任凌萱 盧子琪 齊威 馮志杰
基金項(xiàng)目:河北省自然科學(xué)基金資助項(xiàng)目(H2021206314);河北省省級(jí)科技計(jì)劃資助項(xiàng)目(22377703D)
引用本文:任凌萱,盧子琪,齊威,等. 基于單細(xì)胞轉(zhuǎn)錄組學(xué)測(cè)序的巨噬細(xì)胞在肝硬化-肝癌疾病進(jìn)展中的功能研究[J]. 中國(guó)全科醫(yī)學(xué),2024,27(29):3654-3663. DOI:10.12114/j.issn.1007-9572.2023.0596. [www.chinagp.net]
REN L X,LU Z Q,QI W,et al. Functional analysis of macrophages in the progression of liver cirrhosis and liver cancer[J]. Chinese General Practice,2024,27(29):3654-3663.
? Editorial Office of Chinese General Practice. This is an open access article under the CC BY-NC-ND 4.0 license.
【摘要】 背景 肝臟巨噬細(xì)胞在構(gòu)建宿主防御機(jī)制及維持機(jī)體內(nèi)環(huán)境穩(wěn)定中發(fā)揮重要作用,也是參與肝臟損傷和修復(fù)的重要細(xì)胞成分。單核細(xì)胞來源的巨噬細(xì)胞在基因調(diào)控以及具體功能方面與肝臟固有巨噬細(xì)胞不盡相同。90%以上的原發(fā)性肝癌發(fā)生在肝硬化的基礎(chǔ)上,巨噬細(xì)胞在肝硬化及肝癌疾病進(jìn)展中的動(dòng)態(tài)變化規(guī)律值得探討。目的 解析不同來源肝臟巨噬細(xì)胞的轉(zhuǎn)錄組學(xué)差異,分析巨噬細(xì)胞在肝硬化-肝癌疾病進(jìn)展中的動(dòng)態(tài)變化規(guī)律,探索預(yù)防肝硬化進(jìn)展為肝癌的潛在策略。方法 本研究通過從GEO數(shù)據(jù)庫獲取健康、肝硬化及肝癌組織的單細(xì)胞轉(zhuǎn)錄組學(xué)數(shù)據(jù)。健康及肝硬化數(shù)據(jù)來自GEO數(shù)據(jù)庫GSE136103數(shù)據(jù)集,取自5例健康肝臟以及5例肝硬化肝臟的數(shù)據(jù)。肝癌數(shù)據(jù)來自GEO數(shù)據(jù)庫GSE149614數(shù)據(jù)集,取自10例肝癌患者的數(shù)據(jù)。通過Seurat軟件包分別對(duì)肝硬化及肝癌樣本的數(shù)據(jù)進(jìn)行聚類,鑒定各個(gè)細(xì)胞類型。將肝硬化樣本中的3簇巨噬細(xì)胞亞群提取后,分析各個(gè)亞群前200個(gè)特異性表達(dá)基因,應(yīng)用Metascape在線分析軟件對(duì)各亞簇特異性表達(dá)基因進(jìn)行功能分析。提取巨噬細(xì)胞亞群肝硬化特異性表達(dá)基因,通過KEGG功能分析探究巨噬細(xì)胞在肝硬化中的功能。將肝硬化以及肝癌單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)通過CellChat軟件包進(jìn)行細(xì)胞間相互作用分析,對(duì)比肝硬化與肝癌樣本巨噬細(xì)胞的細(xì)胞通訊的差異。將健康對(duì)照、肝硬化以及肝癌三者不同來源的巨噬細(xì)胞通過Harmony軟件包去批次效應(yīng),之后導(dǎo)入Monocle軟件包進(jìn)行偽時(shí)序分析,構(gòu)建健康肝臟-肝硬化肝臟-肝癌巨噬細(xì)胞的演變軌跡。利用limma軟件包找尋在健康肝臟-肝硬化肝臟-肝癌巨噬細(xì)胞的演變過程中連續(xù)上調(diào)以及下調(diào)的基因,并進(jìn)行功能富集分析。結(jié)果 對(duì)所有細(xì)胞進(jìn)行無監(jiān)督聚類,根據(jù)標(biāo)記基因表達(dá)情況,共提取出3個(gè)巨噬細(xì)胞亞簇(分別為Mac1,Mac2和Mac3)。其中Mac1起源于組織駐留巨噬細(xì)胞(Kupffer細(xì)胞),Mac2以及Mac3起源于血液?jiǎn)魏思?xì)胞,并且其數(shù)量在肝硬化組織中明顯增多。在肝硬化組織中的Mac1表現(xiàn)了適應(yīng)性免疫系統(tǒng)相關(guān)功能的上調(diào),Mac2以及Mac3亞群均表現(xiàn)出吞噬體相關(guān)功能以及抗原提呈功能的下調(diào)。肝硬化與肝癌樣本中巨噬細(xì)胞與其他類型細(xì)胞的通訊存在巨大的差異。某些細(xì)胞間通訊僅發(fā)生于肝硬化巨噬細(xì)胞中,這包括干擾素Ⅱ(IFN-Ⅱ)以及CD40等信號(hào)通路的細(xì)胞通訊。經(jīng)過去批次效應(yīng)的處理后,對(duì)健康肝臟、肝硬化肝臟以及肝癌巨噬細(xì)胞進(jìn)行偽時(shí)序分析,結(jié)果提示三組數(shù)據(jù)存在特定的時(shí)序關(guān)系。本研究發(fā)現(xiàn)81個(gè)在該過程中連續(xù)下調(diào)的基因,然而未發(fā)現(xiàn)在健康肝臟-肝硬化肝臟-肝癌巨噬細(xì)胞演變過程中連續(xù)上調(diào)的基因。功能分析提示連續(xù)下調(diào)基因存在對(duì)細(xì)菌免疫反應(yīng)的功能富集。結(jié)論 肝硬化巨噬細(xì)胞可以分為3個(gè)亞群,其中Mac1來自肝臟固有Kupffer細(xì)胞,Mac2、Mac3來自血液?jiǎn)魏思?xì)胞。肝硬化中諸多免疫相關(guān)細(xì)胞通訊例如IFN-Ⅱ以及CD40通路在肝癌中消失。健康肝臟-肝硬化肝臟-肝癌巨噬細(xì)胞演變過程存在對(duì)細(xì)菌免疫反應(yīng)的持續(xù)下調(diào),這可能加重了門脈高壓造成的腸道菌群位移的危害。對(duì)于肝硬化患者,盡早地治療門脈高壓造成的腸漏,可能是重要的治療策略。
【關(guān)鍵詞】 巨噬細(xì)胞;肝硬化;肝纖維化;肝腫瘤;單細(xì)胞轉(zhuǎn)錄組學(xué)測(cè)序;細(xì)胞間相互作用
【中圖分類號(hào)】 R 329.24 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2023.0596
Functional Analysis of Macrophages in the Progression of Liver Cirrhosis and Liver Cancer
REN Lingxuan,LU Ziqi,QI Wei*,F(xiàn)ENG Zhijie*
Department of Gastroenterology,the Second Hospital of Hebei Medical University/Hebei Key Laboratory of Gastroenterology/Hebei Institute of Gastroenterology/Hebei Clinical Research Center for Digestive Diseases,Shijiazhuang 050000,China
*Corresponding authors:FENG Zhijie,Chief physician/Professor;E-mail:26300056@hebmu.edu.cn
QI Wei,Associate chief physician;E-mail:28502620@hebmu.edu.cn
REN Lingxuan and LU Ziqi are co-first authors
【Abstract】 Background Hepatic macrophages play a vital role in the defense mechanisms and maintaining the internal environment stability of body,and are also major cellular components involved in liver injury and repair. Macrophages derived from hematopoietic stem cells exhibit distinct gene regulation patterns compared to resident macrophages in the liver. More than 90% of primary liver cancer occurs on the basis of cirrhosis,and the dynamic changes of macrophages in the progression of cirrhosis to hepatocellular carcinoma are worth exploring. Objective To analyze the transcriptomic differences of hepatic macrophages originating from diverse sources,analyze the dynamic pattern of macrophage changes in liver cirrhosis and liver cancer progression,and explore potential strategies for preventing the progression of liver cancer. Methods In this study,single-cell transcriptomics data of healthy,cirrhotic and hepatocellular carcinoma(HCC)tissues were obtained from the Gene Expression Omnibus(GEO)database. The healthy and liver fibrosis data were obtained from the GSE136103 dataset of the GEO database,which included samples from five healthy liver tissues and five liver cirrhosis tissues. The HCC data were obtained from the GSE149614 dataset of the GEO database,which consisted of 21 samples from ten HCC patients. Utilizing the Seurat package,a clustering analysis was conducted on the transcriptomic data derived from liver fibrosis and HCC samples to identify distinct cell types. Notably,three distinctive clusters of macrophage subtypes were identified within the fibrosis samples,from which the top 200 marker genes were extracted. Metascape online analysis software was applied to functionally analyze each subcluster-specific expressed gene. Subgroup-specific expressed genes in liver fibrosis were extracted,and the function of macrophages in cirrhosis was explored by KEGG functional analysis. The CellChat software package was utilized to analyze intercellular interactions within liver fibrosis and HCC single-cell transcriptome data,differences in macrophage communication between cirrhosis and HCC samples were compared. Additionally,normal,fibrotic and cancerous macrophages were extracted,and batch effect correction was performed using the Harmony package. Subsequently,the Monocle package was employed for pseudo-time analysis to construct the developmental trajectory of macrophages spanning from a healthy state to fibrosis and eventually to the HCC microenvironment. The limma package was utilized to find genes that are continuously up-regulated and down-regulated during the evolution of macrophages from healthy state to cirrhotic state and finally to HCC,and functional enrichment analysis was performed. Results Unsupervised clustering was performed,and a total of three macrophage subclusters(designated as Mac1,Mac2,Mac3)were identified based on the expression patterns of marker genes. Mac1 originates from tissue-resident macrophages(Kupffer cells). Mac2 and Mac3 derived from blood monocytes and their numbers were significantly increased in cirrhotic tissue. Mac1 in cirrhotic tissue showed up-regulation of adaptive immune system-related functions. Mac2 and Mac3 subgroups show down-regulation of phagosome-related functions and antigen presentation functions. There were significant differences in communication between macrophages and other cell types in cirrhotic tissue and HCC tissue. Certain intercellular communication occurs only in cirrhotic macrophages,including cell communication of signaling pathways such as IFN-Ⅱ and CD40. After batch effect correction,pseudo-time series analysis was performed on macrophages from healthy liver,liver cirrhosis and HCC,the results suggest that there is a specific temporal relationship between the three groups of macrophages. This study identified 81 genes that were continuously down-regulated during the process,however,no genes were identified that were continuously up-regulated during the evolution of healthy-cirrhotic-HCC macrophage. Functional analysis suggested that the continuously down-regulated genes are functionally enriched for immune responses to bacteria. Conclusion Cirrhotic macrophages can be divided into three subgroups,of which Mac1 derived from liver-resident Kupffer cells and Mac2 and Mac3 derive from blood monocytes. Many immune-related cell communications in liver cirrhosis,such as IFN-Ⅱ and CD40 pathways,disappear in HCC. There is a continuous down-regulation of immune responses to bacteria in the evolution of healthy -cirrhotic-HCC macrophages,which may exacerbate the destructive effect of portal hypertension-induced gut microbiota displacement. For patients with liver cirrhosis,early treatment of portal hypertension-induced intestinal leakage(leaky gut) may be an important treatment strategy.
【Key words】 Macrophages;Liver cirrhosis;Liver fibrosis;Liver neoplasms;Single-cell transcriptomic sequencing;Intercellular interactions
肝硬化是常見的消化系統(tǒng)疾病之一,以肝臟廣泛的纖維化為特征。最近的研究表明,全世界有8.44億人患有慢性肝病,每年有200萬人死亡,發(fā)病率不斷上升,但是目前還沒有有效的抗纖維化的療法[1]。更為重要的是,90%以上的原發(fā)性肝癌發(fā)生在肝硬化的基礎(chǔ)上[2]。相較于其他實(shí)質(zhì)臟器,肝臟中的巨噬細(xì)胞占肝內(nèi)總免疫細(xì)胞比例最高,并且肝臟巨噬細(xì)胞在維持肝臟組織本身乃至整個(gè)機(jī)體的穩(wěn)態(tài)方面具有關(guān)鍵作用。越來越多的證據(jù)表明,除免疫作用外,巨噬細(xì)胞還有其他作用,包括調(diào)節(jié)造血微環(huán)境、影響新陳代謝、介導(dǎo)組織修復(fù)和調(diào)控胚胎組織的成熟等功能[3]。已有研究表明,在硬化的肝臟中,與成纖維相關(guān)的巨噬細(xì)胞起源于血液?jiǎn)魏思?xì)胞的募集分化,聚集于肝纖維化憩室(fibrotic niche),這些巨噬細(xì)胞被稱為肝纖維化憩室相關(guān)巨噬細(xì)胞。肝纖維化憩室相關(guān)巨噬細(xì)胞高表達(dá)的基因包括SPP1、LGALS3、CCL2、CXCL8、PDGFB和VEGFA等[4-7]。單細(xì)胞轉(zhuǎn)錄組學(xué)測(cè)序(single-cell RNA sequencing,scRNA-seq)為臨床對(duì)疾病發(fā)病機(jī)制的研究提供了一種新方法,允許應(yīng)用新的分辨率對(duì)單個(gè)細(xì)胞群進(jìn)行分析[8]。本研究使用scRNA-seq研究肝硬化中各個(gè)巨噬細(xì)胞亞群的轉(zhuǎn)錄組差異,并探討肝硬化進(jìn)展為肝癌的過程中巨噬細(xì)胞相關(guān)基因及通路的動(dòng)態(tài)變化。
1 材料與方法
1.1 單細(xì)胞數(shù)據(jù)的獲取
從GEO(Gene Expression Omnibus)數(shù)據(jù)庫獲取健康、肝硬化及肝癌組織的單細(xì)胞數(shù)據(jù),健康及肝硬化數(shù)據(jù)來自GEO數(shù)據(jù)庫GSE136103數(shù)據(jù)集,包括5例健康肝臟、5例肝硬化肝臟樣本;肝癌數(shù)據(jù)來自GEO數(shù)據(jù)庫GSE149614數(shù)據(jù)集,包括10例肝癌患者的數(shù)據(jù)。
1.2 對(duì)單細(xì)胞數(shù)據(jù)進(jìn)行預(yù)處理:質(zhì)控和標(biāo)準(zhǔn)化
將下載的健康肝臟、肝硬化肝臟以及肝癌的單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù),分別導(dǎo)入Seurat軟件包,進(jìn)行細(xì)胞類型的鑒定。首先對(duì)單細(xì)胞數(shù)據(jù)進(jìn)行質(zhì)控,使用PercentageFeatureSet函數(shù)計(jì)算線粒體比例,過濾掉線粒體比例超過20%的細(xì)胞。然后用NormalizeDate函數(shù)對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,使用全局縮放歸一化方法“LogNormalize”,用總表達(dá)量對(duì)每個(gè)細(xì)胞的基因表達(dá)式進(jìn)行歸一化,再乘以一個(gè)縮放因子(默認(rèn)為10 000),然后對(duì)結(jié)果進(jìn)行l(wèi)og轉(zhuǎn)換。接下來,計(jì)算數(shù)據(jù)集中表現(xiàn)出細(xì)胞間變異的特征基因。用FindVariableFeatures函數(shù)實(shí)現(xiàn),每個(gè)數(shù)據(jù)集返回2 000個(gè)高變基因,這些將用于下游主成分分析(PCA)。ScaleData函數(shù)實(shí)現(xiàn)線性變換,是在PCA降維之前的一個(gè)標(biāo)準(zhǔn)預(yù)處理步驟。接下來,對(duì)縮放的數(shù)據(jù)執(zhí)行PCA。使用JackStraw和Elbow plot命令確定數(shù)據(jù)的維度。應(yīng)用KNN算法進(jìn)行聚類,然后進(jìn)行非線性降維(t-distributed stochastic neighbor embedding,tSNE),利用FindMarkers命令,可以找到各個(gè)細(xì)胞類型中與其他類別的差異表達(dá)基因,作為該細(xì)胞類型的生物學(xué)標(biāo)志基因。對(duì)比CellMakers網(wǎng)站各細(xì)胞標(biāo)記基因進(jìn)行細(xì)胞注釋。應(yīng)用Subset函數(shù)提取出后續(xù)要進(jìn)行分析的巨噬細(xì)胞。
1.3 差異基因的功能分析
在肝硬化巨噬細(xì)胞中特異性上調(diào)以及下調(diào)的基因在應(yīng)用org.Hs.eg.db進(jìn)行基因ID轉(zhuǎn)換后,應(yīng)用clusterProfiler進(jìn)行KEGG功能富集分析。應(yīng)用limma軟件包分析肝硬化-肝癌疾病進(jìn)展特異性上調(diào)以及下調(diào)的基因。
1.4 肝硬化、肝癌巨噬細(xì)胞與其他細(xì)胞間的通訊分析
CellChat是一個(gè)能夠從單細(xì)胞RNA測(cè)序(scRNA-seq)數(shù)據(jù)中定量推斷和分析細(xì)胞間通信網(wǎng)絡(luò)的R包,其需要細(xì)胞的基因表達(dá)數(shù)據(jù)作為輸入,并通過整合基因表達(dá)與信號(hào)配體、受體及其輔助因子之間的相互作用的先驗(yàn)知識(shí)來建立細(xì)胞-細(xì)胞交流的概率,進(jìn)而對(duì)細(xì)胞間通訊做出預(yù)測(cè),并提供多種可視化方法。分別對(duì)肝硬化組織中Mac1、Mac2、Mac3以及肝癌組織巨噬細(xì)胞與其他細(xì)胞進(jìn)行細(xì)胞間通訊分析,得到巨噬細(xì)胞在肝硬化與肝癌組織和各種細(xì)胞通訊的通路,對(duì)比肝硬化以及肝癌組織的特異性通路。
1.5 健康、肝硬化、肝癌組織巨噬細(xì)胞的偽時(shí)序分析
將健康、肝硬化、肝癌組織巨噬細(xì)胞數(shù)據(jù)整合,經(jīng)Harmony包去批次效應(yīng)后,將整合數(shù)據(jù)導(dǎo)入Monocle包,應(yīng)用DDRTree函數(shù)進(jìn)行降維,得出細(xì)胞轉(zhuǎn)化順序。并用differentialGeneTest函數(shù)尋找各組隨偽時(shí)間變化的
基因。
1.6 基于在線分析軟件的功能富集分析
Metascape是一個(gè)功能強(qiáng)大的基因功能注釋分析工具,可進(jìn)行批量基因和蛋白質(zhì)的分析并實(shí)現(xiàn)對(duì)基因功能分析。本研究應(yīng)用Metascape在線分析軟件對(duì)特異性富集基因進(jìn)行功能分析。
2 結(jié)果
2.1 巨噬細(xì)胞亞聚類及其功能分析
提取單核巨噬細(xì)胞數(shù)據(jù),分為10個(gè)細(xì)胞簇,分別為單核細(xì)胞(Mono1,Mono2,Mono3),巨噬細(xì)胞(Mac1,Mac2,Mac3),樹突狀細(xì)胞(cDC1,cDC2,pDC)(圖1A),并使用dittoSeq函數(shù)顯示各個(gè)亞簇在健康組及肝硬化組所占的比例(圖1B),其中Mac1在健康組織中比例較高,Mac2、Mac3在肝硬化組織中所占比例較高。提取3簇巨噬細(xì)胞(圖1C、1D),并顯示各個(gè)亞簇top5標(biāo)記基因(圖1E)。在3簇巨噬細(xì)胞中,Mac1高表達(dá)基因CD163和MARCO,傾向于組織駐留巨噬細(xì)胞(Kupffer細(xì)胞),Mac2以及Mac3高表達(dá)TREM2,CD9和MNDA,傾向于單核細(xì)胞起源的巨噬細(xì)胞(圖1F)。
提取的Mac1、Mac2以及Mac3亞群各自top200標(biāo)記基因,導(dǎo)入網(wǎng)頁分析工具M(jìn)etascape中做功能富集分析探究各簇巨噬細(xì)胞功能(圖2)。Mac1的功能主要為“固有免疫反應(yīng)”“免疫反應(yīng)調(diào)節(jié)”以及“炎癥反應(yīng)”。Mac2的功能主要為“核糖體,細(xì)胞質(zhì)”“含有TRBP的復(fù)合物(DICER、RPL7A、EIF6、MOV10和60S核糖體顆粒的亞基)”以及“核糖體組裝”。Mac3的功能主要為“血管生成”“傷口反應(yīng)”以及“細(xì)胞運(yùn)動(dòng)的正向調(diào)節(jié)”。
將Mac1、Mac2以及Mac3亞群中肝硬化組織特異性上調(diào)以及下調(diào)的基因進(jìn)行分析。結(jié)果發(fā)現(xiàn)Mac1亞群的差異基因主要為上調(diào)基因,Mac2以及Mac3亞群的差異基因主要是下調(diào)基因。后續(xù)對(duì)Mac1中的上調(diào)基因,以及Mac2和Mac3亞群的下調(diào)基因進(jìn)行KEGG功能富集分析(圖3)。根據(jù)KEGG的結(jié)果,在肝硬化組織中的Mac1表現(xiàn)了適應(yīng)性免疫系統(tǒng)(adaptive immune system)的相關(guān)功能的上調(diào)。Mac2以及Mac3亞群均表現(xiàn)出吞噬體(phagosome)相關(guān)功能以及抗原提呈功能的下調(diào)。提示肝硬化中Mac2以及Mac3亞群巨噬細(xì)胞可能存在免疫功能的衰退。
2.2 肝硬化以及肝癌中巨噬細(xì)胞亞群細(xì)胞通訊分析
肝硬化與肝癌樣本中巨噬細(xì)胞與其他類型細(xì)胞的通訊存在巨大的差異(圖4A、4B)。某些細(xì)胞間通訊僅發(fā)生于肝硬化巨噬細(xì)胞中,這包括干擾素(IFN)-Ⅱ以及CD40等信號(hào)通路的細(xì)胞通訊(圖4C、4D)。在肝硬化樣品中,IFN-Ⅱ信號(hào)從T細(xì)胞以及自然殺傷細(xì)胞(NK細(xì)胞)發(fā)出,并且Mac1、Mac2以及Mac3通過IFNGR1以及IFNGR2接收相關(guān)信號(hào)。而CD40信號(hào)的通訊僅存在于單核細(xì)胞起源的Mac2以及Mac3,信號(hào)由T細(xì)胞發(fā)出,由ITGA5、ITGB1、ITGAM以及ITGB2接收。而上述信號(hào)通信均沒有出現(xiàn)在肝癌的樣品中,這反映了從肝硬化到肝癌巨噬細(xì)胞亞群細(xì)胞通訊存在劇烈的變化,IFN-Ⅱ以及CD40等免疫相關(guān)信號(hào)通路減弱,這同樣也是巨噬細(xì)胞存在免疫功能衰退的又一個(gè)證據(jù)。
2.3 巨噬細(xì)胞在肝硬化-肝癌疾病進(jìn)展中的偽時(shí)序分析
肝硬化-肝癌疾病進(jìn)展常經(jīng)過數(shù)年的時(shí)間,本研究充分利用偽時(shí)序分析的技術(shù)對(duì)上述動(dòng)態(tài)過程進(jìn)行了分析。經(jīng)過去批次效應(yīng)后,健康肝臟、肝硬化肝臟以及肝癌巨噬細(xì)胞單細(xì)胞轉(zhuǎn)錄組學(xué)數(shù)據(jù)進(jìn)行了聯(lián)合分析(圖5A)。通過基因表達(dá)的梯度構(gòu)建了健康肝臟、肝硬化肝臟以及肝癌巨噬細(xì)胞的偽時(shí)序分析(圖5B、5C)。整體上說,健康肝臟、肝硬化肝臟巨噬細(xì)胞的時(shí)序較為接近,而肝癌巨噬細(xì)胞距離前兩個(gè)較遙遠(yuǎn)。
2.4 肝硬化-肝癌疾病進(jìn)展中巨噬細(xì)胞的功能分析
健康肝臟、肝硬化肝臟以及肝癌巨噬細(xì)胞的變化可以考慮為同一個(gè)病理生理過程,將健康肝臟與肝硬化肝臟巨噬細(xì)胞的差異基因,肝硬化肝臟與肝癌巨噬細(xì)胞的差異基因分別提取并取交集(圖6A、6B)。結(jié)果未發(fā)現(xiàn)任何連續(xù)上調(diào)的基因。連續(xù)下調(diào)的基因有81個(gè)(圖6C),其功能富集分析提示與細(xì)菌的免疫反應(yīng)高度相關(guān)(圖6D)。由于肝硬化患者門脈壓力上升造成腸道菌群移位,通過門靜脈進(jìn)入肝臟的細(xì)菌以及毒素的增加,進(jìn)一步加重了肝臟的慢性炎癥以及肝硬化的進(jìn)程。而本研究分析發(fā)現(xiàn)一系列巨噬細(xì)胞存在免疫功能衰退的現(xiàn)象,可能會(huì)進(jìn)一步加重上述過程。
3 討論
早期階段的肝硬化常伴隨炎癥反應(yīng),這時(shí)的巨噬細(xì)胞主要扮演著清除細(xì)菌和細(xì)胞垃圾的角色。此外,研究還發(fā)現(xiàn)巨噬細(xì)胞能夠分泌多種細(xì)胞因子,如腫瘤壞死因子α(TNF-α)和白介素(IL)-6等,這些細(xì)胞因子可以促進(jìn)肝細(xì)胞的生長(zhǎng)和修復(fù)[9]。肝硬化的中期階段,隨著炎癥反應(yīng)的加劇,巨噬細(xì)胞逐漸轉(zhuǎn)化為促炎細(xì)胞,釋放大量的炎癥因子和細(xì)胞因子,如IL-1β和IL-18等。這些因子能夠引起肝臟細(xì)胞的凋亡和纖維化,從而加速肝硬化的發(fā)展[10]。在肝硬化晚期階段,巨噬細(xì)胞成為肝臟內(nèi)纖維化細(xì)胞的主要來源之一。巨噬細(xì)胞可以通過分泌轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)等細(xì)胞因子,促進(jìn)肝臟中成纖維細(xì)胞的增生和轉(zhuǎn)化,從而形成肝臟內(nèi)的纖維化病變[11-13]。
有文獻(xiàn)證實(shí)具有血管生成潛力的單核細(xì)胞在肝再生部位積累[14]。并且有研究發(fā)現(xiàn)在慢性肝病期間,巨噬細(xì)胞通過分泌促血管生成生長(zhǎng)因子協(xié)助形成復(fù)雜的血管網(wǎng)絡(luò)[15]。本研究結(jié)果印證了上述觀點(diǎn),Mac2以及Mac3巨噬細(xì)胞亞群作為單核細(xì)胞來源的巨噬細(xì)胞,在功能富集分析中提示了血管生成(angiogenesis)相關(guān)的功能富集。Mac2亞群富集了VEGFA-VEGFR2的信號(hào),而Mac3亞群功能富集分析中排名第一位的即為血管生成。而Mac1亞群作為肝臟固有的Kupffer細(xì)胞,主要發(fā)揮了固有免疫(innate immune)的相關(guān)功能。
肝硬化伴隨著腸肝軸功能的異常,門脈壓力上升造成的腸道水腫導(dǎo)致了腸道菌群失調(diào)、腸道屏障受損和細(xì)菌轉(zhuǎn)位增加[16]。巨噬細(xì)胞作為一種具備抗原提呈功能的細(xì)胞[17],增加的細(xì)菌轉(zhuǎn)位可能會(huì)導(dǎo)致肝硬化組織中巨噬細(xì)胞抗原提呈功能的變化。本研究中發(fā)現(xiàn),肝硬化中的巨噬細(xì)胞確實(shí)表現(xiàn)出抗原提呈功能的富集,但是單核細(xì)胞起源的Mac2以及Mac3巨噬細(xì)胞亞群中出現(xiàn)了抗原提呈功能的下調(diào)。
肝硬化-肝癌疾病進(jìn)展中巨噬細(xì)胞偽時(shí)序以及后續(xù)的功能分析提示了門脈壓力上升造成的腸漏(leaky gut)與巨噬細(xì)胞功能的改變可能具有協(xié)同的效應(yīng)。巨噬細(xì)胞中連續(xù)下調(diào)的基因有81個(gè),其功能富集分析提示與細(xì)菌的免疫反應(yīng)高度相關(guān)。目前已經(jīng)有研究提示了肝硬化患者門脈壓力上升造成了腸道菌群移位[18-19]。肝硬化患者腸道菌群的改變與患者的死亡率相關(guān),并且經(jīng)頸靜脈肝內(nèi)門體分流術(shù)降低門脈壓力后,腸道菌群可以被重構(gòu)[20-21]。巨噬細(xì)胞在肝硬化-肝癌疾病進(jìn)展中免疫功能逐漸消退,“守門員”功能失守,可能是肝硬化形成以及進(jìn)一步進(jìn)展為肝癌的一個(gè)標(biāo)志性事件。
在肝硬化進(jìn)展至肝癌過程通常需要數(shù)年的時(shí)間,由于巨噬細(xì)胞存在眾多持續(xù)表達(dá)下調(diào)的基因,這可能提示肝癌中巨噬細(xì)胞表型可能在數(shù)年前的肝硬化階段已經(jīng)存在。并且這種早期出現(xiàn)衰退的巨噬細(xì)胞表型,由于顯著地富集了針對(duì)細(xì)菌免疫反應(yīng)的功能,可能與門脈高壓之下腸肝軸的異常狀態(tài)有關(guān)。經(jīng)頸靜脈肝內(nèi)門體分流術(shù)是一種潛在的可以通過降低門脈壓力從而減輕腸漏的技術(shù)手段,但是該技術(shù)是否可以通過早期干預(yù)腸道菌群移位減緩肝硬化進(jìn)展至肝癌仍需要更多的研究以及探討。
綜上所述,本研究通過生物信息學(xué)的技術(shù)手段,對(duì)公共數(shù)據(jù)庫中健康肝臟、肝硬化肝臟以及肝癌樣本數(shù)據(jù)的分析,探討了巨噬細(xì)胞在肝硬化-肝癌疾病進(jìn)展中的功能。通過細(xì)胞通訊,偽時(shí)序分析等技術(shù)充分挖掘了肝硬化-肝癌疾病進(jìn)展中巨噬細(xì)胞表型的變化,為以肝臟巨噬細(xì)胞為靶點(diǎn)預(yù)防肝硬化進(jìn)展為肝癌的潛在策略提供了思路。健康肝臟-肝硬化肝臟-肝癌巨噬細(xì)胞演變過程存在對(duì)細(xì)菌免疫反應(yīng)的持續(xù)下調(diào),這可能與門脈高壓造成的腸道菌群位移不斷通過門靜脈進(jìn)入肝臟具有協(xié)同作用,促進(jìn)了肝臟的慢性炎癥以及肝硬化的進(jìn)展。對(duì)于肝硬化患者,盡早地治療門脈高壓造成的腸漏并切斷其與巨噬細(xì)胞免疫功能衰退的協(xié)同作用可能是重要的治療策略。
作者貢獻(xiàn):任凌萱提出研究思路,設(shè)計(jì)研究方案,進(jìn)行數(shù)據(jù)分析,繪圖,撰寫初稿;盧子琪負(fù)責(zé)數(shù)據(jù)收集、篩選,共同進(jìn)行研究命題的提出、設(shè)計(jì)及論文書寫;齊威提出研究思路,設(shè)計(jì)研究方案,負(fù)責(zé)論文起草;馮志杰提出研究思路,設(shè)計(jì)研究方案,負(fù)責(zé)最終版本修訂,對(duì)論文負(fù)責(zé)。
本文無利益沖突。
參考文獻(xiàn)
CHUNG B K,?GAARD J,REIMS H M,et al. Spatial transcriptomics identifies enriched gene expression and cell types in human liver fibrosis[J]. Hepatol Commun,2022,6(9):2538-2550. DOI:10.1002/hep4.2001.
KIM E,VIATOUR P. Hepatocellular carcinoma:old friends and new tricks[J]. Exp Mol Med,2020,52(12):1898-1907. DOI:10.1038/s12276-020-00527-1.
TACKE F,ZIMMERMANN H W. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol,2014,60(5):1090-1096. DOI:10.1016/j.jhep.2013.12.025.
RAMACHANDRAN P,DOBIE R,WILSON-KANAMORI J R,et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level[J]. Nature,2019,575(7783):512-518. DOI:10.1038/s41586-019-1631-3.
MARCELLIN P,KUTALA B K. Liver diseases:a major,neglected global public health problem requiring urgent actions and large-scale screening[J]. Liver Int,2018,38(Suppl 1):2-6. DOI:10.1111/liv.13682.
ANGULO P,KLEINER D E,DAM-LARSEN S,et al. Liver fibrosis,but no other histologic features,is associated with long-term outcomes of patients with nonalcoholic fatty liver disease[J]. Gastroenterology,2015,149(2):389-397.e10. DOI:10.1053/j.gastro.2015.04.043.
RAMACHANDRAN P,HENDERSON N C. Antifibrotics in chronic liver disease:tractable targets and translational challenges[J]. Lancet Gastroenterol Hepatol,2016,1(4):328-340. DOI:10.1016/S2468-1253(16)30110-8.
LIANG W C,F(xiàn)ENG Z J,RAO S T,et al. Diarrhoea may be underestimated:a missing link in 2019 novel coronavirus[J]. Gut,2020,69(6):1141-1143. DOI:10.1136/gutjnl-2020-320832.
DICK S A,WONG A,HAMIDZADA H,et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles[J]. Sci Immunol,2022,7(67):eabf7777. DOI:10.1126/sciimmunol.abf7777.
YAN J,ZHANG Y M,YU H R,et al. GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages[J]. Nat Commun,2022,13(1):7260. DOI:10.1038/s41467-022-34998-9.
GUILLIAMS M,BONNARDEL J,HAEST B,et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches[J]. Cell,2022,185(2):379-396.e38. DOI:10.1016/j.cell.2021.12.018.
AIZARANI N,SAVIANO A,SAGAR,et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors[J]. Nature,2019,572(7768):199-204. DOI:10.1038/s41586-019-1373-2.
ASHBURNER M,BALL C A,BLAKE J A,et al. Gene ontology:tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet,2000,25(1):25-29. DOI:10.1038/75556.
SCHAUER D,STARLINGER P,ZAJC P,et al. Monocytes with angiogenic potential are selectively induced by liver resection and accumulate near the site of liver regeneration[J]. BMC Immunol,2014,15:50. DOI:10.1186/s12865-014-0050-3.
RAMIREZ-PEDRAZA M,F(xiàn)ERN?NDEZ M. Interplay between macrophages and angiogenesis:a double-edged sword in liver disease[J]. Front Immunol,2019,10:2882. DOI:10.3389/fimmu.2019.02882.
ALBILLOS A,MARTIN-MATEOS R,VAN DER MERWE S,et al. Cirrhosis-associated immune dysfunction[J]. Nat Rev Gastroenterol Hepatol,2022,19(2):112-134. DOI:10.1038/s41575-021-00520-7.
UNANUE E R. Antigen-presenting function of the macrophage[J]. Annu Rev Immunol,1984,2:395-428. DOI:10.1146/annurev.iy.02.040184.002143.
GEDGAUDAS R,BAJAJ J S,SKIECEVICIENE J,et al. Circulating microbiome in patients with portal hypertension[J]. Gut Microbes,2022,14(1):2029674. DOI:10.1080/19490976.2022.2029674.
SCHIERWAGEN R,ALVAREZ-SILVA C,MADSEN M S A,et al. Circulating microbiome in blood of different circulatory compartments[J]. Gut,2019,68(3):578-580. DOI:10.1136/gutjnl-2018-316227.
LI M H,LI K,TANG S H,et al. Restoration of the gut microbiota is associated with a decreased risk of hepatic encephalopathy after TIPS[J]. JHEP Rep,2022,4(5):100448. DOI:10.1016/j.jhepr.2022.100448.
GITTO S,VIZZUTTI F,BALDI S,et al. Transjugular intrahepatic Porto-systemic shunt positively influences the composition and metabolic functions of the gut microbiota in cirrhotic patients[J]. Dig Liver Dis,2023,55(5):622-628. DOI:10.1016/j.dld.2022.11.017.
(收稿日期:2023-10-13;修回日期:2024-01-03)
(本文編輯:賈萌萌)