摘要: 【目的】實(shí)現(xiàn)多孔MgO晶體的可控制備。 【方法】以菱鎂礦為鎂源, 采用水化碳化-低溫水溶液法, 熱解Mg(HCO3)2溶液合成平均直徑為10.0 μm、 平均長度為50.0 μm的多孔棒狀堿式碳酸鎂(4MgCO3·Mg(OH)2·4H2O);通過焙燒法制備多孔MgO晶體,分別探討焙燒溫度、時間對前驅(qū)體4MgCO3·Mg(OH)2·4H2O分解率、 MgO物相組成和形貌的影響,探究4MgCO3·Mg(OH)2·4H2O熱分解機(jī)制。【結(jié)果】在焙燒溫度為700 ℃、 時間為3.0 h時,制得平均直徑為20.0 μm、 平均長度為50.0 μm、 比表面積為76.12 m2/g的介孔棒狀MgO晶體;在4MgCO3·Mg(OH)2·4H2O分解過程中,隨著溫度升高,結(jié)晶水失去,—OH的分離和C—O鍵斷裂,4MgCO3·Mg(OH)2·4H2O結(jié)構(gòu)徹底崩塌,生成的MgO納米片在高溫下自組裝成2種形貌的多孔棒狀MgO,一種是納米片全部覆蓋的多孔棒,另一種是一端由納米片覆蓋,另一端光滑的多孔棒,此過程中晶格常數(shù)減小,晶粒直徑由51.92 nm減小為11.28 nm。【結(jié)論】以菱鎂礦為鎂源可以實(shí)現(xiàn)多孔MgO晶體的可控制備。
關(guān)鍵詞: 菱鎂礦; 堿式碳酸鎂; 氧化鎂; 生長機(jī)制
中圖分類號: TB44文獻(xiàn)標(biāo)志碼:A
引用格式:
鄧鳳, 王余蓮, 張一帆, 等. 堿式碳酸鎂焙燒法制備多孔氧化鎂晶體[J]. 中國粉體技術(shù), 2024, 30(2): 138-150.
DENG F, WANG Y L, ZHANG Y F, et al. Prepared of porous magnesium oxide crystal with hydromagnesite method[J]. China Powder Science and Technology, 2024, 30(2): 138-150.
多孔MgO晶體擁有特殊骨架型結(jié)構(gòu),具有無毒、 無味、 抗菌性、 熱穩(wěn)定性好等特征,而且獨(dú)特的多孔結(jié)構(gòu)賦予晶體材料高孔隙率、 大表面積、 高催化活性、 更多質(zhì)量的傳輸通道等優(yōu)點(diǎn),因此應(yīng)用領(lǐng)域廣泛。在環(huán)境保護(hù)領(lǐng)域,可以用于去除廢水中重金屬離子、 有機(jī)染料治理、 飲用水除氟等,還可以用于有毒氣體處理[1-2];在工業(yè)催化領(lǐng)域,可以用作敏感型高效催化劑及載體[3];在抗菌領(lǐng)域,可以用于抑制病原微生物[4];在食品衛(wèi)生、 建筑、 阻燃材料等領(lǐng)域也運(yùn)用廣泛,因此,多孔MgO晶體具有極高的研究和經(jīng)濟(jì)價值。
目前,MgO制備方法主要包括沉淀法和水熱法。 趙嘉莘等[5]和Zhao等[6]以MgCl2·6H2O為鎂源, K2CO3為沉淀劑, 采用簡單水熱法制備堿式碳酸鎂(4MgCO3·Mg(OH)2·4H2O), 以此為前驅(qū)體, 通過煅燒工藝, 制備性能優(yōu)良、 比表面積為28.82 m2/g的多孔MgO絨球。 李錄[7]以Mg(NO)3·6H2O和NaOH為原料, 采用沉淀預(yù)處理后, 采用煅燒法、 水熱法制備比表面積為284 m2/g高活性MgO多孔材料, 對重金屬Pb(II)和Cd(II)均具有較好的吸附作用。 Borgohain等[8]使用不同鎂源和沉淀劑, 采用溶膠-凝膠法、 水熱法合成多孔MgO納米結(jié)構(gòu), 該多孔MgO在熱力學(xué)溫度為313 K時, Langmuir吸附量達(dá)到29 131 mg/g,對氟化物具有較好的吸附性。Ahmed等[9]以MgSO4為鎂源, NH3為沉淀劑和造孔劑,采用簡單沉淀法, 通過調(diào)整Mg2+、 NH3的物質(zhì)的量比調(diào)控MgO比表面積,制得比表面積為121 m2/g的多孔MgO,對磷酸鹽和甲基橙均具有良好的吸附作用??祵帲?0]將CO(NH2)2和Mg(NO)3·6H2O以物質(zhì)的量比為4.5∶1混合,加入質(zhì)量分?jǐn)?shù)為15%的聚乙二醇400(H(OCH2CH2)nOH),在溫度為110 ℃、 烘焙時間為2.0 h時,成功制備出比表面積為65.19 m2/g的多孔MgO,該多孔MgO對氟化物具有較好的吸附能力。研究者大多以可溶性鎂鹽和沉淀劑等化學(xué)試劑為原料制備MgO,合成成本高,且生產(chǎn)過程中伴隨著產(chǎn)生含鹽廢水,容易造成環(huán)境污染。
近年來, 部分研究者選擇白云石、 水氯鎂石等天然礦物為原料制備MgO。 何欣苪[11]以水氯鎂石和無水碳酸鈉為原料, 采用沉淀法和水熱法制備4種具有不同形貌和高比表面積的MgO, 發(fā)現(xiàn)它們對水溶液中的剛果紅染料表現(xiàn)出優(yōu)異的吸附性能。 夏勇亮[12]以白云石為原料, 草酸鈉和聚乙二醇作為添加劑, 采用碳化法制備不同形貌且擁有大比表面積的高純MgO。 仇龍等[13]以輕燒粉和銨鹽為原料, 氨水為沉淀劑, 通過煅燒前驅(qū)體, 制備比表面積為214.6 m2/g的MgO, 對甲基橙的飽和吸附量達(dá)169.2 mg/g。 綜上所述, 以礦物原料制備MgO時, 均需要采用酸浸、 氨浸且添加各類輔助劑,工藝繁瑣,成本高,且伴隨毒性氣體、 含氯廢水、 強(qiáng)酸、 堿性廢水等副產(chǎn)物,容易造成環(huán)境污染。
作者所在課題組以菱鎂礦為原料, 采用低成本、 短流程工藝制備性能優(yōu)異、 形貌可控的三水碳酸鎂、 4MgCO3·Mg(OH)2·4H2O等鎂質(zhì)化工材料[14-17]。本研究中以菱鎂礦為原料, 在無外加輔助劑作用下, 采用水化碳化-低溫水溶液法制備前驅(qū)體4MgCO3·Mg(OH)2·4H2O, 通過焙燒前驅(qū)體制得多孔MgO, 考察焙燒溫度、 時間對前驅(qū)體分解率、 MgO形貌和物相組成的影響, 同時探究4MgCO3·Mg(OH)2·4H2O熱分解機(jī)制。
1 材料與方法
1.1試劑材料和儀器設(shè)備
試劑材料: 天然菱鎂礦(MgO質(zhì)量分?jǐn)?shù)為47.61 %, SiO2質(zhì)量分?jǐn)?shù)為0.66 %, CaO質(zhì)量分?jǐn)?shù)為0.50%, CO2質(zhì)量分?jǐn)?shù)為51.23%, 遼寧寬甸); 去離子水(實(shí)驗(yàn)室自制); CO2氣體(工業(yè)純, 吉林盛泰氣體制造有限公司)。
儀器設(shè)備: Ultima Ⅳ型X射線衍射儀(XRD,日本理學(xué)Rigaku公司);S-3400N型掃描電子顯微鏡(SEM,日立公司);STA-449F3型綜合熱分析儀(TG-DSC,德國NETZSCH公司);NOVO 1000e型比表分析儀(深圳順絡(luò)電子股份公司)。
1.2前驅(qū)體4MgCO3·Mg(OH)2·4H2O與MgO晶體的制備
在溫度為750 ℃時, 將菱鎂礦礦石煅燒時間為3.0 h后, 對煅燒產(chǎn)物進(jìn)行過篩處理, 獲得粒徑為75 μm的輕燒鎂粉。
去離子水和輕燒鎂粉按質(zhì)量比為40∶1的比例混合,在水浴溫度為70 ℃、 反應(yīng)時間為3.0 h條件下,制得Mg(OH)2懸浮液。懸浮液冷卻后,通入CO2進(jìn)行碳酸化。溶液pH為7.0~7.5時,抽濾,制得Mg(HCO3)2溶液。量取一定體積濾液攪拌時間為2.0 h熱解,抽濾、 洗滌,將濾餅在溫度為100 ℃下烘干,時間約為10 h,得到白色粉末,即為前驅(qū)體4MgCO3·Mg(OH)2·4H2O。
將前驅(qū)體4MgCO3·Mg(OH)2·4H2O在溫度為650~800 ℃時焙燒2.5~4.0 h,得到MgO晶體。
4MgCO3·Mg(OH)2·4H2O的分解率x計(jì)算公式[18]為
x=m1-m2276×466m1×100% ,(1)
式中: m1為4MgCO3·Mg(OH)2·4H2O的總質(zhì)量; m2為樣品剩余的質(zhì)量。
2 結(jié)果與分析
2.1前驅(qū)體4MgCO3·Mg(OH)2·4H2O的特征分析
前驅(qū)體4MgCO3·Mg(OH)2·4H2O的XRD檢測結(jié)果如圖1所示。由圖可知,產(chǎn)物全部衍射峰與4MgCO3·Mg(OH)2·4H2O標(biāo)準(zhǔn)卡片(PDF#25-0513)的特征峰相對應(yīng), 表明所得前驅(qū)體為4MgCO3·Mg(OH)2·4H2O, 峰型尖銳且窄,表明所得樣品為結(jié)晶度較好的晶體。
所涉及的主要反應(yīng)如下。
MgCO3→MgO+CO2↑ ,(2)
MgO+H2O+2CO2→Mg(HCO3)2,(3)
5Mg(HCO3)2 →4MgCO3MgOH4H2O+6CO2↑ 。(4)
前驅(qū)體4MgCO3·Mg(OH)2·4H2O的SEM圖像如圖2所示。由圖可知,樣品呈現(xiàn)分散性良好的多孔棒狀晶體,多孔結(jié)構(gòu)由納米片緊密疊加形成,微棒長度為50.0 μm,直徑為10.0 μm。
2.2前驅(qū)體4MgCO3·Mg(OH)2·4H2O分解率影響因素
2.2.1 焙燒溫度的影響
前驅(qū)體4MgCO3·Mg(OH)2·4H2O在焙燒溫度分別為650、 700、 750、 800 ℃的條件下焙燒3.0 h,考察焙燒溫度對前驅(qū)體分解率的影響,前驅(qū)體分解率如圖3所示。由圖可知,4MgCO3·Mg(OH)2·4H2O分解率隨溫度升高呈現(xiàn)先增大先減小的變化趨勢,在溫度為700 ℃時分解率達(dá)到最大值99.98%;在溫度為750 ℃時分解率最低,原因可能是焙燒時間相同,溫度較低時,不利于4MgCO3·Mg(OH)2·4H2O分解轉(zhuǎn)化[19],在溫度為700 ℃時,4MgCO3·Mg(OH)2·4H2O焙燒完全,繼續(xù)升溫,分解率變化不大,因此,適宜的焙燒溫度為700 ℃。
2.2.2 焙燒時間的影響
前驅(qū)體4MgCO3·Mg(OH)2·4H2O焙燒溫度為700 ℃,焙燒時間分別為2.5、 3.0、 3.5、 4.0 h,研究焙燒時間對4MgCO3·Mg(OH)2·4H2O分解率的影響,前驅(qū)體分解率結(jié)果如圖4所示。由圖可知,隨著焙燒時間延長,4MgCO3·Mg(OH)2·4H2O分解率呈現(xiàn)先增大后減小的變化趨勢,在焙燒時間為3.0 h時,分解率達(dá)到最大值99.98 %。原因是焙燒溫度相同時,焙燒時間過短,4MgCO3·Mg(OH)2·4H2O未全部轉(zhuǎn)化為MgO;當(dāng)焙燒達(dá)到一定時間時,4MgCO3·Mg(OH)2·4H2O轉(zhuǎn)化完全,繼續(xù)延長反應(yīng)時間分解率無明顯變化,因此,適宜焙燒時間為3.0 h。
2.3MgO物相組成和形貌的影響因素
2.3.1 焙燒溫度影響
在前驅(qū)體4MgCO3·Mg(OH)2·4H2O焙燒時間為3.0 h時,不同焙燒溫度所得產(chǎn)物的XRD譜圖和SEM圖像如圖5、 6所示。由圖5可知,不同焙燒溫度下所得產(chǎn)物全部衍射峰與MgO的XRD標(biāo)準(zhǔn)圖譜(PDF#45-0946)一致,表明所得產(chǎn)物均為MgO晶體。由圖6可知,不同溫度下所得產(chǎn)物均為納米片狀堆疊而成的多孔棒狀,但直徑和長度有所不同。由圖6(a)、 (b)可知,在烘焙溫度升高時,產(chǎn)物平均直徑由10.0 μm 增加為20.0 μm,而平均長度由50.0 μm減小至30.0 μm。由圖6(b)可知,在焙燒溫度為700 ℃時,產(chǎn)物中存在少量一端為光滑表面,而另一端被多孔結(jié)構(gòu)覆蓋的棒狀晶體,具有光滑表面的部分平均直徑為10.0 μm,而被多孔結(jié)構(gòu)所覆蓋的部分平均直徑為20.0 μm,這種兩端形貌不一致的棒狀晶體平均長度為50.0 μm,由圖6(c)、 (d)可知,進(jìn)一步升高溫度,產(chǎn)物形貌不再發(fā)生變化。
2.3.2 焙燒時間的影響
前驅(qū)體4MgCO3·Mg(OH)2·4H2O焙燒溫度相同,不同焙燒時間所得產(chǎn)物的XRD譜圖和SEM圖像如圖7、 8所示。 由圖7可知, 保持相同焙燒溫度為700 ℃, 在焙燒時間分別為2.5、3.0、3.5、4.0 h
(a)3.0 h(b)4.0 h
圖8 不同焙燒時間制備的MgO的SEM圖像
Fig.8 SEM images of magnesium oxide at different roasting time
時,晶面指數(shù)為(111)、 (200)、 (220)、 (331)、 (222)處的衍射峰均與MgO的XRD標(biāo)準(zhǔn)圖譜(PDF#45-0946)一致,基底平滑,無雜峰。
由圖8(b)可知,將焙燒時間延長為4.0 h,產(chǎn)物與圖8(a)呈現(xiàn)出相同形貌的MgO晶體,被多孔結(jié)構(gòu)覆蓋部分平均直徑仍保持20.0 μm,光滑部分平均直徑仍保持10 μm,但平均長度減小為40.0 μm。
綜上所述,制備MgO晶體最佳焙燒溫度為700 ℃,時間為3.0 h。
2.3.3 MgO孔結(jié)構(gòu)分析
固定焙燒溫度為700 ℃, 時間為3.0 h, 制得MgO晶體, 采用Brunauer-Emmet-Teller法和Barret-Joyner-Halenda法分析比表面積、 孔隙體積和孔徑分布, 結(jié)果如圖9所示。 由圖9(a)可知, MgO樣品具有Ⅳ型等溫線曲線, 且形成H3型回滯環(huán), 可以認(rèn)為是由片狀粒子堆積形成的狹縫孔。 由圖9(b)、 (c)可知, 孔徑分布為2~50 nm, 表明樣品具有介孔性質(zhì), 孔徑主要集中于2~15 nm, 樣品比表面積為76.17 m2/g。
(a)氮?dú)馕?解吸等溫線(b)孔徑分布
(c)不同孔徑下的孔體積分布
Fig.9 MgO孔結(jié)構(gòu)測試結(jié)果
Fig.9 Pore structure of MgO test results
2.4MgCO3·Mg(OH)2·4H2O熱分解過程
采用Diamond軟件對4MgCO3·Mg(OH)2·4H2O的晶體結(jié)構(gòu)進(jìn)行模擬,結(jié)果如圖10所示。由圖可知,4MgCO3·Mg(OH)2·4H2O晶體結(jié)構(gòu)的主體為Mg3通過邊共享的Mg1和Mg2的[MgO6]八面體生長基元形成三菱結(jié)構(gòu)。由圖10(a)可知,這些三菱結(jié)構(gòu)沿a軸和c軸通過[MgO6]八面體生長基元棱共享和CO2-3基團(tuán)共同連接。由圖10(b)可知,沿b軸則通過CO2-3基團(tuán)連接形成波浪條帶。由圖10(c)可知,Mg2+在4MgCO3·Mg(OH)2·4H2O中呈現(xiàn)2種不同的八面體配位,在Mg1和Mg2形成的[MgO6]八面體生長基元中,O原子分別來自4個CO2-3基團(tuán)、 1個—OH基團(tuán)、 1個H2O分子;在Mg3形成的[MgO6]八面體生長基元中,O原子分別來自4個CO2-3基團(tuán)、 2個—OH基團(tuán)。
(a)a, c軸晶體結(jié)構(gòu)(b)b軸晶體結(jié)構(gòu)
(c)配位體結(jié)構(gòu)
圖10 4MgCO3·Mg(OH)2·4H2O晶體結(jié)構(gòu)示意圖
Fig.10 Schematic diagram of 4MgCO3·Mg(OH)2·4H2O crystal structure
對4MgCO3·Mg(OH)2·4H2O進(jìn)行熱分析的結(jié)果如圖11所示。由圖可知,4MgCO3·Mg(OH)2·4H2O分解過程為4個分子結(jié)晶水從Mg1和Mg2位點(diǎn)的[MgO6]八面體中逸出, 理論失質(zhì)量分?jǐn)?shù)為15.45%。 根據(jù)熱重(TG)曲線可以得出, 4MgCO3·Mg(OH)2·4H2O在溫度為142~302 ℃時受熱分解, 根據(jù)熱重微分(DTG)曲線可以得出, 當(dāng)溫度為236 ℃時出現(xiàn)峰值, 表明該溫度下失質(zhì)量速率達(dá)最大值, 差示掃描量熱法(DSC曲線)相應(yīng)位置出現(xiàn)一個明顯的吸熱峰, 表明該分解過程吸熱。 此過程的實(shí)際失質(zhì)量分?jǐn)?shù)為14.59 %, 其反應(yīng)方程式為
4MgCO3·Mg(OH)2·4H2O→4MgCO3·Mg(OH)2+4H2O 。(5)
隨著溫度繼續(xù)升高,各位點(diǎn)的羥基開始分離,形成水分子逸出,當(dāng)溫度達(dá)到一定值時,C—O鍵被破壞,形成CO2逸出,其理論失質(zhì)量分?jǐn)?shù)為41.49 %。根據(jù)TG曲線可以得出,在溫度為306~483 ℃時,4MgCO3·Mg(OH)2繼續(xù)分解,根據(jù)DTG曲線可以得出,在溫度為458 ℃時出現(xiàn)峰值,表明該溫度下失質(zhì)量速率達(dá)到最大值,在DSC曲線相應(yīng)位置出現(xiàn)一個明顯的吸熱峰,表明該分解過程吸熱。此過程的實(shí)際失質(zhì)量分?jǐn)?shù)為39.86%,反應(yīng)方程式為
4MgCO3·Mg(OH)2→5MgO+4CO2+H2O 。(6)
熱分解過程中,4MgCO3·Mg(OH)2·4H2O快速調(diào)整分子結(jié)構(gòu),當(dāng)所有結(jié)晶水逸出后,產(chǎn)物以無定型碳酸鎂形式存在,隨著溫度進(jìn)一步升高,C—O斷裂,生成CO2逸出,MgO形成,4MgCO3·Mg(OH)2·4H2O結(jié)構(gòu)崩塌;繼續(xù)升溫,生成的MgO納米片開始自組裝,形成表面由納米片覆蓋的多孔棒狀。部分棒狀區(qū)域由于MgO納米片濃度相對較低,因此導(dǎo)致該區(qū)域無片狀覆蓋或覆蓋量少。此過程的生長示意圖如圖12所示。
采用Jade軟件對4MgCO3·Mg(OH)2·4H2O和MgO的XRD數(shù)據(jù)進(jìn)行分析的結(jié)果如表1所示,采用Diamond軟件對MgO的晶體結(jié)構(gòu)進(jìn)行模擬的結(jié)果如圖13所示。
在4MgCO3·Mg(OH)2·4H2O熱解過程中,隨著溫度升高,晶體晶格常數(shù)減小,當(dāng)4MgCO3·Mg(OH)2·4H2O完全轉(zhuǎn)變?yōu)镸gO時,晶體結(jié)構(gòu)空隙消失,故所制得MgO晶體晶粒尺寸減小。
根據(jù)Scherrer公式[20]計(jì)算前驅(qū)體4MgCO3·Mg(OH)2·4H2O和MgO樣品的晶粒尺寸,所得結(jié)果如表2、 3所示。由表可知,前驅(qū)體4MgCO3·Mg(OH)2·4H2O的平均晶粒直徑為51.92 nm,MgO樣品的平均晶粒長度為11.28 nm,證明4MgCO3·Mg(OH)2·4H2O轉(zhuǎn)變?yōu)镸gO的過程中,晶粒直徑減小。
隨著4MgCO3·Mg(OH)2·4H2O熱分解進(jìn)行,結(jié)晶水和CO2溢出,形成介孔孔隙,MgO晶粒尺寸減小,比表面積增大,活性位點(diǎn)增多,表面能提高,對臨近的原子或分子產(chǎn)生吸附,顆粒之間發(fā)生團(tuán)聚,從而導(dǎo)致MgO直徑增大。
3 結(jié)論
1)以菱鎂礦為初始原料,無外加輔助助劑,采用水化碳化-低溫水溶液法,直接熱解Mg(HCO3)2溶液獲得平均直徑為10.0 μm、 平均長度為50 μm的多孔棒狀4MgCO3·Mg(OH)2·4H2O,并以此為前驅(qū)體,在焙燒溫度為700 ℃、 時間為3.0 h時,獲得最大分解率99.98 %、 比表面積為76.12 m2/g的介孔棒狀MgO。同時分析了4MgCO3·Mg(OH)2·4H2O的熱解機(jī)制為在結(jié)晶水失去時,—OH基團(tuán)的分離和C—O鍵斷裂將導(dǎo)致4MgCO3·Mg(OH)2·4H2O結(jié)構(gòu)徹底崩塌,新生成的MgO納米片高溫下發(fā)生自組裝,此過程中晶格常數(shù)減小,晶粒直徑由51.92 nm減小至11.28 nm。
2)該MgO制備工藝可實(shí)現(xiàn)多孔MgO晶體的可控制備,且環(huán)保,無毒無害,有望提高菱鎂礦附加值。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
鄧鳳,王余蓮,參與了論文的撰寫,張一帆,李紀(jì)勛,關(guān)蕊,李克卿,蘇峻樟,孫浩然,韓會麗,袁志剛,蘇德生,池云參與了論文的修改。所有作者均閱讀并同意了最終稿件的提交。
The manuscript was drafted and revised by DENG Feng and WANG Yulian. ZHANG Yifan, LI Jixun, GUAN Rui, LI Keqing, SU Junzhang, SUN Haoran, HAN Huili, YUAN Zhigang, SU Desheng, CHI Yun also participated in the revision of the manuscript. All authors read and agreed to submit the final manuscript.
參考文獻(xiàn)(References)
[1]程文婷, 薄秋芳, 程芳琴, 等. 聚乙二醇輔助合成氧化鎂及其處理含鉛溶液的性能[J]. 中國科學(xué): 化學(xué), 2013, 43(11): 1490-1496.
CHENG W T, BO Q F, CHENG F Q, et al. Synthesis of magnesium oxide assisted by PEG-10000 and adsorption capacity for lead solution[J]. Scientia Sinica Chimica, 2013, 43(11): 1490-1496.
[2]田鍵, 劉洋, 胡攀, 等. 氧化鎂在環(huán)境污染治理中應(yīng)用研究進(jìn)展[J]. 湖北大學(xué)學(xué)報(自然科學(xué)版), 2021, 43(1): 74-79.
TIAN J, LIU Y, HU P, et al. Research progress of application of magnesium oxide in environmental pollution control[J]. Journal of Hubei University (Natural Science), 2021, 43(1): 74-79.
[3]閆平科, 王萬起, 馬正先. 超細(xì)氧化鎂粉體的制備新方法及應(yīng)用[J]. 中國非金屬礦工業(yè)導(dǎo)刊, 2009(6): 19-21.
YAN P K, WANG W Q, MA Z X. Research on the new preparing methods and application of micropowder magnesium oxide[J]. China Non-metallic Minerals Industry Herald, 2009(6): 19-21.
[4]易師甜. 納米氧化鎂的制備及抗菌性能研究[D]. 武漢: 華中科技大學(xué), 2009.
YI S T. Preparation of nano-magnesium oxide and research on its antibacterial ability[D].Wuhan: Huazhong University of Science and Technology, 2009.
[5]趙嘉莘. 多孔MgO絨球的制備及其在熱電池中的應(yīng)用研究[D]. 綿陽: 西南科技大學(xué), 2021.
ZHAO J S. Study on the preparation of porous MgO pompons and its application in thermal batteries[D]. Mianyang: Southwest University of Science and Technology, 2021.
[6]ZHAO J X, LIU J S, LI H Q, et al. Porous MgO pompons as a binder for the molten electrolyte applied in thermal batteries[J]. Ionics, 2021, 27(3): 1271-1278.
[7]李錄. 多孔氧化鎂/氫氧化鎂的可控制備及重金屬吸附性能研究[D]. 福州: 福建師范大學(xué), 2021.
LI L. Controlled preparation and heavy metal adsorption properties of porous magnesium oxide/magnesium hydroxide[D]. Fuzhou: Fujian Normal University, 2021.
[8]BORGOHAIN X, BORUAH A, SARMA G K, et al. Rapid and extremely high adsorption performance of porous MgO nanostructures for fluoride removal from water[J]. Journal of Molecular Liquids, 2020, 305: 112799.
[9]AHMED S, GUO Y W, LI D Q, et al. Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange[J]. Environmental Science and Pollution Research, 2018, 25(25): 24907-24916.
[10]康寧. 多孔球狀活性MgO制備及除氟效能研究[D]. 沈陽: 沈陽建筑大學(xué), 2022.
KANG N. Research on prepatation and defluorination of porous spherical activated MgO[D]. Shenyang: Shenyang Jianzhu University, 2022.
[11]何欣芮. 鹽湖水氯鎂石構(gòu)筑不同形貌MgO及其染料吸附性能研究[D]. 西寧: 青海師范大學(xué), 2023.
HE X R. Construction different morphologies of MgO from salt lake bischofite and study of dye adsorption properties[D]. Xining: Qinghai Normal University, 2023.
[12]夏勇亮. 輕燒白云石粉料制備氧化鎂研究[D]. 北京: 北京化工大學(xué), 2013.
XIA Y L. Research of megnesia preparation from light burning dolomite powder[D]. Beijing: Beijing University of Chemical Technology, 2013.
[13]仇龍, 李會杰, 黃娜娜, 等. 輕燒粉制備介孔氧化鎂及其吸附性能的研究[J]. 沈陽化工大學(xué)學(xué)報, 2022, 36(3): 215-220.
QIU L, LI H J, HUANG N N, et al. Preparation and adsorption properties of mesoporous magnesium oxide from light burned powder[J]. Journal of Shenyang University of Chemical Technology, 2022, 36(3): 215-220.
[14]劉珈伊, 王余蓮, 時天驕, 等. 菱鎂礦氣泡模板法制備三水碳酸鎂晶體及其生長機(jī)理[J]. 礦產(chǎn)保護(hù)與利用, 2022, 42(2): 114-119.
LIU J Y, WANG Y L, SHI T J, et al. Preparation and growth mechanism of nesquehonite crystal crystals by bubble template method with magnesite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 114-119.
[15]王余蓮, 印萬忠, 李昂, 等. 熱分解法制備三水碳酸鎂晶須及其結(jié)晶動力學(xué)研究[J]. 礦產(chǎn)保護(hù)與利用, 2018(6): 107-113.
WANG Y L, YIN W Z, LI A, et al. Preparation and crystallization kinetics of nesquehonite whiskers with thermal decomposition method[J]. Conservation and Utilization of Mineral Resources, 2018(6): 107-113.
[16]王余蓮, 印萬忠, 張夏翔, 等. 三水碳酸鎂法制備堿式碳酸鎂過程研究[J]. 礦產(chǎn)保護(hù)與利用, 2017(4): 81-86.
WANG Y L, YIN W Z, ZHANG X X, et al. Preparation of hydromagnesite using nesquehonite method[J]. Conservation and Utilization of Mineral Resources, 2017(4): 81-86.
[17]劉珈伊, 王余蓮, 時天驕, 等. 無水乙醇輔助低溫直接法制備堿式碳酸鎂晶體[J]. 中國粉體技術(shù), 2021, 27(1): 41-49.
LIU J Y, WANG Y L, SHI T J, et al. Preparation of basic magnesium carbonate crystals with low temperature direct method by anhydrous ethanol-assisted process[J]. China Powder Science and Technology, 2021, 27(1): 41-49.
[18]李希艷, 張虹, 劉雪景, 等. 抑制性氣氛中菱鎂礦分解特性與動力學(xué)研究[J]. 無機(jī)鹽工業(yè), 2023, 55(10): 50-55.
LI X Y, ZHANG H, LIU X J, et al. Research on the decomposition characteristics and kinetics of magnesite in an inhibitory atmosphere[J]. Inorganic Chemicals Industry, 2023, 55(10): 50-55.
[19]戴衛(wèi)東, 王壽武, 盧伯南. 堿式氯化鎂燒結(jié)法制備氧化鎂晶須的工藝研究[J]. 鹽業(yè)與化工, 2009, 38(4): 19-22.
DAI W D, WANG S W, LU B N. Studies on the technology of preparing magnesium oxide whiskers wih basic magnesium chloride by sintering method[J]. Journal of Salt and Chemical Industry, 2009, 38(4): 19-22.
[20]孫赫男, 關(guān)巖, 畢萬利, 等. 燒結(jié)氧化鎂粉的晶體特征對磷酸鎂水泥力學(xué)性能的影響[J]. 材料導(dǎo)報, 2022, 36(19): 91-96.
SUN H N, GUAN Y, BI W L, et al. The influence of crystal characteristics of sintered magnesium oxide powder on the mechanical properties of magnesium phosphate cement[J]. Materials Reports, 2022, 36(19): 91-96.
Preparation of porous MgO crystals with hydromagnesite roasting method
DENG Feng1, WANG Yulian1, ZHANG Yifan1, LI Jixun1, GUAN Rui1, LI Keqing1, SU Junzhang1,
SUN Haoran1, HAN Huili1, YUAN Zhigang1, SU Desheng2, 3, CHI Yun4
(1. School of Materials Science and Engineering, Shenyang Ligong University," Shenyang 110158, China;
2. Liaoning Province Ultra High Power Graphite Electrode Material Professional Technology Innovation Center," Dandong 118100, China;
3. Liaoning Dan Carbon Group Corporation Limited," Dandong 118100, China;
4 Party School of the CPC Liaoning Provincial Committee," Shenyang 110158, China)
Abstract
Objective To improve the efficient utilization of mineral resources and achieve" the controlled preparation of porous magnesium oxide (MgO) crystals.
Methods In this paper, magnesite was used as raw material and" calcined at 750 ℃ for 3.0 h to produce light burned magnesium powder, and then the light burned magnesium powder was sifted to obtain powder with a particle size less than 75 μm. The powder was mixed with deionized water in a mass ratio of 1∶40, and heavy magnesium water was obtained by hydration carbonization method. The porous rod-like hydromagnesite (4MgCO3·Mg(OH)2·4H2O) with an average length of 50 μm and an average diameter of 10.0 μm were successfully prepared by direct pyrolysis of heavy magnesium water using low-temperature aqueous solution without the incorporation of additional additives. Then using hydromagnesite as precursor, porous magnesium oxide crystals were prepared by direct roasting method. The effect of calcination time and temperature on the decomposition rate of the precursor hydromagnesite, as well as the resulting phase composition and microstructure of the magnesium oxide final product, was discussed. At the same time, the thermal decomposition mechanism of the precursor hydromagnesite during its transformation into magnesium oxide crystals was investigated.
Results and Discussion The results show that: Neither the duration" nor" temperature of roasting has significant effects on the decomposition rate of precursor hydromagnesite, nor did they impact the phase composition and micro-morphology of the" magnesium oxide crystals. However, two morphologies appeared roasted at of 700 ℃ for" 3.0 h. The obtained magnesium oxide features mainly porous rod-like structure with an average diameter of 20.0 μm. A minor fraction comprises rod-like crystal, distinguished by a smooth surface at one end and a porous structure covering the other end. The mean diameter of the part with a smooth surface is 10.0 μm, while the mean diameter of the part covered by a porous structure is 20.0 μm. The average length of the rod-like crystals with different morphologies at both ends is 50.0 μm. Sustaining calcination temperature while extending the calcination time to 4.0 h resulted in a product presenting the same morphology as that observed after" 3.0 h of calcination. The average diameter of the porous part and the average diameter of the smooth part was still 20.0, 10.0 μm, respectively. However," the average length of the rod is reduced to 40.0 μm. Under such conditions of the optimal roasting temperature of 700 ℃ and the roasting time of" 3.0 h, the decomposition rate of the precursor hydromagnesite reaches a maximum of 99.98%. The pore size of the obtained porous rod-like magnesium oxide crystals is mainly distributed in the range of 2~15 nm, with mesoporous properties. The specific surface area is 76.12 cm2/g, and the total pore volume is 0.21 cm3/g. Based on the thermal analysis data of the precursor hydromagnesite and the simulation of the crystal structure of the precursor hydromagnesite, it can be concluded that the main structure of hydromagnesite is composed of the [MgO6] octahedron. Because of the bivalent nature of Mg2+ ions, the escaped water molecules originate from two distinct coordination environments. One arises from the escape of crystal water, and the other results from" the break of hydroxyl bonds. The thermal decomposition reaction of hydromagnesite is characterized as an endothermic reaction and divided into two stages. In these two stages, the molecular structure of hydromagnesite will be adjusted rapidly. When all water molecules escape, the product exists in the form of amorphous magnesium carbonate. The resulting CO2 escapes, magnesium oxide forms, and the hydromagnesite structure collapses. As the temperature gradually rises, the generated magnesium oxide nanosheets begin to self-assemble and generate porous rod-like crystals covered by nanosheets. Due to the low concentration of magnesium oxide nanosheets on the surface of some rod-like magnesium oxide, the surface of the region is smooth and there is no nanosheet coverage. Based on the XRD data of the precursor hydromagnesite and magnesium oxide crystals, the cell data of the two crystals were obtained by using Jade software, and the crystal plane spacing of the two crystals was calculated by Scherer formula, so as to obtain the average grain diameter of the two crystals. It is found that during the transformation from hydromagnesite to magnesium oxide, the lattice constant and cell volume of the crystal decrease, signifying a more compact crystal structure" in magnesium oxides. Additionally,the grain diameter decreases from 51.92" to 11.28 nm. The decrease of grain diameter, with the increase of specific surface area and the increase of active sites, imparts greater surface energy to magnesium oxide crystals. This enhanced surface energy facilitates the adsorption of nearby atoms and molecules onto magnesium oxide crystals, thus increasing the diameter of magnesium oxide crystals.
Conclusion Using magnesite as the initial raw material and without any additional additives, calcination hydration carbonation direct pyrolysis of Mg (HCO3)2 solution is used to obtain an average diameter of 10.0 μm. The average length is 50 μm porous rod-shaped basic magnesium carbonate was used as a precursor. At a calcination temperature of 700 ℃ and a calcination time of 3.0 h, a maximum decomposition rate of 99.98% is obtained, and a mesoporous rod-shaped magnesium oxide with a specific surface area of 76.12 m2/g is obtained. At the same time, the pyrolysis mechanism of basic magnesium carbonate is analyzed as follows: the loss of crystalline water, separation of —OH groups, and breakage of "C—O bonds collectively" cause the complete collapse of the basic magnesium carbonate structure. The newly generated magnesium oxide nanosheets undergo self-assembly at high temperatures, leading to a decrease in the lattice constant and the grain diameter from 51.92 to 11.28 nm. Using this process to prepare porous magnesium oxide crystals, raw materials offers advantages such as readily available, cost-effective raw materials, environmental and human-friendly characteristics. This approachis expected to increase the added value of magnesite. however, how to further improve the specific surface area of porous magnesium oxide crystals deserves further consideration and research.
Keywords: magnesite; hydromagnesite; magnesium oxide; growth mechanism
(責(zé)任編輯:武秀娟)
收稿日期: 2023-10-30,修回日期:2023-12-22,上線日期:2024-01-18。
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目,編號:52374271;沈陽市科技局項(xiàng)目,編號:22-322-3-03;遼寧省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目,編號:2022JH2/101300111;沈陽市中青年科技創(chuàng)新人才支持計(jì)劃項(xiàng)目,編號:RC220104;遼寧省教育廳項(xiàng)目,編號:LJKMZ20220588;遼寧省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練項(xiàng)目,編號:S202210144002。
第一作者簡介:鄧鳳(2000—),女,碩士生,研究方向?yàn)榉墙饘俟δ懿牧稀-mail: 1096280733@qq.com。
通信作者簡介:王余蓮(1986—),女,教授,博士,遼寧省百千萬人才工程千人層次,碩士生導(dǎo)師,研究方向?yàn)榈V物材料制備及應(yīng)用。
E-mail: ylwang0908@163.com。