【摘要】 鐵死亡是一種新發(fā)現(xiàn)的細(xì)胞程序性死亡方式,主要由細(xì)胞內(nèi)鐵依賴性脂質(zhì)過氧化物積累引起,在形態(tài)學(xué)、生物化學(xué)和遺傳學(xué)上不同于以往報(bào)道的細(xì)胞凋亡、壞死和自噬。阿爾茨海默?。ˋD)是最常見的神經(jīng)退行性疾病,其病理特征包括神經(jīng)纖維纏結(jié)、老年斑及鐵的異常沉積等,提示鐵死亡可能參與其發(fā)病的進(jìn)展。探討鐵死亡的發(fā)生機(jī)制及其在AD中的作用,以期為鐵死亡在神經(jīng)退行性疾病中的研究提供參考。
【關(guān)鍵詞】 鐵死亡 發(fā)生機(jī)制 神經(jīng)退行性疾病 阿爾茨海默病
The Role of Ferroptosis in Alzheimer's Disease/FU Shiqing, YANG Jie, WANG Fang. //Medical Innovation of China, 2024, 21(18): -188
[Abstract] Ferroptosis is a newly discovered mode of programmed cell death, mainly caused by the accumulation of iron dependent lipid peroxides in the cell, which is different from apoptosis, necrosis and autophagy in morphology, biochemistry and genetics. Alzheimer's disease (AD) is the most common neurodegenerative disease, and its pathological features include neurofibrillary tangles, age spots and abnormal iron deposition, suggesting that ferroptosis may be involved in the progression of its pathogenesis. Exploring the mechanism of ferroptosis and its role in AD, in order to provide reference for the study of ferroptosis in neurodegenerative diseases.
[Key words] Ferroptosis Occurrence mechanism Neurodegenerative diseases Alzheimer's disease
First-author's address: Department of Physiology, Bijie Medical College, Bijie 551700, China
doi:10.3969/j.issn.1674-4985.2024.18.042
鐵死亡是一種新型的、鐵依賴性的細(xì)胞死亡方式,最早由Dixon等[1]于2012年提出,在細(xì)胞內(nèi),鐵離子可以與細(xì)胞內(nèi)的氧分子反應(yīng),產(chǎn)生有害的自由基,導(dǎo)致細(xì)胞氧化應(yīng)激和損傷。此外,鐵還可以干擾細(xì)胞內(nèi)的能量代謝、DNA修復(fù)和蛋白質(zhì)合成等基本生物過程,最終導(dǎo)致細(xì)胞死亡。近年來的研究發(fā)現(xiàn),鐵死亡在神經(jīng)退行性疾病中發(fā)揮著極其重要的作用,并具有共同的調(diào)控機(jī)制。本綜述將重點(diǎn)討論鐵死亡的發(fā)生機(jī)制及其在阿爾茨海默?。ˋD)中的作用,希望為AD發(fā)病的潛在機(jī)制和治療提供有價(jià)值的策略。
1 鐵與鐵死亡
鐵參與氧的運(yùn)輸和細(xì)胞呼吸、DNA合成和細(xì)胞分裂、細(xì)胞新陳代謝和神經(jīng)傳導(dǎo),對(duì)維持機(jī)體功能和日常新陳代謝至關(guān)重要[2]。鐵在體內(nèi)以氧化狀態(tài)循環(huán)的能力是其生物功能的基礎(chǔ),過量的鐵可導(dǎo)致生物大分子氧化應(yīng)激損傷及細(xì)胞功能障礙。隨著年齡的增長,大腦中積累的鐵將增加神經(jīng)退行性疾病的風(fēng)險(xiǎn)[3]。
鐵死亡是一種鐵依賴的新型細(xì)胞死亡模式,與細(xì)胞凋亡、細(xì)胞壞死和自噬有明顯區(qū)別。其主要機(jī)制是在亞鐵或脂氧合酶的作用下,鐵催化細(xì)胞膜上高表達(dá)不飽和脂肪酸的脂質(zhì)體過氧化反應(yīng),從而誘導(dǎo)細(xì)胞死亡[1]。鐵死亡的形態(tài)特征是線粒體萎縮,雙層膜密度增加,線粒體內(nèi)膜嵴消失,完整的細(xì)胞膜仍然存在,正常大小的線粒體內(nèi)膜的嵴消失[4],但細(xì)胞核內(nèi)沒有染色質(zhì)凝集[5]。大量研究表明,鐵死亡還與細(xì)胞抗氧化系統(tǒng)中谷胱甘肽和谷胱甘肽過氧化物酶4(GPX4)的表達(dá)減少有關(guān)[6-8]。脂質(zhì)過氧化物不能被GPX4催化的還原反應(yīng)代謝,脂質(zhì)在Fenton反應(yīng)中被亞鐵氧化生成大量活性氧促進(jìn)鐵死亡[9-10]。因此,鐵死亡的實(shí)質(zhì)是細(xì)胞內(nèi)脂質(zhì)氧化物代謝紊亂,在鐵離子催化下異常代謝產(chǎn)生大量脂質(zhì)破壞細(xì)胞內(nèi)氧化還原平衡,攻擊生物大分子,引發(fā)細(xì)胞程序性死亡。
2 鐵死亡的發(fā)生機(jī)制
2.1 鐵在神經(jīng)元中的運(yùn)輸和儲(chǔ)存
神經(jīng)元的鐵代謝相關(guān)蛋白1,即轉(zhuǎn)鐵蛋白受體蛋白1(TfR1)在神經(jīng)細(xì)胞膜表面高表達(dá)[11];與腦毛細(xì)血管內(nèi)皮細(xì)胞的轉(zhuǎn)鐵相似,鐵通過網(wǎng)格蛋白介導(dǎo)的Tf/TfR1吞噬作用而進(jìn)入神經(jīng)元,并通過二價(jià)金屬轉(zhuǎn)運(yùn)體(DMT1)以還原二價(jià)鐵離子(Fe2+)的形式離開內(nèi)含體釋放到胞質(zhì)中[12]。朊病毒蛋白(PrPC)作為DMT1的鐵還原酶輔酶,以鐵離子絡(luò)合物的形式介導(dǎo)PrPc/DMT1在質(zhì)膜中的攝取[13]。在大腦中,F(xiàn)e2+通常在神經(jīng)元的胞質(zhì)中代謝,并以三價(jià)鐵離子(Fe3+)的形式儲(chǔ)存在鐵蛋白中;當(dāng)神經(jīng)元缺鐵時(shí),鐵蛋白可被溶酶體降解從而釋放出儲(chǔ)存的鐵以滿足神經(jīng)元的正常生理需要[14]。鐵代謝平衡在翻譯水平上受到調(diào)節(jié)。鐵調(diào)控蛋白2(IRP2)是一種RNA結(jié)合蛋白,在編碼多種鐵調(diào)控分子(包括DMT1和TfR1)的基因的非翻譯區(qū)(UTR)中,IRP1和IRP2與鐵反應(yīng)元件(IREs)結(jié)合從而控制參與鐵代謝相關(guān)蛋白的翻譯。在缺鐵狀態(tài)下,IRP2和IREs的結(jié)合可最大限度地提高細(xì)胞內(nèi)的鐵含量。當(dāng)鐵含量增加時(shí),細(xì)胞外鐵調(diào)節(jié)途徑(IRE/IRP系統(tǒng))將被激活從而降低鐵過載[15]。核受體輔激活因子4(NCOA4)可以降解鐵蛋白并介導(dǎo)鐵自噬,該過程使細(xì)胞內(nèi)Fe2+增加和導(dǎo)致鐵死亡[16]。鐵響應(yīng)元件結(jié)合蛋白2(IREB2)是鐵死亡的調(diào)控因子,能上調(diào)鐵代謝過程中細(xì)胞質(zhì)中鐵蛋白輕鏈和重鏈的表達(dá),減輕鐵死亡誘導(dǎo)劑erastin誘導(dǎo)的鐵死亡[17]。核因子E2相關(guān)因子2(Nrf2)可降低TfR1的表達(dá),調(diào)節(jié)鐵代謝,維持細(xì)胞內(nèi)鐵平衡,限制活性氧(ROS)的產(chǎn)生,從而減少鐵死亡[18]。
2.2 谷氨酸/半胱氨酸反轉(zhuǎn)運(yùn)蛋白在鐵死亡中的作用
細(xì)胞通過谷氨酸/半胱氨酸反轉(zhuǎn)運(yùn)蛋白,即Xc-系統(tǒng),包括12次跨膜蛋白轉(zhuǎn)運(yùn)體溶質(zhì)運(yùn)載家族7成員11(SLC7A11)和單通道跨膜調(diào)節(jié)蛋白溶質(zhì)運(yùn)載家族3成員2(SLC3A2)攝取胱氨酸在鐵死亡發(fā)生中受到抑制[1]。因此,抑制Xc-系統(tǒng)會(huì)導(dǎo)致細(xì)胞內(nèi)半胱氨酸的缺乏[19]。半胱氨酸在谷胱甘肽(GSH)的生物合成中發(fā)揮著重要作用。GSH作為GPX4的底物,是脂質(zhì)修復(fù)功能所必需的,半胱氨酸缺乏引起的GSH耗竭會(huì)導(dǎo)致GPX4活性喪失,以及未修復(fù)的脂質(zhì)過氧化物和鐵毒性的積累[20]。GPX4可以將還原型GSH轉(zhuǎn)化為氧化型谷胱甘肽(GSSG),進(jìn)而把脂質(zhì)過氧化氫還原為相應(yīng)的醇或?qū)⒂坞x過氧化氫還原為水[21]。硒(Se)是GPX4活性的關(guān)鍵調(diào)節(jié)因子,含Se的野生型GPX4可有效地將過氧化物還原為相應(yīng)的醇,從而防止鐵死亡[22]。不穩(wěn)定鐵池(LIP)是神經(jīng)元中易解離鐵離子的交換池,GSH則是Fe2+的天然配體,GSH結(jié)合LIP中的Fe2+以防止鐵氧化,這不僅維持了Fe2+的溶解度,還阻止了Fe2+作為催化劑將生理上可用的氫催化成強(qiáng)氧化劑羥基自由基[23]。因此,直接抑制GSH合成可觸發(fā)鐵死亡。
2.3 脂質(zhì)過氧化在鐵死亡中的作用
ROS是導(dǎo)致鐵死亡的重要因素,其主要來源包括氮氧化合物(NOXs)的產(chǎn)生和膜脂過氧化[1]。多不飽和脂肪酸(PUFAs)在胞質(zhì)中的量和分布決定了細(xì)胞中脂質(zhì)過氧化的程度及導(dǎo)致鐵死亡,最易受影響的脂質(zhì)是含有多不飽和脂肪酸(PUFA-PLs)的磷脂,它可導(dǎo)致細(xì)胞死亡[24]。游離PUFAs通過酯化形成膜磷脂,然后被氧化為鐵離子信號(hào)合成脂質(zhì)信號(hào),特別是含有磷脂酰乙醇胺(PE)和花生四烯酸或腎上腺素部分的磷脂[25]。在膜脂代謝中,PUFAs被一類非血紅素含鐵蛋白脂質(zhì)氧化酶(LOXs)特異性過氧化,最終導(dǎo)致鐵死亡的發(fā)生[26]。
3 鐵死亡與AD
AD的病理學(xué)特征除了β-淀粉樣蛋白(Aβ)沉積和由tau蛋白組成的細(xì)胞內(nèi)神經(jīng)纖維纏結(jié)(NFTs)的積累外[27],鐵在大腦中的異常沉積也是AD的一個(gè)共同特征,鐵對(duì)AD的影響被歸結(jié)于其與AD病理學(xué)的主要蛋白[淀粉樣前體蛋白(APP)和tau蛋白]的相互作用和/或通過鐵介導(dǎo)的促氧化分子(如羥基自由基)的生成[9];鐵積累的潛在原因是組織內(nèi)的衰老細(xì)胞隨著年齡的增長而增加,而鐵積累的衰老細(xì)胞引發(fā)炎癥將導(dǎo)致與衰老相關(guān)的各種病癥,鐵的積累使衰老組織易受氧化應(yīng)激的影響,導(dǎo)致細(xì)胞功能障礙和鐵死亡[28]。此外,腦鐵水平升高與AD進(jìn)展和認(rèn)知能力下降有關(guān)[29]。在300例AD病例的meta分析表明,大腦皮層多個(gè)區(qū)域的鐵水平顯著升高,且不同區(qū)域的鐵水平存在差異[30]。鐵的積累可能導(dǎo)致神經(jīng)退行性變,可能是通過誘導(dǎo)氧化應(yīng)激和鐵死亡[31]。研究發(fā)現(xiàn),腦鐵水平、腦脊液鐵蛋白和定量易感性圖譜具有預(yù)測AD臨床嚴(yán)重程度和認(rèn)知能力下降的潛力[32]。通過對(duì)209例AD患者死后腦鐵水平與死前12年認(rèn)知能力下降之間的關(guān)系研究發(fā)現(xiàn),AD患者腦內(nèi)鐵含量明顯升高,且與認(rèn)知功能明顯相關(guān);皮質(zhì)部位的鐵可能通過誘導(dǎo)氧化應(yīng)激或鐵死亡,或通過與炎癥反應(yīng)相關(guān)聯(lián),導(dǎo)致AD潛在蛋白病變使認(rèn)知功能惡化[33]。
鐵的積累可加速老年斑的沉積和神經(jīng)纖維纏結(jié)的產(chǎn)生[34]。尸檢證據(jù)和核磁共振成像分析證明,不僅在老年斑中存在大量鐵沉積[35],而且在皮質(zhì)tau蛋白聚集部位也存在大量鐵沉積[36],這表明鐵與老年斑和神經(jīng)纖維纏結(jié)存在潛在的相互作用。鐵代謝平衡紊亂是Aβ沉積的關(guān)鍵因素之一。細(xì)胞內(nèi)鐵濃度過高會(huì)增強(qiáng)IRE與IRP的相互作用,誘導(dǎo)APP上調(diào),而裂解APP的α-和β-分泌酶受內(nèi)切蛋白酶furin的調(diào)控,鐵的過量能損傷furin的作用,使α-分泌酶被抑制,而β-分泌酶則被激活,導(dǎo)致Aβ生產(chǎn)增多[37]。有研究認(rèn)為,在沒有氧化還原金屬劑的情況下,Aβ是無毒的,而Aβ的聚集需要金屬的參與[3]。當(dāng)細(xì)胞外鐵增加時(shí),可溶性的Aβ與Fe3+結(jié)合以清除多余的鐵,且相互作用后則很難解離,Aβ可促進(jìn)Fe3+還原成Fe2+,在此過程中釋放的ROS更容易使Aβ迅速沉積并形成更多的老年斑[38]。鐵與APP和Aβ的相互作用大大增加了老年斑形成的速度和程度,鐵沉積可被納入AD的“Aβ級(jí)聯(lián)假說”[39]。鐵還可與tau蛋白相互作用,AD患者大腦中可溶性tau蛋白的減少通過抑制FPN1的活性使腦鐵沉積增加[40]。高鐵飲食會(huì)導(dǎo)致小鼠的認(rèn)知能力下降,神經(jīng)元tau蛋白磷酸化異常增加,胰島素信號(hào)通路的相關(guān)蛋白表達(dá)異常;補(bǔ)充胰島素后可降低鐵誘導(dǎo)的tau蛋白磷酸化,這表明鐵沉積可能通過干擾胰島素信號(hào)通路導(dǎo)致tau蛋白過度磷酸化[41]。
神經(jīng)膠質(zhì)細(xì)胞活化和神經(jīng)炎癥已被證明是AD病理學(xué)的突出特征[42]。小膠質(zhì)細(xì)胞對(duì)大腦中鐵水平升高較為敏感,當(dāng)腦中鐵水平升高時(shí),小膠質(zhì)細(xì)胞被激活,體積增大,長度減少[43]。鐵可能通過核因子κB(NF-κB)介導(dǎo)的促炎因子激活小膠質(zhì)細(xì)胞[44],激活后的小膠質(zhì)細(xì)胞將表達(dá)更多的鐵蛋白以清除細(xì)胞外的鐵,導(dǎo)致細(xì)胞內(nèi)鐵潴留[45],腫瘤壞死因子-α(TNF-α)表達(dá)增加,最終以β-斑塊形式沉積[46]。β-斑塊與APP相互作用,促進(jìn)Aβ的形成[47]。在鐵水平升高的環(huán)境中,Aβ的形成會(huì)導(dǎo)致小膠質(zhì)細(xì)胞中IL-1β的表達(dá)增加,加劇促炎效應(yīng)[48]。另外,星形膠質(zhì)細(xì)胞被增加的膠質(zhì)纖維酸性蛋白(GFAP)激活后,釋放炎癥介質(zhì),誘導(dǎo)氧化應(yīng)激,促進(jìn)Aβ和tau蛋白纏結(jié)的形成,抑制了Aβ的清除[49]。在AD小鼠模型中,GSH在皮層中的表達(dá)減少,并與認(rèn)知能力下降呈正相關(guān),額葉和海馬的GSH水平可作為預(yù)測AD和輕度認(rèn)知障礙的生物標(biāo)志物[33]。在AD患者的大腦中Nrf2的水平隨著年齡的增長而降低,這使鐵死亡更容易發(fā)生[50]。另外,在AD小鼠模型和AD患者大腦中,GPX4的表達(dá)都會(huì)降低,GPX4基因敲除小鼠表現(xiàn)出明顯的海馬神經(jīng)元缺失和認(rèn)知障礙[51-52]。這些結(jié)果表明,鐵死亡在AD中起著關(guān)鍵作用,可導(dǎo)致神經(jīng)元損傷和認(rèn)知能力下降。因此,調(diào)節(jié)腦鐵代謝和減少神經(jīng)元鐵死亡可能是治療AD的一種有前景的方法。
4 展望
鐵死亡是一種新發(fā)現(xiàn)的細(xì)胞死亡形式,表現(xiàn)為鐵超載、脂質(zhì)過氧化物和ROS的積累。越來越多的研究表明鐵死亡在神經(jīng)退行性疾病中發(fā)揮著重要作用[53]。在臨床上,可通過補(bǔ)充外源性脂質(zhì)促進(jìn)細(xì)胞脂質(zhì)過氧化、抑制GPX4和GSH的表達(dá)、補(bǔ)充過氧化氫和鐵離子促進(jìn)腫瘤細(xì)胞的Fenton反應(yīng)等方法誘導(dǎo)鐵死亡。在神經(jīng)退行性疾病治療反面可考慮針對(duì)鐵死亡作為潛在靶點(diǎn)研發(fā)相關(guān)藥物。
參考文獻(xiàn)
[1] DIXON S J,LEMBERG K M,LAMPRECHT M R,et al.
Ferroptosis: an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
[2] CHIFMAN J,LAUBENBACHER R,TORTI S V.A systems biology approach to iron metabolism[J].Adv Exp Med Biol,2014,844:201-225.
[3] BELAIDI A A,BUSH A I.Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics[J].
J Neurochem,2016,139 Suppl 1:179-197.
[4] NIKSERESHT S,BUSH A I,AYTON S.Treating Alzheimer's disease by targeting iron[J].Br J Pharmacol,2019,176(18):3622-3635.
[5] OU M,JIANG Y,JI Y,et al.Role and mechanism of ferroptosis in neurological diseases[J].Mol Metab,2022,61:101502.
[6] ZHU K,ZHU X,LIU S,et al.Glycyrrhizin attenuates hypoxic-ischemic brain damage by inhibiting ferroptosis and neuroinflammation in neonatal rats via the HMGB1/GPX4 pathway[J].Oxid Med Cell Longev,2022:8438528.
[7] ZHAO Y Y,YANG Y Q,SHENG H H,et al.GPX4 plays a crucial role in Fuzheng Kang'ai Decoction-induced non-small cell lung cancer cell ferroptosis[J].Front Pharmacol,2022,13:851680.
[8] ZHAN S,LU L,PAN S S,et al.Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth[J].Br J Cancer,2022,127(2):364-376.
[9] ALBORZINIA H,IGNASHKOVA T I,DEJURE F R,et al.
Golgi stress mediates redox imbalance and ferroptosis in human cells[J].Commun Biol,2018,1:210.
[10] HE Y J,LIU X Y,XING L,et al.Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator[J].Biomaterials,2020,241:119911.
[11] GIOMETTO B,BOZZA F,ARGENTIERO V,et al.Transferrin receptors in rat central nervous system. An immunocytochemical study[J].J Neurol Sci,1990,98(1):81-90.
[12] JUAN T,WEI Z,XIN L L,et al.Lower expression of Ndfip1 is associated with alzheimer disease pathogenesis through decreasing DMT1 degradation and increasing iron influx[J].Frontiers in Aging Neuroence,2018,10:165.
[13] TRIPATHI A K,HALDAR S,QIAN J,et al.Prion protein functions as a ferrireductase partner for ZIP14 and DMT1[J].Free Radic Biol Med,2015,84:322-330.
[14] RAHA A A,BISWAS A,HENDERSON J,et al.Interplay of ferritin accumulation and ferroportin loss in ageing brain: implication for protein aggregation in Down syndrome dementia, Alzheimer's, and Parkinson's diseases[J].Int J Mol Sci,2022,23(3):1060.
[15] LI Y,HUANG X,WANG J,et al.Regulation of iron homeostasis and related diseases[J].Mediators Inflamm,2020:6062094.
[16] LI W,LI W,WANG Y,et al.Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury[J].Cell Death Discov,2021,7(1):267.
[17] MISHIMA E.The E2F1-IREB2 axis regulates neuronal ferroptosis in cerebral ischemia[J].Hypertens Res,2022,45(6):1085-1086.
[18] LI S,ZHENG L,ZHANG J,et al.Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy[J].Free Radic Biol Med,2021,162:435-449.
[19] MA L,ZHANG X,YU K,et al.Targeting SLC3A2 subunit of system X(C)(-)is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma[J].Free Radic Biol Med,2021,168:25-43.
[20] FAN B Y,PANG Y L,LI W X,et al.Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4[J].Neural Regen Res,2021,16(3):561-566.
[21] GASCHLER M M,ANDIA A A,LIU H,et al.FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation[J].Nat Chem Biol,2018,14(5):507-515.
[22] INGOLD I,BERNDT C,SCHMITT S,et al.Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J].Cell,2018,172(3):409-422.
[23] LIU Y,WAN Y,JIANG Y,et al.GPX4: the hub of lipid oxidation, ferroptosis, disease and treatment[J].Biochim Biophys Acta Rev Cancer,2023,1878(3):188890.
[24] DOLL S,PRONETH B,TYURINA Y Y,et al.ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J].Nat Chem Biol,2017,13(1):91-98.
[25] KAGAN V E,MAO G,QU F,et al.Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J].Nat Chem Biol,2017,13(1):81-90.
[26] SHINTOKU R,TAKIGAWA Y,YAMADA K,et al.
Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J].Cancer Sci,2017,108(11):2187-2194.
[27]付曉明,楊任民,汪世靖,等.TMS在神經(jīng)系統(tǒng)變性疾病中的應(yīng)用研究進(jìn)展[J].中國醫(yī)學(xué)創(chuàng)新,2022,19(8):77-83.
[28] MASALDAN S,BUSH A I,DEVOS D,et al.Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration[J].Free Radic Biol Med,2019,133:221-233.
[29] MASALDAN S,BELAIDI A A,AYTON S,et al.Cellular senescence and iron dyshomeostasis in Alzheimer's disease[J].Pharmaceuticals(Basel),2019,12(2):93.
[30] TAO Y,WANG Y,ROGERS J T,et al.Perturbed iron distribution in Alzheimer's disease serum, cerebrospinal fluid,and selected brain regions: a systematic review and meta-analysis[J].J Alzheimers Dis,2014,42(2):679-690.
[31] STOCKWELL B R,F(xiàn)RIEDMANN ANGELI J P,BAYIR H,et al.
Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J].Cell,2017,171(2):273-285.
[32] AYTON S,F(xiàn)AZLOLLAHI A,BOURGEAT P,et al.Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline[J].Brain,2017,140(8):2112-2119.
[33] AYTON S,WANG Y,DIOUF I,et al.Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology[J].Mol Psychiatry,2020,25(11):2932-2941.
[34] KIM A C,LIM S,KIM Y K.Metal ion effects on abeta and tau aggregation[J].Int J Mol Sci,2018,19(1):128.
[35] JAMES S A,CHURCHES Q I,DE JONGE M D,et al.Iron, copper, and zinc concentration in abeta plaques in the APP/PS1 mouse model of AHjM1+r338ch+OPNbLkLln4jVBeR30nBZqd0KSI/vYBQ=lzheimer's disease correlates with metal levels in the surrounding neuropil[J].ACS Chem Neurosci,2017,8(3):629-637.
[36] SPOTORNO N,ACOSTA-CABRONERO J,STOMRUD E,et al.Relationship between cortical iron and tau aggregation in Alzheimer's disease[J].Brain,2020,143(5):1341-1349.
[37] WANG F,WANG J,SHEN Y,et al.Iron dyshomeostasis and ferroptosis: a new Alzheimer's disease hypothesis?[J].Front Aging Neurosci,2022,14:830569.
[38] COLLIN F.Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases[J].Int J Mol Sci,2019,20(10):2407.
[39] PETERS D G,POLLACK A N,CHENG K C,et al.Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer's disease knock-in APP mice[J].Metallomics,2018,10(3):426-443.
[40] RAO S S,ADLARD P A.Untangling tau and iron:exploring the interaction between iron and tau in neurodegeneration[J].Front Mol Neurosci,2018,11:276.
[41] WAN W,CAO L,KALIONIS B,et al.Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling[J].Front Neurol,2019,10:607.
[42] LENG F,EDISON P.Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J].Nat Rev Neurol,2021,17(3):157-172.
[43] DONLEY D W,REALING M,GIGLEY J P,et al.Iron activates microglia and directly stimulates indoleamine-2, 3-dioxygenase activity in the N171-82Q mouse model of Huntington's disease[J/OL].PLoS One,2021,16(5):e0250606.https://doi.org/10.1371/journal.pone.0250606.
[44] MENG F X,HOU J M,SUN T S.In vivo evaluation of microglia activation by intracranial iron overload in central pain after spinal cord injury[J].J Orthop Surg Res,2017,12(1):75.
[45] STREIT W J,ROTTER J,WINTER K,et al.Droplet degeneration of hippocampal and cortical neurons signifies the beginning of neuritic plaque formation[J].J Alzheimers Dis,2022,85(4):1701-1720.
[46] KENKHUIS B,SOMARAKIS A,DE HAAN L,et al.Iron loading is a prominent feature of activated microglia in Alzheimer's disease patients[J].Acta Neuropathol Commun,2021,9(1):27.
[47] TSATSANIS A,MCCORKINDALE A N,WONG B X,et al.
The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Abeta burden through induction of APP amyloidogenic processing[J].Mol Psychiatry,2021,26(10):5516-5531.
[48] NNAH I C,LEE C H,WESSLING-RESNICK M.Iron potentiates microglial interleukin-1beta secretion induced by amyloid-beta[J].J Neurochem,2020,154(2):177-189.
[49] DOLOTOV O V,INOZEMTSEVA L S,MYASOEDOV N F,et al.
Stress-induced depression and Alzheimer's disease: focus on astrocytes[J].Int J Mol Sci,2022,23(9):4999.
[50] OSAMA A,ZHANG J,YAO J,et al.Nrf2: a dark horse in Alzheimer's disease treatment[J].Ageing Res Rev,2020,64:101206.
[51] YOO M H,GU X,XU X M,et al.Delineating the role of glutathione peroxidase 4 in protecting cells against lipid hydroperoxide damage and in Alzheimer's disease[J].Antioxid Redox Signal,2010,12(7):819-827.
[52] HAMBRIGHT W S,F(xiàn)ONSECA R S,CHEN L,et al.Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J].Redox Biol,2017,12:8-17.
[53]劉皎茹,楊惠,王海燕,等.鐵死亡的機(jī)制及其在神經(jīng)退行性疾病中的研究進(jìn)展[J].中國醫(yī)藥導(dǎo)報(bào),2023,20(22):38-42.
(收稿日期:2024-01-27) (本文編輯:馬嬌)