT3 pathway and intestinal microbiota[J].Foods,2022,11(11):1551.

        [18] CHEN S F,ZHOU Y Q,CHEN Y R,et al.fastp:an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890.

        [19] MAGOCACˇG T,SALZBERG S L.FLASH:fast length adjustment of short reads to improve genome assemblies[J].Bioinformatics,2011,27(21):2957-2963.

        [20] CALLAHAN B J,MCMURDIE P J,ROSEN M J,et al.DADA2:high-resolution sample inference from Illumina amplicon data[J].Nat Methods,2016,13(7):581-583.

        [21] BOLYEN E,RIDEOUT J R,DILLON M R,et al.Reproducible,interactive,scalable and extensible microbiome data science using QIIME 2[J].Nat Biotechnol,2019,37(8):852-857.

        [22] SCHLOSS P D,WESTCOTT S L,RYABIN T,et al.Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities[J].Appl Environ Microbiol,2009,75(23):7537-7541.

        [23] CHEN X S,KONG Q H,ZHAO X X,et al.Sodium acetate/sodium butyrate alleviates lipopolysaccharide-induced diarrhea in mice via regulating the gut microbiota,inflammatory cytokines,antioxidant levels,and NLRP3/Caspase-1 signaling[J].Front Microbiol,2022,13:1036042.

        [24] MEHMOOD K,ZHANG H,YAO W Y,et al.Protective effect of Astragaloside IV to inhibit thiram-induced tibial dyschondroplasia[J].Environ Sci Pollut Res Int,2019,26(16):16210-16219.

        [25] LIU H C,ZHANG X J,DU Y Y,et al.Leonurine protects brain injury by increased activities of UCP4,SOD,CAT and Bcl-2,decreased levels of MDA and Bax,and ameliorated ultrastructure of mitochondria in experimental stroke[J].Brain Res,2012,1474:73-81.

        [26] TAZUKE Y,WASA M,SHIMIZU Y,et al.Alanyl-glutamine-supplemented parenteral nutrition prevents intestinal ischemia-reperfusion injury in rats[J].J Parenter Enteral Nutr,2003,27(2):110-115.

        [27] GAO Y Z,ZHAO L F,MA J,et al.Protective mechanisms of wogonoside against Lipopolysaccharide/D-galactosamine-induced acute liver injury in mice[J].Eur J Pharmacol,2016,780:8-15.

        [28] LIU Y H,LIU G,F(xiàn)ANG J.Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis[J].J Nutr Biochem,2024,124:109505.

        [29] IZUDDIN W I,LOH T C,F(xiàn)OO H L,et al.Postbiotic L. plantarum RG14 improves ruminal epithelium growth,immune status and upregulates the intestinal barrier function in post-weaning lambs[J].Sci Rep,2019,9(1):9938.

        [30] 葉正豪.抗生素通過調(diào)節(jié)腸道菌群膽汁酸代謝抑制小鼠結(jié)腸炎癥的研究[J].武漢:華中科技大學(xué),2020.

        YE Z H.Antibiotic-modulated microbiome suppresses colon inflammation in mice by modulating the intestinal bile acids metabolism[D].Wuhan:Huazhong University of Science and Technology,2020.(in Chinese)

        [31] 阿拉騰珠拉,劉文慧,馬 露,等.裂壺藻和乳鐵蛋白對(duì)大腸桿菌K99攻毒哺乳犢牛腹瀉、生長(zhǎng)性能、糞便評(píng)分及血清抗氧化指標(biāo)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2020,32(9):4166-4176.

        ALATENGZHULA,LIU W H,MA L,et al.Effects of Schizochytrium sp. and lactoferrin on diarrhea,growth performance,fecal score and serum antioxidant indices of sucking calves challenged with Escherichia coli K99[J].Chinese Journal of Animal Nutrition,2020,32(9):4166-4176.(in Chinese)

        [32] XU B F,LIANG S N,ZHAO J Y,et al.Bifidobacterium animalis subsp. lactis XLTG11 improves antibiotic-related diarrhea by alleviating inflammation,enhancing intestinal barrier function and regulating intestinal flora[J].Food Funct,2022,13(11):6404-6418.

        [33] CAI J R,CHEN H,WENG M L,et al.Diagnostic and clinical significance of serum levels of D-lactate and diamine oxidase in patients with crohn′s disease[J].Gastroenterol Res Pract,2019,2019:8536952.

        [34] LIU Y S,GU W,LIU X Y,et al.Joint application of Lactobacillus plantarum and Bacillus subtilis improves growth performance,immune function and intestinal integrity in weaned piglets[J].Vet Sci,2022,9(12):668.

        [35] TANG C E,XIE B J,ZONG Q,et al.Proanthocyanidins and probiotics combination supplementation ameliorated intestinal injury in Enterotoxigenic Escherichia coli infected diarrhea mice[J].J Funct,2019,62:103521.

        [36] LEBEER S,VANDERLEYDEN J,DE KEERSMAECKER S C J.Genes and molecules of lactobacilli supporting probiotic action[J].Microbiol Mol Biol Rev,2008,72(4):728-764.

        [37] OSWALD I P.Role of intestinal epithelial cells in the innate immune defence of the pig intestine[J].Vet Res,2006,37(3):359-368.

        [38] 王譽(yù)穎,湯林杰,李 姣,等.干酪乳桿菌對(duì)發(fā)育期腹瀉模型大鼠回腸黏膜結(jié)構(gòu)及MUC2含量的影響[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(8):94-101.

        WANG Y Y,TANG L J,LI J,et al.Effect of Lactobacillus casei on the ileal mucosal structure and MUC2 content of rats with developmental diarrhea[J].Journal of China Agricultural University,2019,24(8):94-101.(in Chinese)

        [39] OTTE J M,PODOLSKY D K.Functional modulation of enterocytes by gram-positive and gram-negative microorganisms[J].Am J Physiol Gastrointest Liver Physiol,2004,286(4):G613-G626.

        [40] WEI H L,LI X,TANG L,et al.16S rRNA gene sequencing reveals the relationship between gut microbiota and ovarian development in the swimming crab Portunus trituberculatus[J].Chemosphere,2020,254:126891.

        [41] KIM E T, LEE S J, KIM T Y, et al. Dynamic Changes in Fecal Microbial Communities of Neonatal Dairy Calves by Aging and Diarrhea.[J] Animals, 2021;11(4):1113.

        [42] SCHMOELLER E,DE MATOS A D C,RAHAL N M,et al.Diarrhea duration and performance outcomes of pre-weaned dairy calves supplemented with bacteriophage[J].Can J Anim Sci,2022,102(1):165-174.

        [43] KIM E T,LEE S J,KIM T Y,et al.Dynamic changes in fecal microbial communities of neonatal dairy calves by aging and diarrhea[J].Animals (Basel),2021,11(4):1113.

        [44] XU C M,KONG L Q,LIAO Y H,et al.Mini-review:antibiotic-resistant escherichia coli from farm animal-associated sources[J].Antibiotics (Basel),2022,11(11):1535.

        [45] 何利娜,敖日格樂,王純潔,等.添加酸馬奶源乳酸桿菌對(duì)犢牛腸道菌群和短鏈脂肪酸含量的影響[J].中國(guó)獸醫(yī)學(xué)報(bào),2022,42(2):270-276.

        HE L N,AORI G,WANG C J,et al.Effect of adding Lactobacillus from sour mare milk on intestinal flora and short chain fatty acid content of calves[J].Chinese Journal of Veterinary Science,2022,42(2):270-276.(in Chinese)

        [46] 王曉成,張 明,陳善斌,等.副干酪乳桿菌L9對(duì)小鼠腸道短鏈脂肪酸含量的影響[J].食品科學(xué),2017,38(13):238-243.

        WANG X C,ZHANG M,CHEN S B,et al.Effect of Lactobacillus paracasei L9 on the content of intestinal short chain fatty acids in healthy mice[J].Food Science,2017,38(13):238-243.(in Chinese)

        [47] RéGNIER M,VAN HUL M,KNAUF C,et al.Gut microbiome,endocrine control of gut barrier function and metabolic diseases[J].J Endocrinol,2021,248(2):R67-R82.

        [48] WANG Y,LIN" X,CHENG Z Y,et al.Bacillus coagulans TL3 inhibits LPS-induced caecum damage in rat by regulating the TLR4/MyD88/NF-κB and Nrf2 signal pathways and modulating intestinal microflora[J].Oxid Med Cell Longev,2022,2022:5463290.

        [49] HAKANSSON A,MOLIN G.Gut microbiota and inflammation[J].Nutrients,2011,3(6):637-682.

        [50] YANG C,ZHANG T X,TIAN Q H,et al.Supplementing mannan oligosaccharide reduces the passive transfer of immunoglobulin g and improves antioxidative capacity,immunity,and intestinal microbiota in neonatal goats[J].Front Microbiol,2022,12:795081.

        [51] 李嘉輝,龔建剛,鄒 俊,等.白藜蘆醇對(duì)脂多糖刺激肉雞生長(zhǎng)性能和腸道屏障功能的影響[J].飼料工業(yè),2023,44(3):45-52.

        LI J H,GONG J G,ZOU J,et al.Effects of resveratrol on growth performance and intestinal barrier function of broiler chickens stimulated by lipopolysaccharide[J].Feed Industry,2023,44(3):45-52.(in Chinese)

        [52] ZHANG J C,GUO Z,XUE Z S,et al.A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles,geography and ethnicities[J].ISME J,2015,9(9):1979-1990.

        [53] YANG G,TIAN X L,DONG S L.Bacillus cereus and rhubarb regulate the intestinal microbiota of sea cucumber (Apostichopus japonicus Selenka):species-species interaction,network,and stability[J].Aquaculture,2019,512:734284.

        [54] EVERARD A,BELZER C,GEURTS L,et al.Cross-talk between Akkermansia muciniphila and intestinal" epithelium controls diet-induced obesity[J].Proc Natl Acad Sci U S A,2013,110(22):9066-9071.

        [55] LI Y J,HAN L L,LIU J,et al.Yeast peptides improve the intestinal barrier function and alleviate weaning stress by Changing the intestinal microflora structure of weaned lambs[J].Microorganisms,2023,11(10):2472.

        [56] BINDA C,LOPETUSO L R,RIZZATTI G,et al.Actinobacteria:a relevant minority for the maintenance of gut homeostasis[J].Dig Liver Dis,2018,50(5):421-428.

        [57] WILLEMSEN L E M,KOETSIER M A,VAN DEVENTER S J H,et al.Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts[J].Gut,2003,52(10):1442-1447.

        [58] DEMIRTAS A,PACíFICO C,GRUBER T,et al.Sigla storax (Liquidambar orientalis) mitigates in vitro methane production without disturbances in rumen microbiota and nutrient fermentation in comparison to monensin[J].J Appl Microbiol,2023,134(8):lxad154.

        [59] LEI H L,DU Q,LU N S,et al.Comparison of the microbiome-metabolome response to copper sulfate and copper glycinate in growing pigs[J].Animals (Basel),2023,13(3):345.

        [60] LI Y,LV M,WANG J Q,et al.Dandelion (Taraxacum mongolicum Hand. -Mazz.) supplementation-enhanced rumen fermentation through the interaction between ruminal microbiome and metabolome[J].Microorganisms,2020,9(1):83.

        [61] LI Z C,HE H,NI M K,et al.Microbiome-metabolome analysis of the immune microenvironment of the cecal contents,soft feces,and hard feces of hyplus rabbits[J].Oxid Med Cell Longev,2022,2022:5725442.

        [62] JACOBSON A,LAM L,RAJENDRAM M,et al.A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection[J].Cell Host Microbe,2018,24(2):296-307.e7.

        (編輯 范子娟)

        亚洲人成网77777色在线播放| 在线亚洲AV成人无码一区小说| 亚洲天堂免费一二三四区| 亚洲无人区乱码中文字幕能看| 亚州性无码不卡免费视频| 成人性生交片无码免费看| 在线天堂中文一区二区三区| 日本国产精品高清在线| 人人澡人人妻人人爽人人蜜桃麻豆| 99re热视频这里只精品| 久久精品国产亚洲AV无码不| 人妻少妇中文字幕av| 伦伦影院午夜理论片| 亚洲国产韩国欧美在线| 日本久久精品免费播放| 街拍丝袜美腿美女一区| 少妇激情一区二区三区久久大香香| 亚洲美女毛片在线视频| 免费操逼视频| 国产99久久无码精品| 亚洲国产丝袜美女在线| 人妻熟妇乱又伦精品视频| 孩交精品xxxx视频视频| 欧洲国产成人精品91铁牛tv| 日韩女优视频网站一区二区三区| 欧美人妻aⅴ中文字幕| 久久ri精品高清一区二区三区| 色偷偷av一区二区三区人妖| 国产av一区二区三区在线播放| 被黑人猛躁10次高潮视频| 丝袜美女污污免费观看的网站| 亚洲av色精品国产一区二区三区| 婷婷成人丁香五月综合激情| 人人妻人人爽人人做夜欢视频九色| 亚洲一区二区三区免费av在线| 久久久精品亚洲一区二区国产av| 色综合视频一区中文字幕| 国产在线视频国产永久视频| 亚洲成在人线天堂网站| 高清精品一区二区三区| 欧美视频在线观看一区二区|