亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        長(zhǎng)矩形腔體中混合流體的雙局部行波

        2024-06-19 00:00:00寧利中寧碧波郝建武田偉利張珂

        收稿日期:2022-01-15""" 修回日期:2022-11-12

        基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(No.10872164);西北旱區(qū)生態(tài)水利國(guó)家重點(diǎn)實(shí)驗(yàn)室基金資助項(xiàng)目(No.2017ZZKT-2)

        通信作者:寧利中,教授。E-mail: ninglz@xaut.edu.cn

        引用格式:

        寧利中 ,寧碧波,郝建武,等. 長(zhǎng)矩形腔體中混合流體的雙局部行波[J].應(yīng)用力學(xué)學(xué)報(bào),2024,41(3):691-697.

        NING Lizhong,NING Bibo,HAO Jianwu,et al.Double localized traveling waves of binary fluid mixture in a long rectangular cavity[J].Chinese journal of applied mechanics,2024,41(3):691-697.

        文章編號(hào):1000-4939(2024)03-0691-07

        摘" 要:基于數(shù)值模擬,研究了分離比ψ=-0.4和長(zhǎng)高比Γ=40的腔體內(nèi)的雙局部行波對(duì)流的動(dòng)力學(xué)特性。結(jié)果發(fā)現(xiàn),對(duì)流圈在端壁產(chǎn)生,向中心傳播,到達(dá)一定位置對(duì)流圈消失;在矩形腔體中兩端壁附近行波對(duì)流區(qū)域與中間部位無(wú)對(duì)流的傳導(dǎo)區(qū)域同時(shí)共存,形成雙局部行波對(duì)流;雙局部行波對(duì)流中的行波由腔體兩端向中部傳播;腔體二分之一高度處的溫度與垂直流速分布是諧波結(jié)構(gòu),波形比較光滑,濃度分布是臺(tái)型結(jié)構(gòu);隨著時(shí)間的發(fā)展,垂直流速最大值穩(wěn)定在某個(gè)數(shù)值周期變化,下壁面努塞爾數(shù)基本穩(wěn)定在某個(gè)數(shù)值,垂直流速最大值和下壁面努塞爾數(shù)及其達(dá)到穩(wěn)定的時(shí)間隨著相對(duì)瑞利數(shù)r的增加而增加;雙局部行波對(duì)流穩(wěn)定的存在于相對(duì)瑞利數(shù)r∈{1.52,1.57]的區(qū)間,雙局部行波的對(duì)流區(qū)長(zhǎng)度隨著相對(duì)瑞利數(shù)

        r的增加呈良好的增加關(guān)系,并給出了雙局部行波的對(duì)流區(qū)長(zhǎng)度隨著相對(duì)瑞利數(shù)r變化的擬合關(guān)系式。

        關(guān)鍵詞:雙局部行波;對(duì)流;對(duì)流區(qū)長(zhǎng)度;垂直流速最大值;努塞爾數(shù)

        中圖分類號(hào):O357" 文獻(xiàn)標(biāo)志碼:A

        DOI:10.11776/j.issn.1000-4939.2024.03.023

        Double localized traveling waves of binary fluid mixture

        in a long rectangular cavity

        NING Lizhong1,NING Bibo2,HAO Jianwu1, TIAN Weili3,ZHANG Ke1

        (1.Faculty of Water Resources and Hydro-electric Engineering,Xian University of Technology,710048 Xian,China;

        2.College of Civil Engineering and Architecture,Jiaxing University,314001 Jiaxing,China;

        3.Department of Architecture,Shanghai University,200444 Shanghai,China)

        Abstract:Based on numerical simulation,the dynamic characteristics of double localized traveling wave (DLTW)convection in a cavity with separation ratio ψ=-0.4and an aspect ratio Γ=40 are studied.The results show that convective roll is generated at the two end wall,propagates to the center and disappears at a certain location.The traveling wave convection region near the two ends of the rectangular cavity coexists with the conduction region without convection in the middle,forming a DLTW convection.Traveling waves propagate from both ends of the cavity to the middle of the DLTW convection.Temperature and vertical velocity distributions in the midheight of the cavity are harmonic structures with smooth waveforms.Concentration distribution is a platform structure.With the development of time,the maximum vertical velocity stabilizes at a certain value and changes periodically.The Nusselt number of the lower wall is basically stable at a certain value.The maximum vertical velocity and Nusselt number on the lower wall and the time for them to reach stability increase with the increase of reduced Rayleigh number.DLTW convection is stable in the range of reduced Rayleigh number r∈{1.52,1.57].The length of convective zone of DLTW increases with the increase of reduced Rayleigh number.The fitting formula for the length of convective zone of DLTW varying with the reduced Rayleigh number is given.

        Key words:double localized traveling wave(DLTW);convection;length of convective zone;maximum vertical velocity;Nusselt number

        當(dāng)從底部加熱充填于兩平板之間的純流體層時(shí),由于熱擴(kuò)散在流體層形成一個(gè)密度,上部較冷的流體比下部較熱的流體密度變得更大。這種情況是不穩(wěn)定的,當(dāng)流體層的溫度差超過(guò)某個(gè)臨界值時(shí),對(duì)流就會(huì)發(fā)生。這種現(xiàn)象被稱為Rayleigh-Benard對(duì)流。在一個(gè)長(zhǎng)矩形腔體中對(duì)流將形成定常對(duì)流滾動(dòng)。流體層的溫度差ΔT可以由無(wú)因次參數(shù)瑞利數(shù)Ra來(lái)表示,即瑞利數(shù)Ra=αgd3κvΔT(相對(duì)瑞利數(shù)為r=Ra/Rac,Rac=1708)。其中,T、ΔT、α、κ、ν、d、g分別表示溫度、溫度差、熱產(chǎn)生的體積膨脹系數(shù)、熱擴(kuò)散系數(shù)、運(yùn)動(dòng)黏性系數(shù)、流體層厚度、重力加速度。

        當(dāng)充填于兩平板之間的純流體是二成分混合物時(shí),對(duì)流變得更為復(fù)雜。除過(guò)密度梯度外,Soret效應(yīng)形成濃度梯度。由于熱擴(kuò)散,這個(gè)濃度梯度可以增加或者減小不穩(wěn)定的密度梯度。它可以由分離比ψ來(lái)表征,即

        ψ=-βαSTC0(1-C0)

        式中:C 、β、ST分別表示濃度、濃度引起的體積膨脹系數(shù)、Soret系數(shù);下標(biāo)0表示對(duì)應(yīng)物理量的參考值。

        當(dāng)分離比ψ為負(fù)值時(shí),Soret效應(yīng)引起較重的成分集中到較熱的下壁面附近。這種情況下,無(wú)運(yùn)動(dòng)的傳導(dǎo)狀態(tài)更穩(wěn)定,對(duì)流發(fā)生的臨界瑞利數(shù)比純流體情況下的臨界瑞利數(shù)更高。當(dāng)分離比ψ足夠負(fù)時(shí),純流體時(shí)的定常對(duì)流滾動(dòng)被行波對(duì)流滾動(dòng)代替。也就是說(shuō),形成對(duì)流的第一個(gè)分叉是Hopf分叉。

        混合流體Rayleigh-Benard對(duì)流已經(jīng)被廣泛研究[1-2]。文獻(xiàn)[3-4]最早在矩形腔體的實(shí)驗(yàn)中發(fā)現(xiàn)了腔體的部分區(qū)域被行波對(duì)流控制,部分區(qū)域被無(wú)對(duì)流的傳導(dǎo)狀態(tài)控制的局部行波對(duì)流現(xiàn)象。接著,文獻(xiàn)[4-6]在環(huán)形腔體的實(shí)驗(yàn)中也觀察到了局部行波對(duì)流現(xiàn)象,排除了腔體端壁對(duì)局部行波對(duì)流形成的影響。文獻(xiàn)[7-8]通過(guò)擾動(dòng)方程組探討了局部行波對(duì)流的形成機(jī)理與動(dòng)力學(xué)特性。文獻(xiàn)[9-13]通過(guò)基本方程組研究了局部行波結(jié)構(gòu)與形成。文獻(xiàn)[14-19]通過(guò)基本方程組研究了局部行波、行波及具有缺陷的行波與局部行波特性。文獻(xiàn)[20-22]通過(guò)振幅方程探討了局部行波對(duì)流的成長(zhǎng)、穩(wěn)定性與動(dòng)力學(xué)特性,研究了矩形腔體與環(huán)形腔體中的局部行波對(duì)流特性。文獻(xiàn)[23-26]通過(guò)數(shù)值模擬研究了Poiseuille-Rayleigh-Benard流動(dòng)中局部行波的特性與分區(qū)。所有這些都是針對(duì)單局部行波對(duì)流進(jìn)行的。在文獻(xiàn)[3-4]的基礎(chǔ)上,文獻(xiàn)[27]在分離比ψ=-0.47的長(zhǎng)矩形腔體的實(shí)驗(yàn)中,發(fā)現(xiàn)了行波對(duì)流位于腔體兩端壁附近,腔體中間為傳導(dǎo)狀態(tài)的雙局部行波狀態(tài)。文獻(xiàn)[28]研究發(fā)現(xiàn),該狀態(tài)

        具有不同的行波對(duì)流結(jié)構(gòu)。文獻(xiàn)[29]利用擾動(dòng)方程組探討了分離比ψ=-0.47的長(zhǎng)矩形腔體中雙局部行波狀態(tài)的存在。文獻(xiàn)[30]研究了雙局部行波的周期性。關(guān)于雙局部行波狀態(tài)特性研究的還較少,有必要在分離比ψ=-0.05~-0.60的更廣泛的流體參數(shù)變化范圍內(nèi),探討雙局部行波的相對(duì)瑞利數(shù)r的依賴性。

        雙局部行波與局部行波具有不同的特性和存在范圍,本研究基于流體力學(xué)基本方程組數(shù)值模擬,研究了分離比ψ=-0.4和長(zhǎng)高比Γ=40的腔體內(nèi)的雙局部行波對(duì)流的動(dòng)力學(xué)特性。

        1" 控制方程組

        對(duì)于底部加熱的矩形腔體。當(dāng)溫度差ΔT超過(guò)某個(gè)臨界值時(shí),腔體中對(duì)流發(fā)生。對(duì)于這樣的混合流體對(duì)流系統(tǒng),選擇基本量腔體高度d、熱擴(kuò)散系數(shù)κ和密度ρ0進(jìn)行量綱歸一化處理,基于布辛涅斯克近似,考慮Soret效應(yīng)的流體力學(xué)方程組為

        SymbolQC@·δU=0(1)

        δUt=-δU·SymbolQC@δU+PrSymbolQC@2δU-SymbolQC@p+

        Ra·PrδT1+ψ+δζez(2)

        δTt=-δU·SymbolQC@δT+SymbolQC@2δT(3)

        δζt=-δU·SymbolQC@δζ+LeSymbolQC@2δζ-ψSymbolQC@2δT(4)

        式中:分離比ψ、瑞利數(shù)Ra、普朗特?cái)?shù)Pr=ν/κ和路易斯數(shù)Le=D/κ是無(wú)因次參數(shù);δU=u-u0,δT=(T-T0)/ΔT;δC=βαC-C0ΔT;δζ=δC-ψδT;

        u(u,0,w)、p、t、D、ez分別表示速度矢量、壓強(qiáng)、時(shí)間、濃度擴(kuò)散系數(shù)、z方向的單位矢量。

        速度和濃度流的邊界條件為

        當(dāng)x=0,Γ時(shí)

        δu=δw=δζx=0(5)

        當(dāng)z=0,1時(shí)

        δu=δw=δζz=0(6)

        式中:δu、δw分別表示水平流速、垂向流速;Γ為長(zhǎng)高比。

        溫度的邊界條件為

        當(dāng)x=0,Γ時(shí)

        δTx=0(7)

        當(dāng)z=0時(shí)

        δT=0.5 (8)

        當(dāng)z=1時(shí)

        δT=-0.5(9)

        在數(shù)值模擬中,根據(jù)有限容積法離散了流體力學(xué)方程組,SIMPLE算法用于求解速度-壓力耦合方程。對(duì)流項(xiàng)采用二階迎風(fēng)格式,時(shí)間項(xiàng)采用一階隱格式。模擬網(wǎng)格尺寸為d/20或d/30。時(shí)間步長(zhǎng)為Δt=0.001。在每個(gè)時(shí)間步,如果節(jié)點(diǎn)余量絕對(duì)值的最大值小于10-9,并且同一時(shí)間步內(nèi)前后兩次迭代計(jì)算的相對(duì)誤差小于10-4,認(rèn)為收斂。當(dāng)ψ=-0.4,Pr=13.8,Le=0.01,r=1.95時(shí),在d/20和d/30的下計(jì)算得到的控制參數(shù)結(jié)果一致[31],最終采用的網(wǎng)格為d/20,計(jì)算的初值為流動(dòng)的微小振幅的包絡(luò)線具有高斯分布,長(zhǎng)高比Γ=40。本研究使用的軟件為1980年的SIMPLE原版軟件修改而成。

        2" 雙局部行波對(duì)流

        2.1" 雙局部行波對(duì)流的形成

        局部行波對(duì)流是指在腔體中行波對(duì)流區(qū)域與無(wú)對(duì)流的傳導(dǎo)區(qū)域同時(shí)共存的現(xiàn)象。雙局部行波對(duì)流是指在矩形腔體中兩端壁附近行波對(duì)流區(qū)域與中間部位無(wú)對(duì)流的傳導(dǎo)區(qū)域同時(shí)共存的現(xiàn)象,是在合適的腔體長(zhǎng)高比和流體參數(shù)情況下才能出現(xiàn)的一種行波對(duì)流現(xiàn)象。對(duì)于腔體長(zhǎng)高比Γ=40、混合流體分離比ψ=-0.4的情況,在相對(duì)瑞利數(shù)r=1.540時(shí)經(jīng)過(guò)數(shù)值模擬獲得了雙局部行波對(duì)流結(jié)構(gòu),如圖1所示。圖中每個(gè)矩形框代表腔體的斷面,水平方向?yàn)榍惑w長(zhǎng)度,豎直方向?yàn)榍惑w高度。相鄰腔體的時(shí)間間隔為Δt=0.3。黃色封閉流線圈和藍(lán)色封閉流線圈代表轉(zhuǎn)動(dòng)方向相反的對(duì)流滾動(dòng)。逆時(shí)針旋轉(zhuǎn)和順時(shí)針旋轉(zhuǎn)的對(duì)流滾動(dòng)交替發(fā)生,所以,黃色封閉流線圈和藍(lán)色封閉流線圈間隔出現(xiàn)。流線圈同時(shí)在腔體兩端壁附近產(chǎn)生,腔體的每端存在5個(gè)對(duì)流圈,中間部位是無(wú)對(duì)流的傳導(dǎo)區(qū)域,對(duì)流圈所占腔體的長(zhǎng)度基本保持為常數(shù)。在觀察的時(shí)段內(nèi),雙局部行波對(duì)流是穩(wěn)定的。箭頭方向?yàn)樾胁▊鞑シ较颍瑢?duì)流圈在端壁產(chǎn)生,向中心傳播,到達(dá)一定位置對(duì)流圈消失。在矩形腔體中兩端壁附近行波對(duì)流區(qū)域與中間部位無(wú)對(duì)流的傳導(dǎo)區(qū)域同時(shí)共存,形成雙局部行波對(duì)流。

        2.2" 雙局部行波對(duì)流的時(shí)空特性

        2.2.1 由兩側(cè)行波對(duì)流區(qū)和中部傳導(dǎo)區(qū)構(gòu)成

        圖2是r=1.540情況下模擬時(shí)間t=100時(shí)雙局部行波對(duì)流的空間結(jié)構(gòu)。溫度、濃度及壓力的等值線的變化局限在兩端壁附近的對(duì)流區(qū),在中間無(wú)對(duì)流傳導(dǎo)區(qū),等值線是一些水平線。雙局部行波對(duì)流由兩端壁附近行波對(duì)流區(qū)域與中間部位無(wú)對(duì)流的傳導(dǎo)區(qū)域構(gòu)成。

        2.2.2" 對(duì)流行波由腔體兩端向中部傳播

        圖3給出了r=1.540情況下t=10~60時(shí)段雙局部行波的時(shí)空結(jié)構(gòu)。

        可以看出,經(jīng)過(guò)初始的過(guò)渡演化段t=30后,腔體被傳導(dǎo)控制了中間區(qū)域,行波對(duì)流繼續(xù)占領(lǐng)兩端壁附近區(qū)域,形成穩(wěn)定的雙局部行波對(duì)流。黑白條紋代表轉(zhuǎn)動(dòng)方向相反的對(duì)流滾動(dòng)。對(duì)流圈在端壁附近產(chǎn)生,向中心傳播,到達(dá)一定位置對(duì)流圈消失。緊接著,新的對(duì)流圈又在端壁附近產(chǎn)生,向中心傳播,到達(dá)一定位置對(duì)流圈又消失。雙局部行波對(duì)流中的行波由腔體兩端向中部傳播。文獻(xiàn)[27]在腔體長(zhǎng)高比Γ=46、混合流體分離比ψ=-0.47的矩形腔體實(shí)驗(yàn)中觀察到兩端壁附近的行波保持一致的傳播方向,這一點(diǎn)與模擬結(jié)果不同。文獻(xiàn)[29-30]對(duì)腔體長(zhǎng)高比Γ=46、混合流體分離比ψ=-0.47的矩形腔體,利用擾動(dòng)方程組的數(shù)值模擬,獲得了和本研究類似的結(jié)果。

        2.2.3" 對(duì)流參數(shù)穩(wěn)定

        圖4是r=1.540時(shí)垂直流速最大值和下壁面努塞爾數(shù)的時(shí)間依賴性??梢钥闯觯?jīng)過(guò)初始階段的調(diào)整過(guò)渡,t=25后,垂直流速最大值和下壁面努塞爾數(shù)Nu-1[9]都穩(wěn)定下來(lái),文獻(xiàn)[9]給出了下壁面努塞爾數(shù)Nu-1的定義及物理意義。垂直流速最大值穩(wěn)定在δwmax=8處周期變化。下壁面努塞爾數(shù)基本穩(wěn)定在Nu-1=0.2處。垂直流速最大值和下壁面努塞爾數(shù)是穩(wěn)定的。

        2.2.4" 對(duì)流場(chǎng)隨著時(shí)間變化

        圖5給出了腔體二分之一高度處溫度、濃度和垂直流速隨時(shí)間變化。

        溫度、濃度及垂直流速的變化局限在兩端壁附近的對(duì)流區(qū),在中間無(wú)對(duì)流傳導(dǎo)區(qū),它們的數(shù)值是一些水平線。溫度與垂直流速分布是諧波結(jié)構(gòu),波形比較光滑。濃度分布是臺(tái)型結(jié)構(gòu)。在濃度場(chǎng)和傳導(dǎo)的交界處,出現(xiàn)濃度分布最大值。垂直流速控制的區(qū)域最小,其次是溫度場(chǎng)控制的區(qū)域,濃度場(chǎng)控制的區(qū)域最大。

        2.3" 相對(duì)瑞利數(shù)r對(duì)雙局部行波的影響

        2.3.1" 相對(duì)瑞利數(shù)r對(duì)對(duì)流參數(shù)穩(wěn)定時(shí)間的影響

        圖6是分離比ψ=-0.4時(shí)對(duì)雙局部行波的下壁面努塞爾數(shù)Nu-1和垂直流速最大值δwmax達(dá)到穩(wěn)定的時(shí)間與相對(duì)瑞利數(shù)r的關(guān)系。

        由圖6(a)

        可以看出,數(shù)據(jù)有點(diǎn)離散,但垂直流速最大值δwmax達(dá)到穩(wěn)定的時(shí)間隨著相對(duì)瑞利數(shù)r的增加呈增加的趨勢(shì)。

        由圖6(b)可以看出,

        下壁面努塞爾數(shù)Nu-1的穩(wěn)定時(shí)間隨著相對(duì)瑞利數(shù)r的增加而增加。下壁面努塞爾數(shù)Nu-1達(dá)到穩(wěn)定的時(shí)間和相對(duì)瑞利數(shù)r的關(guān)系可以由下列擬合關(guān)系來(lái)表示,即

        t=-8000r2+25097r-19641

        其中推斷系數(shù)為R2=0.7405。

        2.3.2" 相對(duì)瑞利數(shù)r對(duì)對(duì)流參數(shù)特性的影響

        圖7是ψ=-0.4時(shí)雙局部行波的下壁面努塞爾數(shù)和垂直流速最大值δwmax與相對(duì)瑞利數(shù)r的關(guān)系。垂直流速最大值δwmax和下壁面努塞爾數(shù)Nu-1隨著相對(duì)瑞利數(shù)r的增加而增加。下壁面努塞爾數(shù)N

        u-1和相對(duì)瑞利數(shù)r的擬合曲線表達(dá)式和推斷系數(shù)分別為

        Nu-1=14.3r2-42.97r+32.33,R2=0.979

        垂直流速最大值δwmax和相對(duì)瑞利數(shù)r的擬合曲線表達(dá)式和推斷系數(shù)分別為

        δwmax=-644.9r2+2018r-1571,R2=0.978

        2.3.3" 相對(duì)瑞利數(shù)r對(duì)對(duì)流區(qū)長(zhǎng)度的影響

        圖8是ψ=-0.4時(shí)雙局部行波的對(duì)流區(qū)長(zhǎng)度和相對(duì)瑞利數(shù)r的關(guān)系。圖中的對(duì)流區(qū)長(zhǎng)度為矩形腔體兩側(cè)對(duì)流區(qū)長(zhǎng)度之和。雙局部行波對(duì)流穩(wěn)定地存在于相對(duì)瑞利數(shù)r∈{1.52,1.57]的區(qū)間,雙局部行波對(duì)流存在的相對(duì)瑞利數(shù)的穩(wěn)定變化帶Δr=0.05。超過(guò)了雙局部行波對(duì)流的存在區(qū)間的上限,雙局部行波對(duì)流將演化成對(duì)稱的對(duì)傳波。由于雙局部行波對(duì)流位于對(duì)流分叉的鞍節(jié)點(diǎn)附近,當(dāng)瑞利數(shù)小于鞍節(jié)點(diǎn)時(shí),雙局部行波對(duì)流消失,對(duì)流振幅減小到零,系統(tǒng)到達(dá)傳導(dǎo)狀態(tài)。雙局部行波的對(duì)流區(qū)長(zhǎng)度隨著相對(duì)瑞利數(shù)r的增加呈良好的增加關(guān)系。這與文獻(xiàn)[28]在腔體長(zhǎng)高比Γ=46、混合流體分離比ψ=-0.47的矩形腔體實(shí)驗(yàn)中觀察到的結(jié)果類似。雙局部行波的對(duì)流區(qū)長(zhǎng)度隨著相對(duì)瑞利數(shù)r變化的擬合關(guān)系式和推斷系數(shù)分別為

        L=86.29r-120.9

        其中R2=0.964。

        L and r at ψ=-0.4

        3" 結(jié)" 論

        本研究基于數(shù)值模擬,研究了分離比ψ=-0.4和長(zhǎng)高比Γ=40的腔體內(nèi)的雙局部行波對(duì)流的動(dòng)力學(xué)特性??梢缘贸鲆韵陆Y(jié)論。

        1)對(duì)流圈在端壁產(chǎn)生,向中心傳播,到達(dá)一定位置對(duì)流圈消失。在矩形腔體中兩端壁附近行波對(duì)流區(qū)域與中間部位無(wú)對(duì)流的傳導(dǎo)區(qū)域同時(shí)共存,形成雙局部行波對(duì)流。垂直流速最大值δwmax與下壁面努塞爾數(shù)Nu-1隨著相對(duì)瑞利數(shù)r的增加而增加。

        2)雙局部行波對(duì)流穩(wěn)定地存在于相對(duì)瑞利數(shù)r∈{1.52,1.57]的區(qū)間。雙局部行波對(duì)流存在的相對(duì)瑞利數(shù)的穩(wěn)定變化帶Δr=0.05。雙局部行波的對(duì)流區(qū)長(zhǎng)度L隨著相對(duì)瑞利數(shù)r變化的擬合關(guān)系式和推斷系數(shù)分別為

        L=86.29r-120.9,R2=0.964

        參考文獻(xiàn):

        [1]" CROSS M C,HOHENBERG P C.Pattern formation outside of equilibrium[J].Reviews of modern physics,1993,65(3):851-1112.

        [2]" BODENSCHATZ E,PESCH W,AHLERS G.Recent developments in Rayleigh-Bénard convection[J].Annual review of fluid mechanics,2000,32:709-778.

        [3]" MOSES E,F(xiàn)INEBERG J,STEINBERG V.Multistability and confined traveling-wave patterns in a convecting binary mixture[J].Physical review a,1987,35(6):2757-2760.

        [4]" HEINRICHS R,AHLERS G,CANNELL D S.Traveling waves and spatial variation in the convection of a binary mixture[J].Physical review a,1987,35(6):2761-2764.

        [5]" NIEMELA J J,AHLERS G,CANNELL D S.Localized traveling-wave states in binaryfluid convection[J].Physical review letters,1990,64(12):1365-1368.

        [6]" KOLODNER P.Arbitrary-width confined states of traveling-wave convection:pinning,locking,drift,and stability[J].Physical review e,1993,48(6):R4187-R4190.

        [7]" KOLODNER P.Stable,unstable,and defected confined states of traveling-wave convection[J].Physical review e,1994,50(4):2731-2755.

        [8]" YAHATA H.Travelling convection rolls in a binary fluid mixture[J].Progress of theoretical physics,1991,85(5):933-937.

        [9]" NING L Z,HARADA Y,YAHATA H.Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell[J].Progress of theoretical physics,1997,97(6):831-848.

        [10]BARTEN W,LCKE M,KAMPS M,et al.Convection in binary fluid mixtures.II.Localized traveling waves[J].Physical review e,1995,51(6):5662-5680.

        [11]JUNG D,LCKE M.Localized waves without the existence of extended waves:oscillatory convection of binary mixtures with strong soret effect[J].Physical review letters,2002,89(5):054502.

        [12]BATISTE O,KNOBLOCH E,ALONSO A,et al.Spatially localized binary-fluid convection[J].Journal of fluid mechanics,2006,560:149-158.

        [13]TARAUT A V,SMORODIN B L,LCKE M.Collisions of localized convection structures in binary fluid mixtures[J].New journal of physics,2012,14(9):093055.

        [14]寧利中,袁喆,郝建武,等.雙流體Rayleigh-Benard對(duì)流中的局部行波[J].應(yīng)用力學(xué)學(xué)報(bào),2011,28(6):558-564.

        NING Lizhong,YUAN Zhe,HAO Jianwu,et al.Localized travelling wave of Rayleigh-Benard convection in a binary fluid mixture[J].Chinese journal of applied mechanics,2011,28(6):558-564(in Chinese).

        [15]寧利中,王娜,袁喆,等.分離比對(duì)混合流體Rayleigh-Bénard對(duì)流解的影響[J].物理學(xué)報(bào),2014,63(10):104401.

        NING Lizhong,WANG Na,YUAN Zhe,et al.Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J].Acta physica Sinica,2014,63(10):104401(in Chinese).

        [16]寧利中,余荔,袁拮,等.沿混合流體對(duì)流分叉曲線上部分支行波斑圖的演化[J].中國(guó)科學(xué)G輯(物理學(xué) 力學(xué) 天文學(xué)),2009,39(5):746-751.

        NING Lizhong,YU Li,YUAN Zhe,et al.Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J].Chinese science series G(physics,mechanics,astronomy),2009,39(5):746-751(in Chinese).

        [17]寧利中,王永起,袁喆,等.兩種不同結(jié)構(gòu)的混合流體局部行波對(duì)流斑圖[J].科學(xué)通報(bào),2016,61(8):872-880.

        NING Lizhong,WANG Yongqi,YUAN Zhe,et al.Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J].Chinese science bulletin,2016,61(8):872-880(in Chinese).

        [18]MERCADER I,BATISTE O,ALONSO A,et al.Travelling convectons in binary fluid convection[J].Journal of fluid mechanics,2013,722:240-266.

        [19]MERCADER I,BATISTE O,ALONSO A,et al.Convectons,anticonvectons and multiconvectons in binary fluid convection[J].Journal of fluid mechanics,2011,667:586-606.

        [20]寧利中,寧碧波,王新宏,等.局部行波對(duì)流的時(shí)空結(jié)構(gòu)[J].應(yīng)用力學(xué)學(xué)報(bào),2018,35(5):996-1001.

        NING Lizhong,NING Bibo,WANG Xinhong,et al.Spatiotemporal structures of localized traveling wave convection[J].Chinese journal of applied mechanics,2018,35(5):996-1001(in Chinese).

        [21]MERCADER I,BATISTE O,ALONSO A,et al.Convectons in periodic and bounded domains[J].Fluid dynamics research,2010,42(2):025505.

        [22]WATANABE T,IIMA M,NISHIURA Y.Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection[J].Journal of fluid mechanics,2012,712:219-243.

        [23]MA Y P,BURKE J,KNOBLOCH E.Defect-mediated snaking:a new growth mechanism for localized structures[J].Physica D:nonlinear phenomena,2010,239(19):1867-1883.

        [24]寧利中,胡彪,寧碧波,等.Poiseuille-Rayleigh-Bénard流動(dòng)中對(duì)流斑圖的分區(qū)和成長(zhǎng)[J].物理學(xué)報(bào),2016,65(21):214401.

        NING Lizhong,HU Biao,NING Bibo,et al.Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J].Acta physica Sinica,2016,65(21):214401(in Chinese).

        [25]胡彪,寧利中,寧碧波,等.局部行波對(duì)水平來(lái)流的依賴性[J].水動(dòng)力學(xué)研究與進(jìn)展,2017,32(1):110-116.

        HU Biao,NING Lizhong,NING Bibo,et al.The dependence of localized traveling wave on horizontal flow[J].Chinese journal of hydrodynamics,2017,32(1):110-116(in Chinese).

        [26]胡彪,寧利中,寧碧波,等.周期性加熱Poiseuille-Rayleigh-Benard流動(dòng)中局部行波的研究[J].水動(dòng)力學(xué)研究與進(jìn)展,2017,32(3):336-343.

        HU Biao,NING Lizhong,NING Bibo,et al.Localized traveling waves in Poiseuille-Rayleigh-Benard flows under periodic heating[J].Chinese journal of hydrodynamics,2017,32(3):336-343(in Chinese).

        [27]寧利中,周洋,王思怡,等.Poiseuille-Rayleigh-Benard流動(dòng)中的局部行波對(duì)流[J].水動(dòng)力學(xué)研究與進(jìn)展,2010,25(3):299-306.

        NING Lizhong,ZHOU Yang,WANG Siyi,et al.Localized traveling wave convection in Poiseuille-Rayleigh-Benard flows[J].Chinese journal of hydrodynamics,2010,25(3):299-306(in Chinese).

        [28]HARADA Y,MASUNO Y,SUGIHARA K.Convective motion in space and time:defect mediated localized traveling waves[J].Vistas in astronomy,1993,37:107-110.

        [29]寧利中,齊昕,魏炳乾,等.大長(zhǎng)高比腔體內(nèi)的混合流體行進(jìn)波對(duì)流[J].水動(dòng)力學(xué)研究與進(jìn)展,2006,21(4):427-432.

        NING Lizhong,QI Xin,WEI Bingqian,et al.Travelling wave convection in binary fluid mixtures in a large rectangular cell[J].Chinese journal of hydrodynamics,2006,21(4):427-432(in Chinese).

        [30]寧利中,原田義文,八幡英雄.雙局部行進(jìn)波對(duì)流的時(shí)空結(jié)構(gòu)[J].水利學(xué)報(bào),2004,35(12):56-61.

        NING Lizhong,HARADA Y,YAHATA H.Spatialtemporal structure of convection of doubly localized traveling wave in binary fluid mixture[J].Journal of hydraulic engineering,2004,35(12):56-61(in Chinese).

        [31]NING L Z,HARADA Y,YAHATA H.Localized traveling waves in binary fluid convection[J].Progress of theoretical physics,1996,96(4):669-682.

        (編輯" 李坤璐)

        成人午夜视频精品一区| 久久久久国产综合av天堂| 日本免费播放一区二区| 亚洲中文av一区二区三区| 老鸭窝视频在线观看| 蜜桃一区二区三区在线视频| 欧美亚洲高清日韩成人| av午夜久久蜜桃传媒软件| 日产乱码一二三区别免费l| 女同重口味一区二区在线| 午夜免费福利一区二区无码AV | 亚洲色偷拍一区二区三区| 亚洲精品一区二区三区大桥未久| 天天摸天天做天天爽水多| 亚洲成av人片极品少妇| 一区二区三区不卡免费av| 一本一本久久a久久精品| 天天躁日日躁狠狠躁av| 国产无套粉嫩白浆在线| 国产成人大片在线播放| 人妻熟女妇av北条麻记三级| 国产农村三片免费网站| 久久亚洲精品无码gv| 无码人妻久久一区二区三区免费| 十八禁视频在线观看免费无码无遮挡骂过 | 99热精品国产三级在线观看| 亚洲人成电影在线观看天堂色| 久久久久人妻精品一区三寸| 日韩av在线播放人妻| 白白色免费视频一区二区在线| 国产不卡一区二区三区视频| 国产免费播放一区二区| 狠狠爱无码一区二区三区| 狠狠色噜噜狠狠狠狠7777米奇| 欧美变态另类刺激| 四虎影在永久在线观看| 国产精品大片一区二区三区四区| 国产免费一区二区三区在线观看| 99久久久精品国产性黑人| 国产亚洲美女精品久久| 欧美韩日亚洲影视在线视频|