【摘要】 隨著新生兒重癥監(jiān)護(hù)技術(shù)日趨成熟,早產(chǎn)兒的存活率顯著提高。然而,腦損傷的發(fā)生率亦在逐年上升,且多數(shù)患兒伴有神經(jīng)系統(tǒng)損傷的早期臨床表現(xiàn)和遠(yuǎn)期后遺癥狀。因此,尋找簡(jiǎn)單有效的診斷方法,提高早產(chǎn)兒生存質(zhì)量,已成為當(dāng)前領(lǐng)域亟待解決的關(guān)鍵問題。近年來,越來越多的生物學(xué)標(biāo)志物被眾多學(xué)者相繼研究,并應(yīng)用于早產(chǎn)兒腦損傷的早期診斷及預(yù)后評(píng)估,文章就這些生物學(xué)標(biāo)志物的國(guó)內(nèi)外研究進(jìn)展進(jìn)行綜述,旨在為早產(chǎn)兒腦損傷的早期診斷和預(yù)后評(píng)估提供參考。
【關(guān)鍵詞】 生物學(xué)標(biāo)志物;腦損傷;早產(chǎn)兒;細(xì)胞因子
Research progress in biological markers for predicting brain injury in premature infants
SHI Qunfang, WANG Yu
(Department of Pediatrics, Hebei University Affiliated Hospital, Baoding 071000, China)
Corresponding author: WANG Yu, E-mail: 13785269178@163.com
【Abstract】 With the increasing maturity of neonatal intensive care technology, the survival rate of premature infants has been increased significantly. At the same time, the incidence of brain injury has also been elevated year by year, and most of the affected children are complicated with early clinical manifestations and long-term sequelae of nervous system injury. Therefore, finding a simple and effective diagnostic method to improve the quality of life of premature infants has become a key problem to be solved urgently in the current field. In recent years, more and more biological markers of brain injury have been studied and applied to the early diagnosis and prognosis assessment of brain injury in premature infants. This article reviews the domestic and international research progress on these biological markers, aiming to provide reference for the early diagnosis and prognosis assessment of brain injury in premature infants.
【Key words】 Biological marker; Brain injury; Premature infant; Cytokine
早產(chǎn)兒腦損傷(brain injury in premature infants,BIPI)是指在各種圍生期危險(xiǎn)因素的作用下,早產(chǎn)兒發(fā)生不同程度的缺血性損傷或出血性損傷,不少患兒還伴有運(yùn)動(dòng)發(fā)育障礙、神經(jīng)認(rèn)知障礙、視聽障礙、學(xué)習(xí)障礙,嚴(yán)重者甚至出現(xiàn)腦性癱瘓危及生命[1-2]。因此,早期診斷BIPI并準(zhǔn)確評(píng)估預(yù)后對(duì)于改善早產(chǎn)兒的健康狀況至關(guān)重要。腦損傷早產(chǎn)兒早期臨床表現(xiàn)相對(duì)輕微,缺乏神經(jīng)系統(tǒng)典型體征,主要依靠影像學(xué)檢查、腦電生理檢查結(jié)合臨床經(jīng)驗(yàn)進(jìn)行確診,然而,上述診斷方法由于價(jià)格昂貴、設(shè)備缺乏、操作不便、診斷結(jié)果延遲無(wú)法早期診斷、靈敏度低、特異性差、容易漏診誤診等弊端,對(duì)BIPI的早期診斷有所限制[3-5]。近年來,腦損傷生物學(xué)標(biāo)志物憑借準(zhǔn)確率和靈敏度高、特異性強(qiáng)等優(yōu)勢(shì)吸引不少學(xué)者對(duì)其機(jī)制作用爭(zhēng)相探討。本文針對(duì)BIPI相關(guān)生物學(xué)標(biāo)志物的國(guó)內(nèi)外研究進(jìn)展進(jìn)行綜述,旨在為BIPI患兒的早期診斷及預(yù)后評(píng)估提供參考。
1 蛋白類生物學(xué)標(biāo)志物
在人體內(nèi),生物學(xué)標(biāo)志物種類繁多,其中,蛋白類生物學(xué)標(biāo)志物發(fā)現(xiàn)最早、應(yīng)用最廣、最為經(jīng)典。因其具有準(zhǔn)確率高、特異性強(qiáng)、易測(cè)定、可追蹤、功能機(jī)制易于解釋等諸多優(yōu)勢(shì),故而受到廣泛關(guān)注[6]。根據(jù)有無(wú)催化功能,可將其分為蛋白酶類生物學(xué)標(biāo)志物和非蛋白酶類生物學(xué)標(biāo)志物。
1.1 蛋白酶類生物學(xué)標(biāo)志物
泛素羧基末端水解酶-L1(ubiquitin carboxylter-minal hydrolase-L1,UCH-L1)是一種小分子蛋白質(zhì),其分子量?jī)H有24 kD左右,由兩百多個(gè)氨基酸殘基構(gòu)成,類似球形結(jié)構(gòu)。UCH-L1廣泛存在于大腦組織,并在神經(jīng)元中高度表達(dá)?,F(xiàn)已證明UCH-L1具有雙重活性——連接酶活性和水解酶活性。其水解酶活性回收泛素分子,而連接酶活性連接泛素分子。通過兩種活性調(diào)節(jié)神經(jīng)細(xì)胞增殖、分化、凋亡等一系列過程,參與神經(jīng)系統(tǒng)多種疾病的發(fā)生發(fā)展[7]。早產(chǎn)兒由于宮內(nèi)生長(zhǎng)時(shí)間不足,多項(xiàng)生長(zhǎng)發(fā)育指標(biāo)尚未完善,極易合并感染,發(fā)生缺血缺氧、顱腦損傷,血管內(nèi)皮細(xì)胞遭到破壞,血腦屏障崩解,UCH-L1由于分子量小,易于透過受損血腦屏障進(jìn)入外周循環(huán),使得循環(huán)血中UCH-L1水平明顯升高[8]。另外,BIPI發(fā)生后,蛋白降解及細(xì)胞凋亡活動(dòng)明顯增加,UCH-L1參與調(diào)控靶向蛋白降解、細(xì)胞凋亡進(jìn)程,故而腦損傷后其在體內(nèi)水平顯著升高。研究表明腦損傷早產(chǎn)兒血清UCH-L1水平明顯高于無(wú)腦損傷早產(chǎn)兒[9]。陸金翩等[10]發(fā)現(xiàn)血清UCH-L1水平與腦損傷程度呈顯著正相關(guān),與新生兒行為神經(jīng)評(píng)分(neonatal behavioral neurological assessment,NBNA)呈負(fù)相關(guān)關(guān)系。上述研究提示UCH-L1水平檢測(cè)對(duì)BIPI病情判斷、預(yù)后評(píng)估意義重大。
1.2 非蛋白酶類生物學(xué)標(biāo)志物
高遷移率族蛋白B1(high-mobility group box-1,
HMGB1)是一種典型的損傷相關(guān)促炎因子,其在神經(jīng)元及神經(jīng)膠質(zhì)細(xì)胞表面廣泛表達(dá)。當(dāng)缺血缺氧、感染、產(chǎn)傷、顱內(nèi)出血等各種危險(xiǎn)因素導(dǎo)致早產(chǎn)兒腦組織損傷時(shí),受損細(xì)胞被動(dòng)釋放HMGB1進(jìn)入血液循環(huán)。HMGB1入血后便可通過結(jié)合3種受體(RAGE、TLR2及TLR4)增加炎癥細(xì)胞的遷移、黏附能力,促進(jìn)血管內(nèi)皮細(xì)胞大量釋放炎性因子。這些炎癥因子又反過來促使HMGB1分泌釋放,進(jìn)而形成惡性循環(huán),觸發(fā)一系列瀑布式級(jí)聯(lián)效應(yīng),使得炎癥反應(yīng)持續(xù)進(jìn)行,顱腦損傷更加嚴(yán)重[11]。BIPI發(fā)生后血清HMGB1水平明顯升高,且隨著病情變化基本呈現(xiàn)動(dòng)態(tài)波動(dòng),提示HMGB1動(dòng)態(tài)監(jiān)測(cè)有助于時(shí)刻把握腦損傷早產(chǎn)兒病情變化。王永霞等[12]通過病例對(duì)照研究發(fā)現(xiàn)早產(chǎn)兒血清HMGB1水平變化能夠反映顱腦損傷嚴(yán)重程度,即血清HMGB1含量越高,腦組織損傷程度越重,從而更有證據(jù)推測(cè)HMGB1參與顱腦損傷的發(fā)生過程,這一結(jié)論與Paudel等[13]的研究發(fā)現(xiàn)基本一致。因而,通過HMGB1水平檢測(cè)可以間接反映顱腦損傷嚴(yán)重與否。此外,有研究顯示UCH-L1、HMGB1聯(lián)合膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein,GFAP)共同診斷BIPI價(jià)值更高[14]。
2 脂質(zhì)類生物學(xué)標(biāo)志物
24S-羥基膽固醇(24S-hydroxycholesterol,24S-
OHC)和維生素D等脂質(zhì)標(biāo)志物因分子結(jié)構(gòu)較為特殊,故而能夠自由穿梭血腦屏障,腦損傷發(fā)生后外周血中脂質(zhì)類標(biāo)志物含量顯著升高,且其升高程度可以間接提示顱腦損傷情況[15]。根據(jù)來源不同,可將其分為腦源性脂質(zhì)類標(biāo)志物和非腦源性脂質(zhì)類標(biāo)志物。
2.1 腦源性脂質(zhì)類標(biāo)志物
24S-HC是一種腦源性膽固醇代謝衍生物,主要存在于神經(jīng)元中,病理?xiàng)l件下,也可從神經(jīng)膠質(zhì)細(xì)胞內(nèi)提取少量24S-HC。作為一種氧化甾醇,24S-HC合成速率相對(duì)較低,分解代謝極為活躍,能夠自由穿過血腦屏障[15]。BIPI發(fā)生后,氧自由基大量產(chǎn)生,加之谷氨酸等毒性物質(zhì)不斷積累,從而激活腦特異性細(xì)胞色素P450 46A1(CYP46A1),后者催化24S-HC生成增多,24-HC通過血腦屏障進(jìn)入外周循環(huán),最終進(jìn)入肝臟被其降解。Lu等[16]研究發(fā)現(xiàn)新生小鼠大腦缺血缺氧6 h
和24 h后,血清24S-HC濃度顯著升高,且腦內(nèi)梗死面積越大24S-HC濃度越高,小鼠運(yùn)動(dòng)能力、認(rèn)知能力越差,提示血清24S-HC水平高低與腦損傷發(fā)生與否及其嚴(yán)重程度可能有關(guān)。Sun等[17]研究進(jìn)一步證實(shí)內(nèi)、外源性24S-HC均能通過激活n-甲基-d-天冬氨酸受體(NMDARs)加劇早產(chǎn)患兒顱腦損傷。劉冉等[18]研究顯示檢測(cè)血清24-HC含量評(píng)估BIPI的靈敏度為85.3%,特異度為82.5%。上述研究結(jié)果表明24S-HC水平對(duì)檢測(cè)BIPI具有一定臨床價(jià)值。
2.2 非腦源性脂質(zhì)類標(biāo)志物
維生素D本質(zhì)上是一種脂溶性類固醇衍生物,具有強(qiáng)大生物活性及多種生理功能。除了調(diào)節(jié)鈣磷代謝、影響骨骼發(fā)育,維生素D還具有神經(jīng)保護(hù)、損傷修復(fù)等重要價(jià)值,在早產(chǎn)兒神經(jīng)發(fā)育過程中扮演關(guān)鍵角色。循環(huán)血中,維生素D通過結(jié)合維生素D結(jié)合蛋白到達(dá)大腦組織,并與相應(yīng)受體相互作用,下調(diào)促炎因子,上調(diào)抗炎因子,抑制炎癥反應(yīng),避免神經(jīng)損傷;此外,還能促進(jìn)神經(jīng)營(yíng)養(yǎng)因子分泌,降低氧化應(yīng)激反應(yīng),減少Ca+內(nèi)流,防止Ca+超載,減少神經(jīng)毒性物質(zhì)過量產(chǎn)生,保護(hù)神經(jīng)細(xì)胞免受傷害。女性妊娠期間,尤其妊娠后期,胎兒可通過胎盤從母親體內(nèi)獲取維生素D,早產(chǎn)兒由于本身存在各種不良因素,大腦白質(zhì)更易受損,出生時(shí)胎齡不滿37周,體內(nèi)維生素D儲(chǔ)備明顯不足,無(wú)法發(fā)揮控制炎癥反應(yīng)、修復(fù)受損組織等多種保護(hù)作用,致使腦組織進(jìn)一步受到損害。近年來,諸多臨床試驗(yàn)表明相較于無(wú)腦損傷早產(chǎn)兒,腦損傷早產(chǎn)兒各時(shí)間點(diǎn)(生后1 d、
7 d、14 d)血清25-羥維生素D濃度明顯降低,且腦損傷患兒血清25-羥維生素D濃度呈現(xiàn)先降后升動(dòng)態(tài)波動(dòng)[19]。Cui等[20]通過構(gòu)建小鼠實(shí)驗(yàn)?zāi)P停l(fā)現(xiàn)維生素D缺乏與缺血性腦損傷不良結(jié)局關(guān)聯(lián)緊密。另外,和燦琳等[21]研究發(fā)現(xiàn),血清25-羥維生素D水平高低與BIPI預(yù)后評(píng)分(NANB神經(jīng)行為測(cè)試評(píng)分)呈正相關(guān)。由此說明,25-羥維生素D動(dòng)態(tài)監(jiān)測(cè)對(duì)BIPI的早期診斷、預(yù)后評(píng)估具有重要參考價(jià)值。
3 核酸類生物學(xué)標(biāo)志物
人類基因組中存在大量非編碼RNA(non-coding RNAs,ncRNAs),它們雖然不編碼蛋白,卻調(diào)控著基因的轉(zhuǎn)錄、翻譯,參與核酸的加工、修飾,影響蛋白的穩(wěn)定、轉(zhuǎn)運(yùn)。ncRNAs包括組成性ncRNAs和調(diào)控性ncRNAs。其中,調(diào)控性ncRNAs根據(jù)長(zhǎng)度不同又可分為長(zhǎng)鏈ncRNAs(lncRNAs)及短鏈ncRNAs[22-24]。
3.1 LncRNAs
LncRNAs數(shù)量豐富,分布廣泛,除了生殖系統(tǒng)外,它在神經(jīng)系統(tǒng)也高度表達(dá)。大量研究證實(shí)lncRNAs可分別于轉(zhuǎn)錄前、轉(zhuǎn)錄時(shí)及轉(zhuǎn)錄后3個(gè)層面調(diào)控基因表達(dá),參與神經(jīng)細(xì)胞增殖、分化、存活、凋亡、遷移和侵襲等各種生命活動(dòng),影響大腦發(fā)育水平,并與多種神經(jīng)疾病息息相關(guān)[25]。BIPI發(fā)生后,lncRNAs經(jīng)由受損神經(jīng)細(xì)胞分泌進(jìn)入腦脊液中,隨后通過血-腦脊液屏障進(jìn)入外周循環(huán)。多數(shù)臨床研究表明,與早產(chǎn)兒無(wú)腦損傷組相比,腦損傷組血清lncRNA GAS5相對(duì)表達(dá)水平明顯較高[26-27],提示lncRNAs可能成為早期診斷BIPI的標(biāo)志分子。趙寶君等[28]通過臨床試驗(yàn)發(fā)現(xiàn)早產(chǎn)兒外周血中l(wèi)ncRNA CRNDE濃度高低能夠間接反映顱腦損傷嚴(yán)重程度。美國(guó)學(xué)者Patel等[29]經(jīng)過體外實(shí)驗(yàn)發(fā)現(xiàn),外源給予lncRNA MALAT1后腦損傷實(shí)驗(yàn)鼠運(yùn)動(dòng)行為能力明顯恢復(fù)。另外,Lapikova-Bryhinska等[30]研究發(fā)現(xiàn)顱腦損傷患者死亡風(fēng)險(xiǎn)與血清lncRNA H19含量呈正相關(guān),與lncRNA NKILA水平高低呈負(fù)相關(guān)。盡管已有研究顯示lncRNAs與腦損傷預(yù)后情況關(guān)系密切,但目前并無(wú)文獻(xiàn)直接表明lncRNAs與早產(chǎn)兒顱腦損傷預(yù)后之間的關(guān)聯(lián),這有待進(jìn)一步研究。
3.2 微小RNA
微小RNA(microRNAs,miRNAs)是一類內(nèi)源性非編碼單鏈RNA,其分子量較小,通常由19~28個(gè)核苷酸構(gòu)成,這使得它們能夠輕松通過血腦屏障進(jìn)入外周循環(huán)。目前,越來越多的證據(jù)表明miRNAs具有組織特異性和細(xì)胞特異性,且絕大多數(shù)miRNAs特異表達(dá)于神經(jīng)系統(tǒng)。早產(chǎn)兒顱腦損傷發(fā)生后,miRNAs通過結(jié)合靶基因(mRNA)的3'-非翻譯區(qū),實(shí)現(xiàn)降解目標(biāo)基因,阻礙翻譯進(jìn)程,抑制相應(yīng)蛋白合成,以此完成轉(zhuǎn)錄后的基因表達(dá)調(diào)控,從而加重大腦組織損傷或是抑制神經(jīng)損傷反應(yīng)。此外,特定的miRNAs還與炎癥反應(yīng)密切相關(guān),它們通過調(diào)節(jié)炎癥細(xì)胞分泌炎癥因子,打破患兒體內(nèi)炎癥、抗炎動(dòng)態(tài)平衡,造成顱腦損傷更加嚴(yán)重。miRNAs還參與多種細(xì)胞生命過程,并在許多神經(jīng)疾病的發(fā)生和發(fā)展中發(fā)揮關(guān)鍵作用[24]。已有研究表明,BIPI發(fā)生后血清RNA-20a-5p、RNA-128-3p含量明顯上升,而且隨著顱腦損傷程度加重,血清中這兩種miRNA含量逐漸增大,此外,RNA-20a-5p、RNA-128-3p聯(lián)合預(yù)測(cè)BIPI發(fā)生情況的價(jià)值更高[31]。He等[32]認(rèn)為miRNA-192-5p能夠顯著減輕神經(jīng)炎癥反應(yīng),減少小鼠大腦梗死體積,降低顱腦損傷嚴(yán)重程度。Van der Auwera等[33]研究表明miR-425-5p通過影響某些基因(如:SH3PXD2A)表達(dá),從而間接損傷大腦白質(zhì)。上述研究說明某些miRNAs有潛力成為早期診斷BIPI的潛在生物學(xué)標(biāo)志物。
4 糖蛋白類生物學(xué)標(biāo)志物
少突膠質(zhì)細(xì)胞髓鞘糖蛋白(oligodendrocyte myelin glycoprotein,OMgp)是一種中樞神經(jīng)系統(tǒng)特異性糖蛋白,分子量為120 kD左右。作為中樞神經(jīng)系統(tǒng)3種軸突生長(zhǎng)抑制因子之一,其主要錨定于神經(jīng)膠質(zhì)細(xì)胞及神經(jīng)髓鞘表面。早產(chǎn)兒發(fā)生顱腦損傷后,神經(jīng)元特異性烯醇化酶(neuron specific enolase,NSE)含量顯著增加,完成損傷修復(fù)反應(yīng),隨著時(shí)間延長(zhǎng),破壞程度逐漸減輕,患兒體內(nèi)NSE水平緩慢下降,OMgp繼之明顯升高,用以抑制神經(jīng)細(xì)胞修復(fù)反應(yīng)。先前有研究發(fā)現(xiàn)OMgp缺失小鼠腦損傷發(fā)生后軸突再生能力明顯增強(qiáng)[34]。隨著研究進(jìn)展,Koper-Lenkiewicz等[35]發(fā)現(xiàn)相對(duì)于NgR1(OMgp受體)野生型腦損傷患者,NgR1突變患者神經(jīng)損傷恢復(fù)功能明顯改善,由此可知,OMgp通過結(jié)合特定受體NgR1,抑制軸突生長(zhǎng)、髓鞘形成和細(xì)胞增殖,阻礙神經(jīng)損傷修復(fù)進(jìn)程。張軍等[36]研究表明腦損傷早產(chǎn)兒入院后6 h、3 d、7 d血清OMgp水平相較于無(wú)腦損傷組明顯升高,且損傷后第3日血清OMgp含量達(dá)到高峰。上述研究提示OMgp動(dòng)態(tài)監(jiān)測(cè)對(duì)腦損傷早產(chǎn)兒的及時(shí)診斷、早期干預(yù)具有重要意義。
5 其他生物學(xué)標(biāo)志物
除上述顱腦損傷標(biāo)志分子,還有一些生物學(xué)標(biāo)志物對(duì)判斷BIPI發(fā)生、嚴(yán)重程度及預(yù)后情況具有重要意義。早產(chǎn)兒腦組織損傷后,腦脊液或外周血中某類細(xì)胞因子(諸如IL-1、IL-6、TNF-α)的水平會(huì)迅速升高,因此,檢測(cè)這些因子水平變化能夠早期判斷顱腦損傷情況[37]。此外,一些羧酸類化合物(如乳酸、琥珀酸、γ-氨基丁酸)及氨基酸類代謝物質(zhì)(如丙氨酸、谷氨酸)均能在一定程度上展現(xiàn)出較高的診斷價(jià)值。Helbok等[38]的隊(duì)列研究發(fā)現(xiàn),缺血性腦損傷發(fā)生后血清鐵蛋白含量呈現(xiàn)明顯上升趨勢(shì),進(jìn)一步的研究證實(shí)血清鐵蛋白水平高低既能反映近期預(yù)后也能反映遠(yuǎn)期預(yù)后。另外,臨床實(shí)踐亦證明促紅細(xì)胞生成素、褪黑素等血清學(xué)標(biāo)志物與BIPI密切相關(guān),這些標(biāo)志物不僅具備早期診斷效能,還能作為治療藥物減輕早產(chǎn)兒顱腦損傷程度,改善患兒預(yù)后[39]。
6 總結(jié)與展望
綜上所述,一些腦損傷生物學(xué)標(biāo)志物(如HMGB1、UCH-L1、24S-OHC、維生素D、lncRNAs、
miRNAs、OMgp等)以其靈活、簡(jiǎn)便、及時(shí)、準(zhǔn)確的特點(diǎn)日益受到重視。在這些標(biāo)志物中,蛋白類生物學(xué)標(biāo)志物(如UCU-L1、HMGB1)最為經(jīng)典且最為普遍,可以作為現(xiàn)有有創(chuàng)檢查的替代指標(biāo),然而為了更準(zhǔn)確地應(yīng)用于臨床,需要在更廣泛的患兒群體中進(jìn)一步探索BIPI患兒體內(nèi)這些標(biāo)志物的濃度范圍。近年來,一些新興生物學(xué)標(biāo)志物(如lncRNAs、miRNAs、24S-HC、OMgp等)因其分子量小,易于透過血腦屏障進(jìn)入外周循環(huán),且具有含量豐富、能夠穩(wěn)定存在、便于檢測(cè)等優(yōu)點(diǎn),同樣有望成為BIPI早期評(píng)估的優(yōu)良指標(biāo)。值得注意的是,對(duì)于BIPI,維生素D不僅具有診斷價(jià)值,還能作為治療手段,抑制炎癥反應(yīng),促進(jìn)損傷修復(fù)。此外,依靠單一的生物學(xué)標(biāo)志物可能不足以對(duì)BIPI進(jìn)行全面的診斷,多種生物學(xué)標(biāo)志物聯(lián)合診斷、共同評(píng)估能夠明顯提高診斷效能,實(shí)現(xiàn)更高的特異度和靈敏度,從而為早產(chǎn)兒腦損傷的早期識(shí)別和管理提供更為精確的科學(xué)依據(jù)。
參 考 文 獻(xiàn)
[1] PRISTNER M, WASINGER D, SEKI D, et al. Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury[J]. Cell Rep Med, 2024, 5(4): 101480. DOI: 10.1016/j.xcrm.2024.101480.
[2] ZHU T, ZHANG S, JIANG W, et al. A multiplanar radiomics model based on cranial ultrasound to predict the white matter injury in premature infants and an analysis of its correlation with neurodevelopment[J]. J Ultrasound Med, 2024, 43(5): 899-911. DOI: 10.1002/jum.16419.
[3] KARIMI A, SET?NEN S, LARSSON E, et al. Brain MRI findings and their association with visual impairment in young adolescents born very preterm[J]. Neuroradiology, 2024, 66(1): 145-154. DOI: 10.1007/s00234-023-03235-5.
[4] ROYCHAUDHURI S, C?Té-CORRIVEAU G, ERDEI C, et al. White matter injury on early-versus-term-equivalent age brain MRI in infants born preterm[J]. AJNR Am J Neuroradiol, 2024, 45(2): 224-228. DOI: 10.3174/ajnr.A8105.
[5] BUCHMAYER J, KASPRIAN G, JERNEJ R, et al. Magnetic resonance imaging-based reference values for two-dimensional quantitative brain metrics in a cohort of extremely preterm infants[J]. Neonatology, 2024, 121(1): 97-105. DOI: 10.1159/000534009.
[6] 郭予濤, 黃楚君, 張利濱, 等. 血清S100B蛋白測(cè)定對(duì)兒童自身免疫性腦炎早期識(shí)別的臨床意義[J].新醫(yī)學(xué), 2023, 54(7): 506-510. DOI: 10.3969/j.issn.0253-9802.2023.07.010.
GUO Y T, HUANG C J, ZHANG L B, et al. Clinical significance of serum S100B protein determination for early recognition of autoimmune encephalitis in children[J]. J New Med, 2023, 54(7): 506-510. DOI: 10.3969/j.issn.0253-9802.2023.07.010.
[7] HICKS C, DHIMAN A, BARRYMORE C, et al. Traumatic brain injury biomarkers, simulations and kinetics[J]. Bioengineering (Basel), 2022, 9(11): 612. DOI: 10.3390/bioengineering9110612.
[8] RICHTER S, WINZECK S, CZEITER E, et al. Serum biomarkers identify critically ill traumatic brain injury patients for MRI[J]. Critical Care, 2022, 26(1): 369-369. DOI: 10.1186/s13054-022-04250-3.
[9] OLDAK L, CHLUDZINSKA-KASPERUK S, MILEWSKA P, et al. MMP-1, UCH-L1, and 20S proteasome as potential biomarkers supporting the diagnosis of brain glioma[J]. Biomolecules, 2022, 12(10): 1477. DOI: 10.3390/biom12101477.
[10] 陸金翩, 顧水均. UCH-L1、GFAP及NSE在新生兒腦損傷中的檢測(cè)價(jià)值分析[J]. 中國(guó)婦幼保健, 2022, 37(3): 453-455. DOI: 10.19829/j.zgfybj.issn.1001-4411.2022.03.020.
LU J P, GU S J. Analysis of the detection value of UCH-L1, GFAP and NSE in neonatal brain injury[J]. Child Health Care China, 2022, 37(3): 453-455. DOI: 10.19829/j.zgfybj.issn.1001-4411.2022.03.020.
[11] CHEN S, PAN J, GONG Z, et al. Hypochlorous acid derived from microglial myeloperoxidase could mediate high-mobility group box 1 release from neurons to amplify brain damage in cerebral ischemia-reperfusion injury[J]. J Neuroinflammation, 2024, 21(1): 70. DOI: 10.1186/s12974-023-02991-8.
[12] 王永霞, 丁學(xué)星, 李月花. 缺氧缺血性腦病新生兒血清MBP、HMGB1、IL-23與IL-17的變化及與預(yù)后的相關(guān)性[J]. 中國(guó)實(shí)用神經(jīng)疾病雜志, 2022, 25(12): 1501-1506. DOI: 10.12083/
SYSJ.221560.
WANG Y X, DING X X, LI Y H. Changes of serum MBP, HMGB1, IL-23 and IL-17 in neonates with hypoxic-ischemic encephalopathy and their correlation with prognosis[J]. Chin J Pract Nerv Dis, 2022, 25(12): 1501-1506. DOI: 10.12083/SYSJ.221560.
[13] PAUDEL Y N, ANGELOPOULOU E, PIPERI C, et al. HMGB1-mediated neuroinflammatory responses in brain injuries: potential mechanisms and therapeutic opportunities[J]. Int J Mol Sci, 2020, 21(13): 4609. DOI: 10.3390/ijms21134609.
[14] 王濤, 李玉鳳, 王昕升, 等. 血清HMGB1、GFAP、UCH-L1對(duì)窒息早產(chǎn)兒腦損傷的診斷價(jià)值[J].國(guó)際檢驗(yàn)醫(yī)學(xué)雜志, 2021, 42(13): 1549-1553. DOI: 10.3969/j.issn.1673-4130.
2021.13.004.
WANG T, LI Y F, WANG X S, et al. Diagnostic value of serum HMGB1, GFAP and UCH-L1 in brain injury of asphyxiated premature infants[J]. Inter Natl J Lab Med, 2021, 42(13): 1549-1553. DOI: 10.3969/j.issn.1673-4130.2021.13.004.
[15] SODERO A O. 24S-hydroxycholesterol: cellular effects and variations in brain diseases[J]. J Neurochem, 2021, 157(4): 899-918. DOI: 10.1111/jnc.15228.
[16] LU F, ZHU J, GUO S, et al. Upregulation of cholesterol 24-hydroxylasefollowing hypoxia-ischemia in neonatal mousebrain[J]. Pediatr Res, 2018, 83(6): 1218-1227. DOI: 10.1038/pr.2018.49.
[17] SUN M Y, TAYLOR A, ZORUMSKI C F, et al. 24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampalneuronal survival following oxygen-glucose deprivation[J]. PLoS One, 2017, 12(3): e0174416. DOI: 10.1371/journal.pone.0174416.
[18] 劉冉, 葉黎離, 王軍. 血清24S-HC及其聯(lián)合S100-β、NSE在早產(chǎn)兒腦損傷及預(yù)后評(píng)估中的預(yù)測(cè)價(jià)值[J]. 四川醫(yī)學(xué), 2022, 43(4): 378-382. DOI: 10.16252/j.cnki.issn1004-0501-2022.04.012.
LIU R, YE L L, WANG J. Predictive value of serum 24S-HC and its combination with S100-β and NSE in the assessment of brain injury and prognosis in premature infants[J]. Sichuan Med J, 2022, 43(4): 378-382. DOI: 10.16252/j.cnki.issn1004-0501-2022.04.012.
[19] 李明磊, 孟令建, 杜薇薇, 等. 腦損傷早產(chǎn)兒血清25-羥維生素D水平變化及其與 IL-17、IL-10 水平的相關(guān)性[J]. 山東醫(yī)藥, 2022, 62(14): 74-77. DOI: 10.3969/j.issn.1002-266X.
2022.14.018.
LI M L, M L J, DU W W, et al. Changes of serum 25-hydroxyvitamin D levels and its correlation with IL-17 and IL-10 levels in premature infants with brain injury[J]. Shandong Med J, 2022, 62(14): 74-77. DOI: 10.3969/j.issn.1002-266X.2022.14.018.
[20] CUI P, LU W, WANG J, et al. Microglia/macrophages require vitamin D signaling to restrain neuroinflammation and brain injury in a murine ischemic stroke model[J]. J Neuroinflammation, 2023, 20(1): 63. DOI: 10.1186/s12974-023-02705-0.
[21] 和燦琳, 張焱, 奚敏, 等. 血清腦源性神經(jīng)營(yíng)養(yǎng)因子及25羥基維生素D水平與早產(chǎn)兒腦損傷的關(guān)系[J]. 中國(guó)臨床醫(yī)生雜志, 2023, 51(6): 737-740. DOI: 10.3969/j.issn.2095-8552.
2023.06.032.
HE C L, ZHANG Y, XI M, et al. Relationship between serum brain-derived neurotrophic factorand 25-hydroxyvitamin D levels and brain injury in premature infants[J]. Chin J Clinicians, 2023, 51(6): 737-740. DOI: 10.3969/j.issn.2095-8552.2023.06.032.
[22] LI F, YANG Y, ZHANG X, et al. A novel prognostic model of breast cancer based on cuproptosis-related lncRNAs[J]. Oncology, 2024, 15(1): 35-35. DOI: 10.1007/s12672-024-00888-3.
[23] GHASEMIAN M, ZEHTABI M, DARI M A G, et al. The emerging roles of long non-coding RNA (lncRNA) H19 in gynecologic cancers[J]. BMC Cancer, 2024, 24(1): 4. DOI: 10.1186/s12885-023-11743-z.
[24] DAKROUB F, KOBEISSY F, MONDELLO S, et al. MicroRNAs as biomarkers of brain injury in neonatal encephalopathy: an observational cohort study[J]. Sci Rep, 2024, 14(1): 6645. DOI: 10.1038/s41598-024-57166-z.
[25] 張晨昕, 沈越, 劉瑞雪, 等. 低氧誘導(dǎo)因子1α和長(zhǎng)鏈非編碼RNA-SNHG15在腦梗死發(fā)生發(fā)展中的表達(dá)及臨床意義[J]. 系統(tǒng)醫(yī)學(xué), 2022, 7(20): 38-43. DOI: 10.19368/j.cnki.2096-
1782.2022.20.038.
ZHANG C X, SHEN Y, LIU R X, et al. Expression of hypoxic inducible factor 1α and long non-coding RNA-SNHG15 in the occurrence and development of cerebral infarction and its clinical significance[J]. J Systems Med, 2022, 7(20): 38-43. DOI: 10.19368/j.cnki.2096-1782.2022.20.038.
[26] LEI J, ZHANG X, TAN R, et al. Levels of lncRNA GAS5 in plasma of patients with severe traumatic brain injury: correlation with systemic inflammation and early outcome[J]. J Clin Med, 2022, 11(12): 3319. DOI: 10.3390/jcm11123319.
[27] 唐奇瓊, 霍亞玲, 王俊玲, 等. 顱腦超聲聯(lián)合血清lncRNA GAS5水平對(duì)新生兒腦損傷的診斷價(jià)值[J]. 山東第一醫(yī)科大學(xué)(山東省醫(yī)學(xué)科學(xué)院)學(xué)報(bào), 2022, 43(12): 918-923. DOI: 10.3969/j.issn.2097-0005.2022.12.007.
TANG Q Q, HUO Y L, WANG J L, et al. Diagnostic value of craniocerebral ultrasound combined with serum lncRNA GAS5 level in neonatal brain injury[J]. J Shandong First Med Univ(Shandong Acad Med Sci), 2022, 43(12): 918-923. DOI: 10.3969/j.issn.2097-0005.2022.12.007.
[28] 趙寶君, 張衛(wèi)星, 王平, 等. 胎膜早破并發(fā)宮內(nèi)感染產(chǎn)婦LncRNA CRNDE和miR-182表達(dá)及其與新生兒腦損傷的關(guān)系[J]. 中華醫(yī)院感染學(xué)雜志, 2022, 32(3): 466-470. DOI:
10.11816/cn.ni.2022-210563.
ZHAO B J, ZHANG W X, WANG P, et al. Expression of LncRNA CRNDE and miR-182 in pregnant women with premature rupture of fetal membrane complicated with intrauterine infection and their relationship with neonatal brain injury[J]. Chin J Nosocomiol, 2022, 32(3): 466-470. DOI: 10.11816/cn.ni.2022-210563.
[29] PATEL N A, MOSS L D, LEE J Y, et al. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury [J].
J Neuroinflammation, 2018, 15(1): 204. DOI: 10.1186/s12974-018-1240-3.
[30] LAPIKOVA-BRYHINSKA T, MINISTRINI S, PUSPITASARI Y M, et al. Long non-coding RNAs H19 and NKILA are associated with the risk of death and lacunar stroke in the elderly population [J].
Eur J Intern Med, 2023, 123: 94-101. DOI: 10.1016/j.ejim.
2023.11.013.
[31] 朱瑞伍, 郭曉杰, 張慶. 血清微小RNA-20a-5p、微小RNA-128-3p與缺氧缺血性腦病患兒腦神經(jīng)發(fā)育的關(guān)系[J]. 實(shí)用臨床醫(yī)藥雜志, 2023, 27(22): 50-54. DOI: 10.7619/jcmp.
20232224.
ZHU R W, GUO X J, ZHANG Q. Relationship between serum microRNA-20A-5P, microRNA-128-3P and cerebral nerve development in children with hypoxic-ischemic encephalopathy[J].
J Clin Med Pract, 2023, 27(22): 50-54. DOI: 10.7619/jcmp.20232224.
[32] HE W, MENG D L, YANG D, et al. miRNA-192-5p targets Dyrk1a to attenuate cerebral injury in MCAO mice by suppressing neuronal apoptosis and neuroinflammation[J]. Folia Histochem Cytobiol, 2023, 61(4): 217-230. DOI: 10.5603/fhc.96703.
[33] VAN DER AUWERA S, AMELING S, WITTFELD K, et al. Circulating microRNA miR-425-5p associated with brain white matter lesions and inflammatory processes[J]. Int J Mol Sci, 2024, 25(2): 887. DOI: 10.3390/ijms25020887.
[34] LEE X, HU Y, ZHANG Y, et al. Oligodendrocyte differentiation and myelination defects in OMgp 1 mice[J]. Mol Cell Neurosci, 2011, 46(4): 752-761. DOI: 10.1016/j.mcn.2011.02.008.
[35] KOPER-LENKIEWICZ O M, MILEWSKA A J. Myelin-associated proteins are potential diagnostic markers in patients with primary brain tumour[J]. Ann Med, 2021, 53(1): 1710-1721. DOI: 10.1080/07853890.2021.1983205.
[36] 張軍, 劉娟, 胡金繪, 等. 血漿少突膠質(zhì)細(xì)胞髓鞘糖蛋白水平變化在診斷早產(chǎn)兒腦損傷中的價(jià)值[J]. 中華全科醫(yī)學(xué), 2021, 19(1): 69-72. DOI: 10.16766/j.cnki.issn.1674-4152.
001733.
ZHANG J, LIU J, HU J H, et al. The value of plasma oligodendrocyte myelin glycoprotein level in the diagnosis of brain injury in premature infants[J]. Chin J Gen Med, 2021, 19(1): 69-72. DOI: 10.16766/j.cnki.issn.1674-4152.001733.
[37] LINDBLAD C, ROSTAMI E, HELMY A. Interleukin-1 receptor antagonist as therapy for traumatic brain injury[J]. Neurotherapeutics, 2023, 20(6): 1508-1528. DOI: 10.1007/s13311-023-01421-0.
[38] HELBOK R, RASS V, KOFLER M, et al. Intracerebral iron accumulation may be associated with secondary brain injury in patients with poor grade subarachnoid hemorrhage[J]. Neurocrit Care, 2022, 36(1): 171-179. DOI: 10.1007/s12028-021-01278-1.
[39] MA L M, SI X, ZHAI S F, et al. Recombinant erythropoietin protective and related effects on brain injury in premature infants [J].
Eur Rev Med Pharmacol Sci, 2023,27(22):10958-10967. DOI: 10.26355/eurrev_202311_34464.
(責(zé)任編輯:鄭巧蘭)