摘要:【目的】獲得超細(xì)碳酸鈣準(zhǔn)確的仿真模型參數(shù),實(shí)現(xiàn)超細(xì)碳酸鈣的可靠仿真研究?!痉椒ā繉⒊?xì)碳酸鈣精簡為軟質(zhì)球形粒子,使用顆粒接觸縮放原理與量綱分析進(jìn)行顆??s放,采用Hertz-Mindlin with JKR接觸模型,結(jié)合物理實(shí)驗(yàn)和離散元軟件EDEM仿真實(shí)驗(yàn)對(duì)超細(xì)碳酸鈣的靜態(tài)和動(dòng)態(tài)休止角進(jìn)行接觸參數(shù)標(biāo)定。首先利用單因素實(shí)驗(yàn)排除對(duì)靜態(tài)和動(dòng)態(tài)休止角影響不顯著的參數(shù)。采用Box-Behnken實(shí)驗(yàn)搭建靜態(tài)和動(dòng)態(tài)的休止角和顯著性參數(shù)之間的回歸模型。將實(shí)際測(cè)定的靜態(tài)和動(dòng)態(tài)休止角作為響應(yīng)值,進(jìn)而對(duì)靜態(tài)和動(dòng)態(tài)休止角回歸模型求解獲得最佳的仿真參數(shù)組合,并對(duì)得到的仿真參數(shù)進(jìn)行物理實(shí)驗(yàn)驗(yàn)證?!窘Y(jié)果】得到顯著性參數(shù)的最佳組合為:超細(xì)碳酸鈣-超細(xì)碳酸鈣靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)為0.36、0.31,超細(xì)碳酸鈣-不銹鋼靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)為0.38、0.22,離散元仿真實(shí)驗(yàn)所得到的靜態(tài)動(dòng)態(tài)休止角分別為42.5°和61.3°,與實(shí)測(cè)值的誤差分別為0.96%和1.32%,無明顯差異?!窘Y(jié)論】參數(shù)標(biāo)定后的接觸參數(shù)能夠應(yīng)用于超細(xì)碳酸鈣離散元仿真。
關(guān)鍵詞:超細(xì)碳酸鈣;休止角;粒徑;參數(shù)標(biāo)定;離散元
中圖分類號(hào):TB44文獻(xiàn)標(biāo)志碼:A
引用格式:
蔡文源,王利強(qiáng),徐立敏.基于靜態(tài)和動(dòng)態(tài)休止角的超細(xì)碳酸鈣離散元參數(shù)標(biāo)定[J].中國粉體技術(shù),2024,30(4):81-93.
CAI Wenyuan,WANGLiqiang,XULimin.Discrete elemental parameter calibration of ultrafine calcium carbonate based onstatic and dynamic angle of repose[J].China Powder Science and Technology,2024,30(4):81-93.
隨著材料科學(xué)和工程技術(shù)的迅速發(fā)展,超細(xì)碳酸鈣因具有優(yōu)異的物理化學(xué)性質(zhì)而在眾多領(lǐng)域中展現(xiàn)出廣泛的應(yīng)用前景。作為一種重要的無機(jī)粉體材料,超細(xì)碳酸鈣被廣泛應(yīng)用于紙張、橡膠、涂料、食品與醫(yī)藥等行業(yè),改善和增強(qiáng)產(chǎn)品性能。在這些應(yīng)用中,顆粒的流動(dòng)性、分散性以及在不同環(huán)境下的穩(wěn)定性對(duì)材料的最終性能有著決定性的影響,因此,精確模擬和預(yù)測(cè)超細(xì)碳酸鈣顆粒的物理行為,對(duì)于指導(dǎo)實(shí)際生產(chǎn)和優(yōu)化工藝流程具有重要意義。
離散元方法(discrete element method,DEM)作為一種有效的數(shù)值模擬技術(shù),已被廣泛應(yīng)用于顆粒材料的行為預(yù)測(cè)中。該方法通過模擬顆粒之間的相互作用,能夠在微觀尺度上預(yù)測(cè)材料的宏觀物理特性,然而要準(zhǔn)確應(yīng)用DEM模擬超細(xì)碳酸鈣粒子的行為,關(guān)鍵在于對(duì)模型中的參數(shù)進(jìn)行精確的標(biāo)定。離散元仿真參數(shù)標(biāo)定通常采用直接測(cè)量與間接標(biāo)定。直接測(cè)量法獲得的參數(shù)較為精確,不依賴離散元仿真軟件與顆粒接觸模型,但是對(duì)于粒徑較小的顆粒難以直接測(cè)量其參數(shù),該方法僅在粒徑在毫米級(jí)以上的顆粒上使用較為合適。間接標(biāo)定是離散元仿真中最常使用的標(biāo)定手段,將宏觀物理層面的顆粒參數(shù)值作為響應(yīng)值,通過改變仿真模擬參數(shù)組合,使得顆粒的宏觀響應(yīng)測(cè)量值與離散元仿真模擬參數(shù)值相匹配。
超細(xì)碳酸鈣顆粒粒徑極小,即使在極小體積下顆粒數(shù)量也能達(dá)到數(shù)千萬到數(shù)億級(jí)別,遠(yuǎn)超一般計(jì)算機(jī)處理能力的極限。有3種較為常用的方法可以解決此問題:計(jì)算機(jī)并行計(jì)算、均質(zhì)化處理和顆??s放法(4。顆??s放法是目前應(yīng)用最為廣泛的處理手段,通過增大原始體系中的粒徑來降低所需處理的離散單元數(shù)量,從而使得問題的解決成為可能,在短時(shí)間內(nèi)以可行方式進(jìn)行處理。針對(duì)此方法,任建莉等7通過將煤粉粒子尺寸放大后進(jìn)行離散元模擬,驗(yàn)證了顆??s放法的實(shí)際可行性。進(jìn)一步地,一系列研究針對(duì)礦粉、生石灰19等粉料采用顆??s放法進(jìn)行離散元仿真參數(shù)標(biāo)定。此外,離散元仿真中接觸模型的選擇同樣重要,在超細(xì)碳酸鈣在螺旋輸送過程中,顆粒之間存在一定的黏結(jié)現(xiàn)象,而Hertz-Mindlin with JKR接觸模型同時(shí)考慮了彈性形變、摩擦和黏附等因素,更全面地描述了微觀尺度下的固體表面接觸行為,可以更準(zhǔn)確地描述超細(xì)碳酸鈣顆粒的實(shí)際接觸情況。
鑒于此,本研究使用離散元分析軟件EDEM,采取JKR接觸模型并借助顆??s放理論,對(duì)超細(xì)碳酸鈣顆粒進(jìn)行仿真模擬放大處理,選取超細(xì)碳酸鈣的靜態(tài)和動(dòng)態(tài)休止角作為宏觀響應(yīng)值,通過單因素實(shí)驗(yàn)排除影響不顯著的參數(shù),并利用響應(yīng)面Box-Behnken設(shè)計(jì)方法對(duì)關(guān)鍵仿真參數(shù)進(jìn)行標(biāo)定,以獲得最佳離散元接觸參數(shù)組合,最終,通過靜態(tài)和動(dòng)態(tài)休止角的實(shí)驗(yàn)驗(yàn)證,為超細(xì)碳酸鈣相關(guān)的螺旋輸送離散元仿真提供數(shù)據(jù),對(duì)相關(guān)離散元仿真研究提供支持,以促進(jìn)螺旋輸送機(jī)的設(shè)計(jì)和操作優(yōu)化。
1材料與方法
1.1材料和儀器設(shè)備
材料:超細(xì)碳酸鈣(上海麥克林生化科技股份有限公司)。
儀器設(shè)備:BT-9300ST型激光粒度分布儀(丹東百特儀器有限公司);SU1510型掃描電子顯微鏡(日本Hitachi公司)。
超細(xì)碳酸鈣經(jīng)過干燥處理后,使用激光粒度分布儀測(cè)定粒徑分布。圖1所示為超細(xì)碳酸鈣顆粒的粒徑分布。d?o、d?o、d?分別表示顆粒累積體分?jǐn)?shù)達(dá)10%、50%、90%時(shí)所對(duì)應(yīng)的粒徑值,d?o=1.66 μm,d?o=3.85 μm,d,o=6.78 μm。
1.2顆??s放原理
1.2.1相似理論
為了確保離散元可以快速且精確地進(jìn)行仿真,需改變離散元的仿真參數(shù)使顆粒改變尺寸后的仿真效果與原顆粒的靜動(dòng)態(tài)特性相匹配,進(jìn)而縮減粒子縮放構(gòu)成的模擬誤差。Feng等借鑒傳統(tǒng)流體力學(xué)提出一種適合離散元的相似理論,該理論滿足3個(gè)相似原理,即運(yùn)動(dòng)相似理論、動(dòng)力相似理論和幾何相似理論。運(yùn)動(dòng)相似即在不同模型中相鄰點(diǎn)的運(yùn)動(dòng)方向一致,以及在不同模型的縮放因數(shù)一致;動(dòng)力相似理論即在必須考慮慣性力存在時(shí),在原物理模型和縮放模型中所有顆粒上的力的比例一致;幾何相似原則是指在原物理模型和與縮放模型中粒子的堆積類型一致,且粒子尺度與顆粒域大小成比例。圖2所示為顆粒接觸模型。圖中R、R;為顆粒i、j的半徑;δ。為顆粒間的法向重疊量;a為接觸半徑;L為顆粒特征長度;F為一對(duì)顆粒接觸時(shí)的法向力。
式中:F為顆粒間合接觸力;R為顆粒半徑。
顆粒i在接觸時(shí)的應(yīng)變與應(yīng)力為
式中:ε為顆粒接觸應(yīng)變量;L=2R;;σ為顆粒接觸應(yīng)力;A為特征面積,A=L2。
顆粒相互之間作用關(guān)系的應(yīng)力-應(yīng)變可表示為
式中,δ為顆粒的位移。顆粒應(yīng)變能E為:
對(duì)于模型中任意一個(gè)顆粒的運(yùn)動(dòng)均滿足牛頓第二定律,
式中:M為顆粒質(zhì)量;δ為顆粒的速度;Q(t)為顆粒的合外力;t為顆粒的運(yùn)動(dòng)時(shí)間。
幾何相似性是指物理模型和縮放模型中顆粒堆積的形狀一致,顆粒尺寸與顆粒域成正比。力學(xué)相似性要求顆粒的應(yīng)變、應(yīng)力和應(yīng)變能函數(shù)在2個(gè)模型中相同。動(dòng)態(tài)相似性要求縮放前后,作用于顆粒上的力的比例關(guān)系相同。在這一背景下,設(shè)定縮放因數(shù)為h,縮放模型為m,物理模型為p。根據(jù)相似理論,各模型的物理量需滿足[12]:
假定q為原系統(tǒng)中任意物理量,縮放模型中對(duì)應(yīng)的變量為q,物理模型與縮放模型之間各物理量的比例關(guān)系可表示為
式中:λ?為q的縮放因數(shù),確定所有物理量的縮放因數(shù)即確定整個(gè)縮放模型。
1.2.2量綱分析
在顆粒縮放系統(tǒng)中的物理量相互之間存在一定關(guān)系,若選定一組基本物理量,其他物理量均可從選擇的基本物理量中推導(dǎo)得出。根據(jù)量綱分析法,若選擇時(shí)間[t]、密度[p]、長度[L]作為基本量,系統(tǒng)中任意物理量的量綱可表示為
則q的縮放因數(shù)λ,=λiλiλ,其中a、b、c均為常數(shù)。
若取λ=λ,=h,λ。=1,對(duì)彈性模量、應(yīng)力與應(yīng)變的縮放因數(shù)進(jìn)行推導(dǎo)可表示為:
根據(jù)量綱分析,對(duì)于任意縮放因數(shù)h,假設(shè)保持顆粒材料密度不變,則顆粒彈性模量、應(yīng)力與應(yīng)變均保持不變。
根據(jù)式(2),顆粒的應(yīng)變?chǔ)攀菬o量綱量,并且與h無關(guān),而應(yīng)力與接觸力相關(guān),為確保應(yīng)力σ與h無關(guān),顆粒的應(yīng)力-應(yīng)變函數(shù)需滿足σ(ε,R)=σ(ε),即應(yīng)力僅與應(yīng)變相關(guān),與顆粒直徑無關(guān)。
由于超細(xì)碳酸鈣的特殊性質(zhì),因此接觸力模型選擇描述黏彈性球形顆粒的Hertz-Mindlin with JKR模型。根據(jù)JKR模型接觸理論,顆粒法向接觸力為:
式中:E*為顆粒有效彈性模量;R*為顆粒有效半徑;a為接觸半徑;△γ為顆粒表面自由能。有效彈性模量E*和有效半徑R*分別為
式中:E、E;為接觸顆粒i、j的彈性模量,v:、v;為接觸顆粒i、j的泊松比,R、R;為接觸顆粒i、j的半徑。
有效半徑R*與接觸半徑a的關(guān)系可表示為
將式(12)代入式(10),得
將式(13)轉(zhuǎn)換為應(yīng)力-應(yīng)變形式:
其中,顆粒的特征面積A=L2=(R*)2。在等式中,應(yīng)變?chǔ)磐耆螲ertz接觸理論并具備尺度不變性,而有效半徑R不具備該性質(zhì),因此JKR模型同樣不具備該性質(zhì)。為了使該模型具備尺度不變性,需要確?!鱵/R*保持常數(shù),意味著顆粒的表面自由能可以隨顆粒縮放而變化。根據(jù)以上分析,采用顆粒縮放法進(jìn)行仿真模擬時(shí),為了便于將仿真結(jié)果與試驗(yàn)結(jié)果作對(duì)比,可以將材料的本征參數(shù)保持恒定,對(duì)接觸模型的相關(guān)參數(shù)進(jìn)行標(biāo)定從而保證模擬的準(zhǔn)確性。
2參數(shù)標(biāo)定過程
2.1物理模型與仿真模型
在參數(shù)標(biāo)定過程中將靜態(tài)休止角和動(dòng)態(tài)休止角作為響應(yīng)指標(biāo)能夠更好地反映顆粒的真實(shí)性能13。靜態(tài)休止角測(cè)試通常參照國家標(biāo)準(zhǔn)GB/T 16913—2008《粉塵物性試驗(yàn)方法》,同時(shí)借鑒相關(guān)已有文獻(xiàn)對(duì)休止角的相關(guān)研究進(jìn)行剖析和運(yùn)用,采取注入限定底面法測(cè)定超細(xì)碳酸鈣休止角。
圖3所示為休止角測(cè)定儀器與三維仿真模型。圖3(a)為靜止休止角的測(cè)定儀器。在實(shí)驗(yàn)中,把制備好的超細(xì)碳酸鈣慢慢倒入漏斗中,漏斗錐度為60°,漏斗流出直徑為5mm,通過玻璃棒微微攪散,以防粒子顆粒堵塞漏斗口。等到圓柱底盤倒出足量的超細(xì)碳酸鈣后,料盤直徑D為80 mm,圓柱底盤的上表面間隔漏斗下端口H為80 mm,終止向漏斗倒入粒子,當(dāng)粒子的堆積高度不變時(shí),測(cè)量料盤上超細(xì)碳酸鈣的堆積高度。超細(xì)碳酸鈣的靜態(tài)休止角根據(jù)公式(15)計(jì)算,重復(fù)測(cè)量5次后取平均值,超細(xì)碳酸鈣休止角平均值為41.8°。動(dòng)態(tài)休止角的測(cè)定儀器如圖3(c)所示,旋轉(zhuǎn)圓筒直徑與長度為100 mm。測(cè)量時(shí),將定量超細(xì)碳酸鈣填充至圓筒,當(dāng)填充率達(dá)到25%后啟動(dòng)電機(jī),將轉(zhuǎn)速設(shè)置為恒定的50 r/min,使圓筒開始旋轉(zhuǎn)并記錄超細(xì)碳酸鈣的動(dòng)態(tài)休止角畫面。重復(fù)測(cè)量5次后取平均值,超細(xì)碳酸鈣動(dòng)態(tài)休止角的平均值為60.5°。
離散元仿真參數(shù)的設(shè)定涵蓋了粉體與幾何體的接觸參數(shù)、粉體與粉體之間的接觸參數(shù)以及粉體與三維幾何模型的本征參數(shù)。參考國內(nèi)外文獻(xiàn)的離散元仿真參數(shù)的設(shè)定14-151,同時(shí)結(jié)合EDEM自帶的數(shù)據(jù)庫16進(jìn)行初步設(shè)定。超細(xì)碳酸鈣的參數(shù)設(shè)定如下:泊松比為0.28,密度為2800 kg/m3,切變模量為1×10?~9×107,JKR表面能為0.0188~0.0454 J/m2。對(duì)于幾何模型,選用不銹鋼材料,由于粒子之間接觸特性受到形狀和粒徑等因素的影響,不能直接從手冊(cè)、文獻(xiàn)等資料中獲取,因而運(yùn)用離散元虛擬試驗(yàn)的方式進(jìn)行參數(shù)標(biāo)定。本研究中不同仿真參數(shù)變化范圍如表1所示。
靜態(tài)與動(dòng)態(tài)休止角測(cè)定裝置的離散元模型按照實(shí)體模型比例1:1的形式在SolidWorks中創(chuàng)建,模型如圖3(b)、(d)所示。顆粒粒徑放大為1 mm,形狀使用球形[17-18],顆粒的生成方法選擇Dynamic,生成速度設(shè)置為每秒5000個(gè)。靜態(tài)休止角模型在漏斗頂部建立顆粒工廠,顆??倐€(gè)數(shù)為20000;動(dòng)態(tài)休止角模型中,顆??倲?shù)量為5000,在顆粒達(dá)到靜止?fàn)顟B(tài)后,在圓筒中心設(shè)置一個(gè)旋轉(zhuǎn)指令,轉(zhuǎn)速設(shè)置成50 r/min。由于應(yīng)力波在粒子中傳播被仿真參數(shù)的影響,不同仿真中瑞利(Rayleigh)時(shí)間步長有所不同,因此選擇Rayleigh時(shí)間步長的1/5作為靜態(tài)和動(dòng)態(tài)休止角模型的計(jì)算時(shí)間步長,并將仿真網(wǎng)格尺寸設(shè)置為最小球徑的3倍。
2.2仿真參數(shù)的響應(yīng)面設(shè)計(jì)
2.2.1仿真參數(shù)單因素實(shí)驗(yàn)
單因素實(shí)驗(yàn)是一種常見的實(shí)驗(yàn)設(shè)計(jì)方法,被廣泛用于探索和驗(yàn)證特定變量對(duì)結(jié)果的影響。單因素實(shí)驗(yàn)的關(guān)注點(diǎn)集中在一個(gè)自變量上,通過改變?cè)撟宰兞康娜≈?,以觀察其對(duì)因變量的影響程度。相關(guān)文獻(xiàn)19-20表明,粒子JKR表面能、恢復(fù)系數(shù)以及切變模量對(duì)粒子休止角的影響較小,因此選取超細(xì)碳酸鈣的JKR表面能、超細(xì)碳酸鈣-超細(xì)碳酸鈣恢復(fù)系數(shù)、超細(xì)碳酸鈣-不銹鋼恢復(fù)系數(shù)、超細(xì)碳酸鈣顆粒的切變模量等4個(gè)離散元仿真參數(shù)進(jìn)行單因素實(shí)驗(yàn),驗(yàn)證4個(gè)仿真參數(shù)對(duì)其各自靜態(tài)和動(dòng)態(tài)休止角的影響。圖4所示為各離散元仿真參數(shù)單因素實(shí)驗(yàn)的結(jié)果。由圖可知,超細(xì)碳酸鈣-超細(xì)碳酸鈣恢復(fù)系數(shù)、JKR表面能對(duì)休止角幾乎無影響;切變模量的增大使得靜態(tài)休止角和動(dòng)態(tài)休止角數(shù)值產(chǎn)生變化,但變化范圍不大。靜態(tài)休止角隨著超細(xì)碳酸鈣-不銹鋼恢復(fù)系數(shù)增大呈現(xiàn)略微減小,超細(xì)碳酸鈣-不銹鋼恢復(fù)系數(shù)達(dá)到0.3后,靜態(tài)休止角逐漸穩(wěn)定。隨后的實(shí)驗(yàn)中選擇以上4個(gè)仿真參數(shù)的中位數(shù)值進(jìn)行標(biāo)定。
2.2.2 Box-Behnken實(shí)驗(yàn)和回歸模型
根據(jù)離散元仿真參數(shù)各單因素的結(jié)果,選取4個(gè)離散元仿真參數(shù)的中位數(shù)值進(jìn)行實(shí)驗(yàn)設(shè)計(jì),Box-Behnken實(shí)驗(yàn)常用于在多因素實(shí)驗(yàn)中確定最佳的實(shí)驗(yàn)參數(shù)組合,該方法通過對(duì)變量的選擇和水平設(shè)置進(jìn)行優(yōu)化,可以快速、有效地評(píng)估變量對(duì)響應(yīng)的影響。Box-Behnken實(shí)驗(yàn)參數(shù)列表與結(jié)果如表2和表3所示,共進(jìn)行29組實(shí)驗(yàn)。實(shí)驗(yàn)因素包括超細(xì)碳酸鈣之間的靜摩擦系數(shù)A、滾動(dòng)摩擦系數(shù)B、超細(xì)碳酸鈣-不銹鋼靜摩擦系數(shù)C、滾動(dòng)摩擦系數(shù)D。
表4所示為Box-Behnken實(shí)驗(yàn)中的方差分析-靜態(tài)休止角。擬合模型P值小于0.0001,證明回歸模型有效;超細(xì)碳酸鈣-超細(xì)碳酸鈣靜摩擦系數(shù)、二次項(xiàng)C2的P值超細(xì)碳酸鈣-超細(xì)碳酸鈣滾動(dòng)摩擦系數(shù)以及超細(xì)碳酸鈣-不銹鋼靜摩擦系數(shù)都小于0.01,證明上述參數(shù)對(duì)靜態(tài)休止角的影響非常顯著;此外,決定系數(shù)R2和校正決定系數(shù)R2分別為0.958和0.916,均大于0.9,而預(yù)測(cè)決定系數(shù)R2pe=0.7893與校正決定系數(shù)差值小于0.2,證明模型能夠真實(shí)地反應(yīng)實(shí)際情況。實(shí)驗(yàn)的變異系數(shù)為6.53%,證明試驗(yàn)具有較高的可靠性;失擬項(xiàng)P值為0.2892,大于0.05,表明模型良好,未出現(xiàn)彎曲失擬現(xiàn)象;實(shí)驗(yàn)精密度為17.0698,證明該模型具有良好的精確度。
表5所示為Box-Behnken實(shí)驗(yàn)中的方差分析-動(dòng)態(tài)休止角。此擬合模型P值小于0.0001,證明回歸模型有效;超細(xì)碳酸鈣-超細(xì)碳酸鈣滾動(dòng)摩擦系數(shù)和超細(xì)碳酸鈣-不銹鋼滾動(dòng)摩擦系數(shù)均小于0.05,二次項(xiàng)A2、B2、C2、D2的P值均小于0.0005、超細(xì)碳酸鈣-不銹鋼靜摩擦系數(shù)C的P值小于0.0001,證明上述參數(shù)對(duì)動(dòng)態(tài)休止角的影響非常顯著;此外,決定系數(shù)R2和校正決定系數(shù)R2分別為0.958和0.9161,均大于0.9,而預(yù)測(cè)決定系數(shù)R2pe=0.814與校正決定系數(shù)差值小于0.2,證明模型可真實(shí)地反應(yīng)實(shí)際情況。實(shí)驗(yàn)的變異系數(shù)為6.76%,表明實(shí)驗(yàn)有較高的可靠性;失擬項(xiàng)P值為0.6133,大于0.05,表明模型良好,未出現(xiàn)彎曲失擬現(xiàn)象;實(shí)驗(yàn)精密度為14.86,證明模型具有良好的精確度。
靜態(tài)休止角θ以及動(dòng)態(tài)休止角α與接觸參數(shù)的回歸方程分別為
3最佳參數(shù)組合的確定及仿真驗(yàn)證
基于超細(xì)碳酸鈣實(shí)際的靜動(dòng)態(tài)休止角為指標(biāo),通過Design-Expert軟件,經(jīng)過尋找回歸方程的最佳解能夠獲得當(dāng)超細(xì)碳酸鈣-超細(xì)碳酸鈣靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù),不銹鋼-超細(xì)碳酸鈣靜摩擦系數(shù)以及滾動(dòng)摩擦系數(shù)分別為0.36、0.31、0.38和0.22時(shí),實(shí)際物理實(shí)驗(yàn)與仿真試驗(yàn)之間的休止角誤差最小。在最佳接觸參數(shù)組合下的休止角仿真實(shí)驗(yàn)顯示,靜態(tài)休止角和動(dòng)態(tài)休止角分別為42.2°和61.3°,與實(shí)測(cè)值相比誤差僅為0.96%和1.32%。圖5所示為仿真實(shí)驗(yàn)結(jié)果與實(shí)際實(shí)驗(yàn)值的對(duì)比圖,證明仿真結(jié)果與實(shí)驗(yàn)值沒有顯著性差別。
4結(jié)論
1)超細(xì)碳酸鈣通過減小剛度和尺寸縮放極大地提高了離散元仿真的計(jì)算速度,利用離散元方法中的JKR模型對(duì)超細(xì)碳酸鈣的接觸參數(shù)進(jìn)行標(biāo)定。單因素實(shí)驗(yàn)結(jié)果表明,在一定范圍內(nèi)粒子的JKR表面能、恢復(fù)系數(shù)以及切變模量對(duì)靜態(tài)和動(dòng)態(tài)休止角無明顯影響。
2)基于超細(xì)碳酸鈣的靜動(dòng)態(tài)休止角的雙重響應(yīng)指標(biāo),使用Box-Behnken響應(yīng)面實(shí)驗(yàn)方法,能夠更加準(zhǔn)確地得到仿真顆粒的參數(shù),從而使其更接近于真實(shí)狀態(tài)。從模型方差分析的結(jié)果可知,靜態(tài)休止角的顯著性參數(shù)為超細(xì)碳酸鈣-超細(xì)碳酸鈣靜摩擦系數(shù)、超細(xì)碳酸鈣-超細(xì)碳酸鈣滾動(dòng)摩擦系數(shù)、超細(xì)碳酸鈣-不銹鋼靜摩擦系數(shù);動(dòng)態(tài)休止角的顯著性參數(shù)為超細(xì)碳酸鈣-超細(xì)碳酸鈣滾動(dòng)摩擦系數(shù)、超細(xì)碳酸鈣-不銹鋼靜摩擦系數(shù)、超細(xì)碳酸鈣-不銹鋼滾動(dòng)摩擦系數(shù)。
3)將實(shí)際休止角作為響應(yīng)目標(biāo)尋優(yōu)求解,所得的最佳參數(shù)組合為超細(xì)碳酸鈣-超細(xì)碳酸鈣靜摩擦系數(shù)為0.36,滾動(dòng)摩擦系數(shù)為0.31,超細(xì)碳酸鈣-不銹鋼靜摩擦系數(shù)為0.38,滾動(dòng)摩擦系數(shù)為0.22。經(jīng)過仿真驗(yàn)證實(shí)驗(yàn),測(cè)得的仿真靜態(tài)休止角為42.2°,動(dòng)態(tài)休止角為61.3°,實(shí)際實(shí)驗(yàn)測(cè)得的靜態(tài)和動(dòng)態(tài)休止角分別為41.8°和60.5°,二者誤差分別為0.96%和1.32%,說明利用粒子縮放理論標(biāo)定后所獲得的接觸參數(shù)可成功應(yīng)用于超細(xì)碳酸鈣的離散元仿真,且模擬值與實(shí)測(cè)值之間沒有顯著差異。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Authors'Contributions)
蔡文源和徐立敏進(jìn)行了方案設(shè)計(jì),蔡文源和王利強(qiáng)參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。
CAI Wenyuan and XU Limin did the scheme design,CAIWenyuan and WANG Liqiang participated in thewriting and revision of the paper.All authors have read the last version of the paper and consented to itssubmission.
參考文獻(xiàn)(References)
[1]孟叮,張金才,王寶鳳,等.納米碳酸鈣改性效果的影響因素及評(píng)價(jià)方法[J].硅酸鹽通報(bào),2023,42(1):123-132.
MENG D,ZHANGJC,WANG BF,etal.Influencingfactors and evaluation methods of modification effect of nano-calciumcarbonate[J].Silicate Bulletin,2023,42(1):123-132.
[2]SAKAI M,KOSHIZUKA S.Large-scale discrete element modeling in pneumatic conveying[J].Chemical EngineeringScience,2009,64(3):533-539.
[3]ZHAO Z,ZHOUL,BAI L,etal.Modeling and validation of coarse-grained computational fluid dynamics-discrete elementmethod for dense gas-solid flow simulation in a bubbling fluidized bed[J].Physics of Fluids,2023,35(4):43-310.
[4]COETZEE C,SCHEFFLER O.Review:the calibration of DEM parameters for the bulk modelling of cohesive materials[J].Processes,2022,11(1):5-10.
[5]ZHOU L,ZHAO Y.CFD-DEM simulation of fluidized bed with an immersed tube using a coarse-grain model[J].ChemicalEngineering Science,2021,231:116-290.
[6]QUETESCHINER D,LICHTENEGGERT,PIRKER S,etal.Multi-level coarse-grain model of the DEM[J].Powder Tec-hnology,2018,338:614-624.
[7]任建莉,周龍海,韓龍,等.基于顆??s放理論的垂直螺旋輸送離散模擬[J].過程工程學(xué)報(bào),2017,17(5):936-943.
REN J L,ZHOU L H,HAN L,etal.Discrete simulation of vertical spiral transport based on particle scaling theory[J].Journal of Process Engineering,2017,17(5):936-943.
[8]SHIC,YANG W,YANGJ,etal.Calibration of micro-scaled mechanical parameters of granite based on a bonded-particlemodel with 2D particle flow code[J].Granular Matter,2019,21(2):1-13.
[9]鄒洋,湯佟,高自成,等.基于顆粒縮放理論的生石灰粉離散元參數(shù)標(biāo)定[J].中國粉體技術(shù),2023,29(2):81-91.
ZHOU Y,TANG D,GA0Z C,etal.Discrete element parameter calibration of quicklime powder based on particle scalingtheory[J].China Powder Science and Technology,2023,29(2):81-91.
[10]CHEN X,ELLIOTT JA.On the scaling law of JKR contact model for coarse-grained cohesive particles[J].ChemicalEngineering Science,2020,227:115-906.
[11]FENG Y,LOUGHRAN J.On upscaling of discrete element models:similarity principles[J].Engineering Computations,2009,26(6):599-609.
[12]廖洋洋,尤泳,王德成,等.燕麥和箭苦豌豆混合種子離散元模型參數(shù)標(biāo)定與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(7):14-22.
LIAO YY,YOUY,WANGDC,etal.Parameters calibration and experiment of discrete element model for oats and Viciasativa mixed seeds[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):14-22.
[13]吳震,王利強(qiáng),徐立敏,等.基于靜態(tài)和動(dòng)態(tài)休止角的鈦白粉離散元仿真參數(shù)標(biāo)定[J].中國粉體技術(shù),2023,29(4):108-119.
WU Z,WANG L Q,XU LM,etal.Discrete element simulation parameter calibration of titanium dioxide based on staticand dynamic repose angles[J].China Powder Science and Technology,2023,29(4):108-119.
[14]BHALODE P,IERAPETRITOU M.Discrete element modeling for continuous powder feeding operation:calibrationandsystem analysis[J].International Journal of Pharmaceutics,2020,585:119-427.
[15]柴汝寬,劉月田,楊莉,等.方解石表面結(jié)構(gòu)影響水分子吸附的微觀機(jī)理[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2020,52(4):176-185.
CHAIRK,LIUYT,YANGL,etal.The microstructure of calcite surface affects the adsorption mechanism of water mol-ecules[J].Journal of Harbin Institute ofTechnology,2020,52(4):176-185.
[16]GAO Z,LIC,SUN W,etal.Anisotropic surface properties of calcite:a consideration of surface broken bonds[J].Col-loids and Surfaces A:Physicochemical and Engineering Aspects,2017,520:53-61.
[17]WEINHART T,HARTKAMP R.Coarse-grained local and objective continuum desceription of three-dimensional granularflows down an inclined surface[J].Physics of Fluids,2013,25(7):070605.
[18]MIO H,AKASHI M,SHIMOSAKA A,etal.Speed-up of computing time for numerical analysis of particle charging pro-cess by using discrete element method[J].Chemical Engineering Science,2009,64(5):1019-1026.
[19]FERNANDES P,CHAVES J.Discrete particle simulation in horizontally rotating drum:uncertainty quantification ofgranular material physical parameters[J].Powder Technology,2018,339:199-210.
[20]MASSAHJ,KHAZAEIJ.Simultaneous measurement of rice grain friction coefficient and angle of repose using rotating cyl-inders[J].Journal ofApplied Botany and Food Quality,2022,95:60-66.
Discrete elemental parameter calibration of ultrafine calcium carbonatebased on static and dynamic angle of repose
CAI Wenyuan1a,WANG Liqiang1,XU Limin2
1a.School of Mechanical Engineering,1b.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology,JiangnanUniversity,Wuxi 214122,China;
2.Jiangsu Innovative Packaging Technology Co.,Ltd.,Yangzhou 225600,China
Abstract
Objective With the rapid development of material science and engineering technology,ultrafine calcium carbonate has shownbroad application prospects in various fields owning to its excellent physiochemical properties.As an important inorganic powdermaterial,it is widely used in industries such as paper,rubber,coatings,food,and pharmaceuticals to improve and enhanceproductperformance.Ultrafine calcium carbonate requires a parameter calibration process before conducting discrete elementsimulation to obtain precise simulation parameters.However,most existing simulation parameter calibration methods use thestatic angle of repose as a response variable,which cannot fully represent the real characteristics of ultrafine calcium carbonate.Therefore,to improve the accuracy of discrete element simulation parameters for ultrafine calcium carbonate,obtainaccuratesimulation model parameters,and achieve reliable simulation results,the simulation parameters of the ultrafine calcium carbon-ate need to be calibrated.
Methods Basic parameters such as particle size distribution,surfacemorphology,static and dynamic angles of repose of ultra-fine calcium carbonate were initially measured.Then,physical and simulation models of the static and dynamic angle of reposewere developed for parameter calibration.Due to the extremely small size of ultrafine calcium carbonate,the number of particlescan reach tens to hundreds of millions even in very small volumes,far exceeding the processing limit of ordinary computers.Therefore,particle scaling principle and dimensional analysis were used to scale the particles and reduce the ultrafine calciumcarbonate to soft spherical particles.The Hertz-Mindlin with JKR contact model takes into account factors such as elastic defor-mation,friction,andadhesion,providing a comprehensive description of the contact behavior of solid surfaces at the micro-scopicscale.This allows for an accurate depiction of actual contact situations.The contact parameters for its static and dynamicangles of repose were calibrated using the Hertz-Mindlin with JKR contact model,combined with physical tests and discrete ele-ment software EDEM simulation experiments.Parameters which had no significant effect on static and dynamic angles of reposewere excluded through single-factor tests.Box-Behnken test was used to establish regression models between the static anddynamic angles of repose and significant parameters.Using the measured static and dynamic angles of repose as the response val-ues,theoptimal simulation parameter combinations were obtained by solving the regression model and the then verified throughphysical experiments.
Results and Discussion The surface energy of JKR between ultrafine calcium carbonate was 0.0321 J·m2,the shear modulusof ultrafine calcium carbonate was 5×10?Pa,the restitution coefficient between ultrafine calcium carbonate particles was 0.3,and the restitution coefficient between ultrafine calcium carbonate and stainless steel was also 0.3.The optimal parameter com-bination for significant parameters was as follows:the static friction coefficient between ultrafine calcium carbonate was 0.36,the rlling friction coefficient between them was 0.31,the static friction coefficient between ultrafine calcium carbonate andstainless steel was 0.38,and the rolling friction cofficient between them was 0.22.The static and dynamic angles of reposeobtained by the discrete element simulation test were 42.5°and 61.3°,respectively.The static and dynamic angles of reposemeasured in actual experiments were 41.8°and 60.5°,respectively.The error between the physical experiment and the simula-tion experiment for the static angle of repose was 0.96%,and for the dynamic angle of repose,the error was 1.32%.There wasno significant difference between the experiment and the simulation results for both the static and dynamic angles of repose.
Conclusion The calculation speed of the discrete element simulation is greatly improved by reducing the stiffness and scalingdown dimensions of the ultrafine calcium carbonate.The contact parameters of the ultrafine calcium carbonate are calibratedusing the JKR model of the discrete element method.Based on the dual response indices of the static and dynamic repose anglesof ultrafine calcium carbonate,the Box-Behnken response surface test method can be used to obtain the parameters of simulatedparticles more accurately,bringing them closer to the real state.According to the results of variance analysis of the model,thesignificant parameters for the static repose angle are the static friction coefficient between ultrafine calcium carbonate particles,the rolling trictioncoetficient between ultratine calcium carbonate particles,and the static friction coetficient between ultratinecalcium carbonate particles and stainless steel.The significant parameters for dynamic repose angle are rolling friction coffi-cient between ultrafine calcium carbonate particles,static friction coficient between ultrafine calcium carbonate and stainlesssteel,and rolling friction coefficient between ultrafine calcium carbonate particles and stainless steel.The results verify theeffectiveness of the parameter calibration method,which can be used to conduct simulation experiments on ultrafine calcium car-bonate.This has significant engineering application value for the design and optimization of ultrafine calcium carbonate convey-ing equipment.
Keywords:ultrafine calcium carbonate;angle of repose;particlesize;parametercalibration;discrete element
(責(zé)任編輯:王雅靜)