摘要:鉑類藥物是卵巢癌最有效的化療藥物之一,雖然鉑類化療的初始反應(yīng)高達(dá)80%,但耐藥性很常見。在大多數(shù)晚期患者中,最終復(fù)發(fā)和死亡是由獲得性耐藥所引起。卵巢癌化療耐藥性是影響其治療效果的重大障礙,然而化療耐藥其病因不清、機(jī)制復(fù)雜,是臨床及科研中急需解決的難點和熱點。因此,卵巢癌耐藥機(jī)制的研究將為卵巢癌化療的探索及研發(fā)提供依據(jù)?,F(xiàn)關(guān)于卵巢癌鉑類耐藥的分子機(jī)制進(jìn)行綜述。
關(guān)鍵詞:卵巢癌;鉑類化療耐藥性;分子機(jī)制
DOI:10.3969/j.issn.1674490X.2024.01.003
中圖分類號:R71文獻(xiàn)標(biāo)志碼:A文章編號:1674490X(2024)01-0018-09
Advances in molecular mechanisms of resistance to platinum chemotherapy in ovarian cancer
LIU Ying1,2, LIANG Yijuan1, XIE Dan1, YAN Liwei1, LIU Lu1, WANG Weiming1
(1.Depertment of Gynecology, Affiliated Hospital of Hebei University, Baoding 071000, China; 2.School of Clinical Medicine of Hebei University, Baoding 071000, China)
Abstract:" Platinum drugs are one of the most effective chemotherapy drugs for ovarian cancer, and although the initial response to platinum chemotherapy is as high as 80%, resistance is common. In most advanced patients, eventual relapse and death are caused by acquired resistance. Chemotherapy resistance of ovarian cancer is a major obstacle affecting its therapeutic effect. However, the cause of chemotherapy resistance is unclear and the mechanism is complex, which is a difficult and hot point in clinical and scientific research. Therefore, the study of drug resistance mechanism of ovarian cancer will provide a basis for the exploration and development of chemotherapy for ovarian cancer.This article reviews the molecular mechanism of platinum resistance in ovarian cancer.
Key words: ovarian cancer; platinum chemotherapy resistance; molecular mechanism
卵巢癌是女性生殖系統(tǒng)最常見的惡性腫瘤之一,發(fā)病隱匿,早期癥狀不明顯,診斷時大多處于該疾病的晚期,限制了其治療的時效性導(dǎo)致其病死率高,因此有“沉默的殺手”之稱[1]。目前,卵巢癌一線治療手段是在多學(xué)科合作的腫瘤細(xì)胞減滅術(shù)基礎(chǔ)上加紫杉醇、鉑等化療藥聯(lián)合治療[2]。雖然患者初始治療效果可觀,但隨著時間的推移,通常會對鉑類化療藥產(chǎn)生獲得性耐藥,導(dǎo)致疾病復(fù)發(fā),患者預(yù)后差,晚期癌癥患者的高病死率通常也是由于獲得耐藥性所致[3]。卵巢癌鉑耐藥是指經(jīng)過以鉑類為基礎(chǔ)化療后6個月內(nèi)腫瘤出現(xiàn)未控或復(fù)發(fā),可分為真正的鉑耐藥和鉑難治兩類[4-5]。由于其對患者生存時間和質(zhì)量的重大影響,提高患者對鉑類化療藥的反應(yīng)是臨床醫(yī)師與科研工作者一個重要的挑戰(zhàn)。卵巢癌細(xì)胞化療機(jī)制相當(dāng)復(fù)雜,包括多藥耐藥性(multidrug resistance, MDR)、DNA損傷修復(fù)、細(xì)胞代謝、氧化應(yīng)激、細(xì)胞周期調(diào)節(jié)、癌癥干細(xì)胞、免疫、凋亡途徑、自噬和異常信號通路?,F(xiàn)就卵巢癌惡性腫瘤對鉑類化療耐藥反應(yīng)中分子機(jī)制展開綜述。
1MDR與DNA損傷修復(fù)
MDR基因是一種耐藥表型,其中癌細(xì)胞同時對具有不同分子靶標(biāo)的多種藥物具有耐藥性,并且沒有明顯的結(jié)構(gòu)相似性,MDR與卵巢癌耐藥的發(fā)生、發(fā)展密切相關(guān),研究[6]顯示,絕經(jīng)后卵巢癌患者的ATP7B 基因多態(tài)性與順鉑、紫杉醇治療后的卵巢癌耐藥相關(guān)。MDR1編碼的P-糖蛋白可與許多具有不同功能、結(jié)構(gòu)的藥物相結(jié)合,并利用ATP將其轉(zhuǎn)運(yùn)至胞外,降低胞內(nèi)藥物濃度或使胞內(nèi)藥物濃度維持在較低水平,降低藥物療效,甚至失去抗腫瘤效果,導(dǎo)致多藥耐藥的發(fā)生[7-8]。
DNA是鉑類抗癌藥物的主要靶標(biāo),細(xì)胞識別和修復(fù)藥物誘導(dǎo)的DNA損傷的能力會影響其對鉑類化療的敏感性或耐藥性。鉑類化療發(fā)揮其細(xì)胞毒性作用的主要機(jī)制是形成DNA單加合物,這些單加合物通過與DNA交聯(lián)的共價結(jié)合而進(jìn)化,這些交聯(lián)可以發(fā)生在同一DNA鏈上或相反的鏈上,產(chǎn)生鏈間交聯(lián),如果他們不被修復(fù),就會阻止DNA合成和轉(zhuǎn)錄[9-10]。單鏈DNA病變通過核苷酸切除修復(fù),雙鏈病變通過同源重組或非同源末端連接途徑修復(fù)[11]。在核苷酸切除修復(fù)途徑中,DNA病變的部位被核酸切除修復(fù)交叉互補(bǔ)基因1(excision repair cross complementing group 1, ERCC1)與著色性干皮病基因家族F(xeroderma pigmentosum group F, XPF)形成的異物二聚體ERCC1-XPF和著色性干皮病基因家族G(xeroderma pigmentosum group G, XPG)核酸內(nèi)切酶切割以去除DNA病變。高ERCC1表達(dá)與上皮性卵巢癌的鉑耐藥性相關(guān)。錯配修復(fù)基因的啟動子甲基化也可以通過下調(diào)錯配修復(fù)基因驅(qū)動的DNA損傷反應(yīng)導(dǎo)致順鉑耐藥。錯配修復(fù)基因通路在DNA復(fù)制和重組過程中攜帶DNA修復(fù),并特異性識別不匹配的堿基配對、插入和缺失[12-13]。在一項使用由錯配修復(fù)蛋白啟動子高甲基化引起的順鉑耐藥和錯配修復(fù)基因缺陷卵巢腫瘤異種移植物的研究中,用去甲基化劑2'-脫氧-5-氮雜胞苷治療被證明可以改善對順鉑和卡鉑的反應(yīng)[14]。在認(rèn)識到DNA損傷修復(fù)途徑一定程度上可能與卵巢癌治療中的耐藥性相關(guān)后,一些針對DNA修復(fù)途徑如毛細(xì)血管擴(kuò)張性共濟(jì)失調(diào)癥突變激酶(ataxia-telangiectasia mutated, ATM)、ATM和 Rad3相關(guān)激酶(ATM and Rad3 related, ATR)和DNA依賴激酶(DNA-dependent protein kinase, DNA-PK)抑制劑的聯(lián)合治療方案,有望成為卵巢癌患者治療的新選擇[15]。
2氧化應(yīng)激
細(xì)胞代謝誘導(dǎo)活性氧自由基(reactive oxygen species, ROS)產(chǎn)生,包括順鉑在內(nèi)的多種化療藥物也會誘導(dǎo)腫瘤細(xì)胞中產(chǎn)生大量ROS,化療的有效性取決于氧化應(yīng)激的誘導(dǎo),增加的ROS會導(dǎo)致氧化DNA損傷,導(dǎo)致基因組不穩(wěn)定并促進(jìn)細(xì)胞凋亡、衰老或自噬[16]。為了承受氧化應(yīng)激,細(xì)胞激活轉(zhuǎn)錄因子核因子E2相關(guān)因子2(nuclear factor erythroid 2-related factor 2, NRF2),NRF2是抗氧化反應(yīng)性元件介導(dǎo)基因的主要調(diào)節(jié)因子。NRF2作為一種轉(zhuǎn)錄因子,通過直接激活含有抗氧化反應(yīng)元件的靶基因或通過上調(diào)下游基因間接激活發(fā)揮其生物學(xué)效應(yīng),包括化學(xué)抗性,例如,NRF2依賴性血紅素加氧酶1活化與A549肺癌細(xì)胞的順鉑耐藥有關(guān)[17-18]。此外,許多ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白(如ABCB2、ABCC6、ABCC1、ABCC2、ABCC3、ABCC4和ABCG5)的NRF2依賴性激活也與化學(xué)耐藥有關(guān)[19]。此外,研究[20-21]顯示,NRF2可以激活p62,進(jìn)而上調(diào)耐藥卵巢癌細(xì)胞的自噬,過表達(dá)的p62可以通過激活卵巢癌中的Keap3/NRF1信號來保護(hù)細(xì)胞免受維生素K3引起的氧化損傷,認(rèn)為NRF2/p62途徑可能是順鉑耐藥機(jī)制,同時也是治療靶點之一。目前,氧化應(yīng)激藥物的聯(lián)合應(yīng)用在臨床前研究中處于重要熱點,有望對卵巢癌耐藥的治療提供方案。
除了NRF2外,線粒體動力學(xué)也有助于卵巢惡性腫瘤細(xì)胞的順鉑化學(xué)耐藥性。線粒體動力學(xué)對各種細(xì)胞活動(如氧化應(yīng)激、細(xì)胞凋亡、線粒體自噬甚至能量消耗)有重要作用,同時對于維持線粒體的正常形狀、數(shù)量和功能也很重要。線粒體動力學(xué)異常與腫瘤發(fā)生有關(guān),過度的線粒體裂變誘導(dǎo)細(xì)胞內(nèi)ROS產(chǎn)生,破壞線粒體膜電位,最終導(dǎo)致細(xì)胞損傷或死亡[22-25]。一項動物實驗表明,DRP1和MFN2介導(dǎo)的線粒體動力學(xué)有助于卵巢癌細(xì)胞順鉑耐藥性的發(fā)展,并且還將提供通過靶向線粒體動力學(xué)預(yù)防卵巢癌化學(xué)耐藥性的新策略[26]。此外,線粒體是氧化還原活性的重要位點,與順鉑敏感性高級別漿液性卵巢癌細(xì)胞相比,順鉑抗性高級別漿液性卵巢癌細(xì)胞具有較低的線粒體含量和較低水平的線粒體ROS,從而誘導(dǎo)細(xì)胞死亡?;熕幬锟拱┲委煹脑硗ǔJ峭ㄟ^破壞細(xì)胞核DNA破壞細(xì)胞完整性,從而誘導(dǎo)細(xì)胞死亡。此外,線粒體DNA類似于細(xì)胞核DNA,受順鉑的影響很大[27]。因此,線粒體DNA損傷在順鉑處理的細(xì)胞中更明顯。此外,ATP合成酶抑制劑寡霉素A可以阻斷線粒體功能,并在順鉑治療過程中阻止線粒體ROS的誘導(dǎo),從而減少順鉑誘導(dǎo)的細(xì)胞凋亡[28]。
3藥物內(nèi)流/外排蛋白失調(diào)
鉑耐藥性最常見的機(jī)制之一是藥物內(nèi)流和外排途徑的失調(diào),這些途徑調(diào)節(jié)癌癥細(xì)胞中鉑類化學(xué)藥物的轉(zhuǎn)運(yùn)。外排蛋白可以從細(xì)胞中去除各種藥物。與耐藥相關(guān)最顯著的藥物外排和膜轉(zhuǎn)運(yùn)蛋白是三磷酸腺苷結(jié)合盒(ATP-binding cassette, ABC)超家族,其中轉(zhuǎn)運(yùn)蛋白ABCB1、ABCC1和ABCG2與化學(xué)耐藥有關(guān)[29]。銅轉(zhuǎn)運(yùn)蛋白1(copper transporter 1, CTR-1)是一種參與銅穩(wěn)態(tài)的跨膜內(nèi)流轉(zhuǎn)運(yùn)蛋白,在鉑鹽的細(xì)胞內(nèi)攝取中也起至關(guān)重要的作用。
ABCB1是一種170 ku的單向膜結(jié)合糖蛋白,可降低卵巢癌細(xì)胞中鉑類和紫杉烷類化療藥物的濃度。研究[30]表明,ABCB1在化療耐藥卵巢癌細(xì)胞中也過表達(dá),特別是在順鉑治療的細(xì)胞中。ABCC1不僅在藥物轉(zhuǎn)運(yùn)中活躍,而且在谷胱甘肽和葡萄糖醛酸等共軛有機(jī)陰離子的轉(zhuǎn)運(yùn)中也有活性。ABCC1被認(rèn)為可誘導(dǎo)炎癥反應(yīng),并保護(hù)細(xì)胞免受氧化應(yīng)激、異生素和內(nèi)源性有毒代謝物的侵害[31]。此外,一項研究[32]表明,在進(jìn)行性卵巢癌患者未經(jīng)治療和順鉑/卡鉑治療的卵巢癌腫瘤樣本中,ABCC1 mRNA升高,表明ABCC1可能參與內(nèi)在和獲得性耐藥性。
研究[33]表明,小鼠細(xì)胞系中CTR-1敲除通過降低細(xì)胞內(nèi)鉑濃度導(dǎo)致鉑耐藥性;并且證實,通過上調(diào)順鉑耐藥小細(xì)胞肺癌細(xì)胞系中CTR-1表達(dá)可以恢復(fù)鉑的敏感性;同時還表明順鉑耐藥性與高親和力CTR-1表達(dá)降低有關(guān);銅螯合劑通過增強(qiáng)高親和力CTR-1表達(dá)使細(xì)胞對順鉑重新敏感。茶黃素-3,3-二加酸酯(theaflavin-3,3′-digallate, TF3)是一種紅茶多酚,通過降低谷胱甘肽水平和上調(diào)CTR-1水平增加順鉑的細(xì)胞內(nèi)積累,可以增強(qiáng)卵巢癌細(xì)胞對順鉑的敏感性[34]。此外,銅轉(zhuǎn)運(yùn)蛋白2(copper transporter 2, CTR-2)也參與調(diào)節(jié)細(xì)胞鉑水平。但其充當(dāng)鉑外排轉(zhuǎn)運(yùn)蛋白,較高的CTR-2表達(dá)與卵巢癌細(xì)胞系中的鉑耐藥性有關(guān)[35]。
4凋亡抑制途徑
凋亡因為受到嚴(yán)格的遺傳調(diào)控而被認(rèn)為是一種“程序性”細(xì)胞死亡。在各種腫瘤中逃避程序性細(xì)胞死亡是他們的主要適應(yīng)性改變和主要調(diào)節(jié),其調(diào)控受損成為導(dǎo)致癌細(xì)胞耐藥性產(chǎn)生的關(guān)鍵因素。細(xì)胞凋亡通常通過兩種機(jī)制,包括受體依賴性的外在途徑、線粒體依賴的內(nèi)在途徑。化療的有效性在很大程度上取決于卵巢癌細(xì)胞經(jīng)歷藥物誘導(dǎo)的細(xì)胞凋亡的能力。內(nèi)在凋亡途徑主要參與蛋白為B細(xì)胞淋巴瘤-2(B-cell lymphoma-2, Bcl-2)家族與細(xì)胞凋亡蛋白抑制劑(inhibitor of apoptosis, IAP)家族[36]。Bcl-2家族具有促凋亡和抗凋亡成員,促凋亡的Bcl-2家族成員是Bax、Bak、Bok、Bid、Bim、Bik、Bad、Noxa和Puma,而抗凋亡成員包括Bcl-2和Bcl-xl[37]。他們通過阻斷線粒體中細(xì)胞色素C的釋放抑制細(xì)胞凋亡,細(xì)胞色素C的釋放反過來激活半胱天冬酶-9,然后繼續(xù)激活半胱天冬酶-3和半胱天冬酶-7。Bcl-2家族促凋亡蛋白和抗凋亡蛋白的平衡是促進(jìn)鉑類化療敏感性的關(guān)鍵因素,一旦促凋亡蛋白和抗凋亡蛋白的平衡失調(diào),則會引起鉑類化療藥物耐藥[38],另外,針對Bcl-2家族的BH3分析和 DBP 測定在預(yù)測化療藥物的臨床反應(yīng)方面另辟蹊徑[37]。Villedieu等[39]在一項研究中得出了Bcl-2、Bcl-xl的結(jié)構(gòu)和功能同源物與卵巢癌耐藥的類似證據(jù),該研究表明,Bcl-xl保護(hù)順鉑耐藥的SKOV3細(xì)胞免于凋亡,并使用siRNA和順鉑治療沉默Bcl-xl基因誘導(dǎo)細(xì)胞凋亡。盡管Bcl-2超家族在細(xì)胞凋亡途徑中起重要作用,但I(xiàn)AP家族也有助于抑制細(xì)胞凋亡。IAP是抗凋亡蛋白和泛素連接酶,與半胱天冬酶結(jié)合,導(dǎo)致抑制或降解。IAPs只有在不與第二線粒體衍生的半胱氨酸蛋白酶激活劑(second mitochondrial-derived activator of caspase,SMAC)結(jié)合時才起作用,SMAC是一種抑制其作用機(jī)制的蛋白質(zhì),位于線粒體膜間間隙,可誘導(dǎo)細(xì)胞凋亡[40]。SMAC已被證明與細(xì)胞色素C類似,可激活半胱天冬酶-9,引起下游信號級聯(lián)反應(yīng)以啟動細(xì)胞凋亡。在耐藥性卵巢癌中,IAP的表達(dá)水平高于SMAC,抑制SMAC的細(xì)胞凋亡誘導(dǎo)活性,最終導(dǎo)致化學(xué)耐藥[41-42]。
外在細(xì)胞凋亡途徑也稱為死亡受體途徑,在細(xì)胞凋亡的外在途徑中,特異性配體誘導(dǎo)細(xì)胞內(nèi)的級聯(lián)事件,最終導(dǎo)致細(xì)胞凋亡。屬于腫瘤壞死因子家族的細(xì)胞表面受體相互作用介導(dǎo),可以通過一系列的信號轉(zhuǎn)導(dǎo)過程,將凋亡信號向細(xì)胞內(nèi)部傳遞,從而導(dǎo)致細(xì)胞凋亡的事件[43]。該通路是細(xì)胞外環(huán)境(如腫瘤微環(huán)境)與細(xì)胞內(nèi)信號網(wǎng)絡(luò)之間的連接,這些受體包括腫瘤壞死因子受體1(tumor necrosis factor receptor 1, TNFR1)、Fas配體和腫瘤壞死因子相關(guān)的細(xì)胞凋亡誘導(dǎo)配體(tumor necrosis factor-related apoptosis-inducing ligand,TRAIL)受體TRAILR1及TRAILR2。通常,一旦配體與細(xì)胞表面的相應(yīng)受體結(jié)合,就會發(fā)生受體的寡聚化,募集Fas相關(guān)的死亡結(jié)構(gòu)域蛋白,激活procaspase-8以及形成誘導(dǎo)死亡的沉默復(fù)合物,進(jìn)而刺激信號傳導(dǎo)以啟動凋亡活性[44]。在卵巢癌中,這些受體可在鉑類化療藥物治療后相應(yīng)的下調(diào),但受體下降后導(dǎo)致耐藥發(fā)生[44]。
5腫瘤微環(huán)境
腫瘤微環(huán)境是指腫瘤細(xì)胞周圍的成分,主要包括細(xì)胞外基質(zhì)、免疫細(xì)胞和一些可溶性分子,與腫瘤的發(fā)生、發(fā)展等有密切關(guān)系。對于復(fù)發(fā)性卵巢癌患者,可以激活免疫系統(tǒng)識別和攻擊癌細(xì)胞以防止復(fù)發(fā),因此,腫瘤微環(huán)境是復(fù)發(fā)和化療耐藥性的潛在因素[45]。研究[3]表明,腫瘤相關(guān)巨噬細(xì)胞(tumor associated macrophage, TAM)密度與卵巢癌患者的預(yù)后不良和治療耐藥性密切相關(guān)。用順鉑或卡鉑處理的各種卵巢癌細(xì)胞系誘導(dǎo)巨噬細(xì)胞分化為M2樣表型,然后會促進(jìn)IL-10的產(chǎn)生和STAT3信號因子的激活增強(qiáng),誘導(dǎo)巨噬細(xì)胞分化為M2樣TAM[3]。免疫抑制性M2樣TAM可以促腫瘤極化、影響促生存信號通路以及上調(diào)癌細(xì)胞中的多藥耐藥基因。此外,巨噬細(xì)胞是一個重要外泌體。M2樣TAM分泌的外泌體被卵巢癌細(xì)胞有效內(nèi)化,賦予其耐藥性,主要是存在于外泌體中的miR-223激活了癌細(xì)胞中的磷脂酰肌醇3激酶/蛋白激酶B(PI3K/Akt)途徑,該途徑促進(jìn)細(xì)胞存活并抑制細(xì)胞凋亡[46]。還有研究檢測了與M1和M2巨噬細(xì)胞共培養(yǎng)的順鉑敏感性A2780和順鉑耐藥A2780卵巢癌細(xì)胞系中與耐藥性相關(guān)基因的測定,結(jié)果顯示巨噬細(xì)胞獨立于表型,可誘導(dǎo)ABCG2基因表達(dá),該基因編碼A2780細(xì)胞中參與耐藥的蛋白質(zhì)。卵巢癌細(xì)胞對藥物敏感和耐藥,使巨噬細(xì)胞極化為M2樣表型[47]。此外,近年來相關(guān)研究表明,腫瘤微環(huán)境中的其他組分,例如腫瘤相關(guān)性成纖維細(xì)胞( cancer-associated fibroblasts, CAFs)等在卵巢癌耐藥中作用突出[48],對卵巢癌耐藥提供了新的研究方向。
6PI3K/Akt信號通路異常
PI3K/Akt/哺乳動物雷帕霉素靶標(biāo)(mTOR)信號傳導(dǎo)是調(diào)節(jié)細(xì)胞周期、靜止和增殖的重要細(xì)胞內(nèi)途徑。在卵巢癌中,在磷酸酶和張力同系物(phosphatase and tensin homolog, PTEN)、Akt1和mTOR中發(fā)現(xiàn)了誘導(dǎo)PI3K/Akt/mTOR信號傳導(dǎo)增強(qiáng)的各種體細(xì)胞突變。PI3K/Akt/mTOR信號的過度激活與癌癥轉(zhuǎn)移和化學(xué)耐藥有關(guān)。研究[49]顯示,PI3K通過激活A(yù)kt/mTOR/p1S70K6信號傳導(dǎo)調(diào)節(jié)卵巢癌的G1細(xì)胞周期和凋亡,抑制PI3K可以破壞卵巢癌細(xì)胞增殖并引發(fā)細(xì)胞死亡;激活的PI3K/Akt/mTOR信號觸發(fā)的上皮-間充質(zhì)轉(zhuǎn)化和增強(qiáng)的癌癥干細(xì)胞標(biāo)志物表達(dá)參與上皮性卵巢癌的化學(xué)耐藥。Fang等[50]通過動物實驗指出,氯化鑭通過滅活PI3K/Akt途徑和減弱卵巢癌DNA修復(fù)調(diào)節(jié)鉑類耐藥性。因此,PI3K/Akt信號通路的調(diào)節(jié)也是改善卵巢癌化療耐藥的重要途徑。
7其他可能機(jī)制
7.1自噬
自噬是一種自我保護(hù)機(jī)制,緊急反應(yīng)時發(fā)生,但可能導(dǎo)致細(xì)胞死亡,正是這種自我保護(hù)能力,增加了癌細(xì)胞對化療藥物的抵抗力。自噬包括自噬體的形成和自溶酶體的后期階段,主要包括自噬體和溶酶體的融合和自噬體內(nèi)容物的降解[51-52]。一方面,自噬保護(hù)細(xì)胞免受遺傳毒性應(yīng)激,以防止腫瘤發(fā)生和致癌轉(zhuǎn)化。另一方面,自噬可以是癌細(xì)胞的生存策略,以克服化療、放療或其他治療引起的壓力。研究[53]表明,順鉑可以通過泛素結(jié)合蛋白p62或HMGB1誘導(dǎo)卵巢癌細(xì)胞中的自噬。順鉑耐藥卵巢癌細(xì)胞中的自噬通量是由順鉑引起的。目前,癌細(xì)胞中自噬的細(xì)胞保護(hù)功能被認(rèn)為是一種潛在的化療耐藥機(jī)制。
7.2DJ-1蛋白
DJ-1是一種高度保守的蛋白,分子量為20 ku,屬于DJ-1/ThiJ/Pfp蛋白超家族,其基因位于1號染色體遠(yuǎn)端[54]。DJ-1也是一種多功能蛋白質(zhì),普遍表達(dá)并主要作為半胱氨酸蛋白酶起作用,其功能范圍從氧化還原調(diào)節(jié)伴侶到轉(zhuǎn)錄共激活劑,在特殊的癌癥環(huán)境中表現(xiàn)去糖化酶的功能。DJ-1參與許多生理和病理生理過程,如細(xì)胞凋亡、基因轉(zhuǎn)錄、氧化應(yīng)激反應(yīng)、細(xì)胞增殖和生長[54-55]。研究[56-57]顯示,DJ-1在各種卵巢腫瘤組織中均有不同程度陽性表達(dá),且DJ-1與卵巢癌的發(fā)生、發(fā)展及預(yù)后均有密切聯(lián)系。過往研究[58]已經(jīng)表明,DJ-1與多種癌癥的發(fā)展密切相關(guān),并且在某些情況下與癌癥的耐藥性有關(guān)。相關(guān)研究[59]也提到,DJ-1可能參與卵巢癌鉑類化療耐藥,但尚無更多相關(guān)研究證明,需要進(jìn)一步完善相關(guān)研究。
8總結(jié)
近些年卵巢癌化療耐藥機(jī)制一定程度上取得了突破性進(jìn)展,但患者的5年生存率仍未明顯提升,其化療耐藥是影響療效的重要因素。對于原發(fā)性耐藥和獲得性耐藥患者,深入了解其耐藥機(jī)制,從根本上解決問題是臨床所迫切需求的。分子機(jī)制是一個多因素、多方面相互作用過程,單一機(jī)制不能完全解釋卵巢癌細(xì)胞對治療的抵抗力,是否存在其他分子機(jī)制參與耐藥有待進(jìn)一步深入研究。隨著中國科學(xué)技術(shù)及綜合國力的不斷提升,相信未來卵巢癌耐藥的具體機(jī)制將更加清晰,研發(fā)效果更加顯著的抗腫瘤藥物將會取得更大進(jìn)展。
參考文獻(xiàn):
[1]XU Y F, XUE N Y, ZHANG S M, et al. The value of contrast-enhanced ultrasonography in differential diagnosis of benign and malignant ovarian sex cord stromal tumors[J]. Gland Surg, 2022, 11(6): 1086-1093. DOI: 10.21037/gs-22-301.
[2]ARMSTRONG D K, ALVAREZ R D, BAKKUM-GAMEZ J N, et al. Ovarian cancer, version 2.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(2): 191-226. DOI: 10.6004/jnccn.2021.0007.
[3]NOWAK M, KLINK M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer[J]. Cells, 2020, 9(5): 1299. DOI: 10.3390/cells9051299.
[4]DISIS M L, TAYLOR M H, KELLY K, et al. Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: phase 1b results from the JAVELIN solid tumor trial[J]. JAMA Oncol, 2019, 5(3): 393-401. DOI: 10.1001/jamaoncol.2018.6258.
[5]CRUZ I N, COLEY H M, KRAMER H B, et al. Proteomics analysis of ovarian cancer cell lines and tissues reveals drug resistance-associated proteins[J]. Cancer Genomics Proteomics, 2017, 14(1): 35-51. DOI: 10.21873/cgp.20017.
[6]魯振雯, 朱紅斌, 丁曉虎, 等. ATP7B功能活性及其基因多態(tài)性與絕經(jīng)后卵巢癌順鉑-紫杉醇化療耐藥相關(guān)[J]. 臨床與病理雜志, 2019, 39(9): 1959-1965. DOI: 10.3978/j.issn.2095-6959.2019.09.017.
[7]DASARI S, NJIKI S, MBEMI A, et al. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy[J]. Int J Mol Sci, 2022, 23(3): 1532. DOI: 10.3390/ijms23031532.
[8]BUKOWSKI K, KCIUK M, KONTEK R. Mechanisms of multidrug resistance in cancer chemotherapy[J]. Int J Mol Sci, 2020, 21(9): 3233. DOI: 10.3390/ijms21093233.
[9]LEDERMANN J A, DREW Y, KRISTELEIT R S. Homologous recombination deficiency and ovarian cancer[J]. Eur J Cancer, 2016, 60: 49-58. DOI: 10.1016/j.ejca.2016.03.005.
[10]CHRISTIE E L, BOWTELL D D L. Acquired chemotherapy resistance in ovarian cancer[J]. Ann Oncol, 2017, 28(suppl_8): viii13-viii15. DOI: 10.1093/annonc/mdx446.
[11]STEFANOU D T, SOULIOTIS V L, ZAKOPOULOU R, et al. DNA damage repair: predictor of platinum efficacy in ovarian cancer?[J]. Biomedicines, 2021, 10(1): 82. DOI: 10.3390/biomedicines10010082.
[12]XIAO Y, LIN F T, LIN W C. ACTL6A promotes repair of cisplatin-induced DNA damage, a new mechanism of platinum resistance in cancer[J]. Proc Natl Acad Sci USA, 2021, 118(3): e2015808118. DOI: 10.1073/pnas.2015808118.
[13]HUANG T T, LAMPERT E J, COOTS C, et al. Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer[J]. Cancer Treat Rev, 2020, 86: 102021. DOI: 10.1016/j.ctrv.2020.102021.
[14]MIRZA-AGHAZADEH-ATTARI M, OSTADIAN C, SAEI A A, et al. DNA damage response and repair in ovarian cancer: potential targets for therapeutic strategies[J]. DNA Repair (Amst), 2019, 80: 59-84. DOI: 10.1016/j.dnarep.2019.06.005.
[15]WONG-BROWN M W, VAN DER WESTHUIZEN A, BOWDEN N A. Targeting DNA repair in ovarian cancer treatment resistance[J]. Clin Oncol, 2020, 32(8): 518-526. DOI: 10.1016/j.clon.2020.03.005.
[16]KOBAYASHI H, OGAWA K, KAWAHARA N, et al. Sequential molecular changes and dynamic oxidative stress in high-grade serous ovarian carcinogenesis[J]. Free Radic Res, 2017, 51(9/10): 755-764. DOI: 10.1080/10715762.2017.1383605.
[17]GENTRIC G, KIEFFER Y, MIEULET V, et al. PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers[J]. Cell Metab, 2019, 29(1): 156-173. DOI: 10.1016/j.cmet.2018.09.002.
[18]WU X, HAN L Y, ZHANG X X, et al. The study of Nrf2 signaling pathway in ovarian cancer[J]. Crit Rev Eukaryot Gene Expr, 2018, 28(4): 329-336. DOI: 10.1615/critreveukaryotgeneexpr.2018020286.
[19]BAO L J, WU J F, DODSON M, et al. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells[J]. Mol Carcinog, 2017, 56(6): 1543-1553. DOI: 10.1002/mc.22615.
[20]BAO L J, JARAMILLO M C, ZHANG Z B, et al. Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma[J]. Int J Clin Exp Pathol, 2014, 7(4): 1502-1513.
[21]XIA M H, YAN X Y, ZHOU L, et al. p62 suppressed VK3-induced oxidative damage through Keap1/Nrf2 pathway in human ovarian cancer cells[J]. J Cancer, 2020, 11(6): 1299-1307. DOI: 10.7150/jca.34423.
[22]YAPA N M B, LISNYAK V, RELJIC B, et al. Mitochondrial dynamics in health and disease[J]. FEBS Lett, 2021, 595(8): 1184-1204. DOI: 10.1002/1873-3468.14077.
[23]CASTELLANI C A, LONGCHAMPS R J, SUN J, et al. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease[J]. Mitochondrion, 2020, 53: 214-223. DOI: 10.1016/j.mito.2020.06.004.
[24]PICCA A, CALVANI R, COELHO-JUNIOR H J, et al. Cell death and inflammation: the role of mitochondria in health and disease[J]. Cells, 2021, 10(3): 537. DOI: 10.3390/cells10030537.
[25]QUILES J M, GUSTAFSSON B. The role of mitochondrial fission in cardiovascular health and disease[J]. Nat Rev Cardiol, 2022, 19(11): 723-736. DOI: 10.1038/s41569-022-00703-y.
[26]ZOU G P, YU C X, SHI S L, et al. Mitochondrial dynamics mediated by DRP1 and MFN2 contributes to cisplatin chemoresistance in human ovarian cancer SKOV3 cells[J]. J Cancer, 2021, 12(24): 7358-7373. DOI: 10.7150/jca.61379.
[27]GORGUN M F, ZHUO M, ENGLANDER E W. Cisplatin toxicity in dorsal root ganglion neurons is relieved by meclizine via diminution of mitochondrial compromise and improved clearance of DNA damage[J]. Mol Neurobiol, 2017, 54(10): 7883-7895. DOI: 10.1007/s12035-016-0273-9.
[28]KLEIH M, BPPLE K, DONG M, et al. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells[J]. Cell Death Dis, 2019, 10(11): 851. DOI: 10.1038/s41419-019-2081-4.
[29]ZHENG Z, LI X, YANG B K, et al. SORL1 stabilizes ABCB1 to promote cisplatin resistance in ovarian cancer[J]. Funct Integr Genomics, 2023, 23(2): 147. DOI: 10.1007/s10142-023-01075-3.
[30]HAVASI A, CAINAP S S, HAVASI A T, et al. Ovarian cancer-insights into platinum resistance and overcoming it[J]. Medicina (Kaunas), 2023, 59(3): 544. DOI: 10.3390/medicina59030544.
[31]TONG X J, ZHAO J, ZHANG Y H, et al. Expression levels of MRP1, GST-π, and GSK3β in ovarian cancer and the relationship with drug resistance and prognosis of patients[J]. Oncol Lett, 2019, 18(1): 22-28. DOI: 10.3892/ol.2019.10315.
[32]EHRLICHOVA M, MOHELNIKOVA-DUCHONOVA B, HRDY J, et al. The association of taxane resistance genes with the clinical course of ovarian carcinoma[J]. Genomics, 2013, 102(2): 96-101. DOI: 10.1016/j.ygeno.2013.03.005.
[33]LIANG Z D, LONG Y, TSAI W B, et al. Mechanistic basis for overcoming platinum resistance using copper chelating agents[J]. Mol Cancer Ther, 2012, 11(11): 2483-2494. DOI: 10.1158/1535-7163.MCT-12-0580.
[34]PAN H B, KIM E, RANKIN G O, et al. Theaflavin-3,3′-digallate enhances the inhibitory effect of cisplatin by regulating the copper transporter 1 and glutathione in human ovarian cancer cells[J]. Int J Mol Sci, 2018, 19(1): 117. DOI: 10.3390/ijms19010117.
[35]KILARI D, GUANCIAL E, KIM E S. Role of copper transporters in platinum resistance[J]. World J Clin Oncol, 2016, 7(1): 106-113. DOI: 10.5306/wjco.v7.i1.106.
[36]YANG L, XIE H J, LI Y Y, et al. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review)[J]. Oncol Rep, 2022, 47(4): 82. DOI: 10.3892/or.2022.8293.
[37]YUAN J, LAN H, JIANG X Y, et al. Bcl-2 family: novel insight into individualized therapy for ovarian cancer (Review)[J]. Int J Mol Med, 2020, 46(4): 1255-1265. DOI: 10.3892/ijmm.2020.4689.
[38]LIU Y Z, SHI L J, YUAN C Z, et al. Downregulation of ITIH3 contributes to cisplatin-based chemotherapy resistance in ovarian carcinoma via the Bcl-2 mediated anti-apoptosis signaling pathway[J]. Oncol Lett, 2022, 25(2): 61. DOI: 10.3892/ol.2022.13646.
[39]VILLEDIEU M, LOUIS M H, DUTOIT S, et al. Absence of Bcl-xL down-regulation in response to cisplatin is associated with chemoresistance in ovarian carcinoma cells[J]. Gynecol Oncol, 2007, 105(1): 31-44. DOI: 10.1016/j.ygyno.2006.12.011.
[40]CREMONA M, VANDENBERG C J, FARRELLY A M, et al. BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to inhibitor of apoptosis (IAP) family inhibitors[J]. Br J Cancer, 2022, 127(3): 488-499. DOI: 10.1038/s41416-022-01823-5.
[41]DAI Y, JIN S G, LI X P, et al. Correction: the involvement of Bcl-2 family proteins in AKT-regulated cell survival in cisplatin resistant epithelial ovarian cancer[J]. Oncotarget, 2020, 11(4): 488-489. DOI: 10.18632/oncotarget.27376.
[42]HERNANDEZ L F, DULL A B, KORRAPATI S, et al. Smac-mimetic enhances antitumor effect of standard chemotherapy in ovarian cancer models via Caspase 8-independent mechanism[J]. Cell Death Discov, 2021, 7(1): 134. DOI: 10.1038/s41420-021-00511-2.
[43]KASHYAP D, GARG V K, GOEL N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021, 125: 73-120. DOI: 10.1016/bs.apcsb.2021.01.003.
[44]GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. DOI: 10.1038/s41418-017-0012-4.
[45]BOGANI G, LOPEZ S, MANTIERO M, et al. Immunotherapy for platinum-resistant ovarian cancer[J]. Gynecol Oncol, 2020, 158(2): 484-488. DOI: 10.1016/j.ygyno.2020.05.681.
[46]ZHU X L, SHEN H L, YIN X M, et al. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype[J]. J Exp Clin Cancer Res, 2019, 38(1): 81. DOI: 10.1186/s13046-019-1095-1.
[47]MLYNSKA A, POVILAITYTE E, ZEMLECKAITE I, et al. Platinum sensitivity of ovarian cancer cells does not influence their ability to induce M2-type macrophage polarization[J]. Am J Reprod Immunol, 2018, 80(3): e12996. DOI: 10.1111/aji.12996.
[48]ZHANG F, CUI J Y, GAO H F, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition and cisplatin resistance in ovarian cancer via CXCL12/CXCR4 axis[J]. Future Oncol, 2020, 16(32): 2619-2633. DOI: 10.2217/fon-2020-0095.
[49]DENG J L, BAI X P, FENG X J, et al. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression[J]. BMC Cancer, 2019, 19(1): 618. DOI: 10.1186/s12885-019-5824-9.
[50]FANG S Y, ZHANG P, CHEN X P, et al. Lanthanum chloride sensitizes cisplatin resistance of ovarian cancer cells via PI3K/Akt pathway[J]. Front Med (Lausanne), 2021, 8: 776876. DOI: 10.3389/fmed.2021.776876.
[51]ZHOU F X, YANG X S, ZHAO H, et al. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer[J]. Theranostics, 2018, 8(19): 5200-5212. DOI: 10.7150/thno.27806.
[52]RUSSELL R C, GUAN K L. The multifaceted role of autophagy in cancer[J]. EMBO J, 2022, 41(13): e110031. DOI: 10.15252/embj.2021110031.
[53]ZHANG X F, QI Z H, YIN H J, et al. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy[J]. Theranostics, 2019, 9(4): 1096-1114. DOI: 10.7150/thno.29673.
[54]OLIVO E, LA CHIMIA M, CERAMELLA J, et al. Moving beyond the tip of the iceberg: DJ-1 implications in cancer metabolism[J]. Cells, 2022, 11(9): 1432. DOI: 10.3390/cells11091432.
[55]JIN W. Novel insights into PARK7(DJ-1), a potential anti-cancer therapeutic target, and implications for cancer progression[J]. J Clin Med, 2020, 9(5): 1256. DOI: 10.3390/jcm9051256.
[56]王偉明,劉輝,蔡智慧,等. DJ-1蛋白在卵巢癌中的表達(dá)及意義[J].中國婦幼保健, 2014, 29(14): 2243-2245.
[57]姚蘇格.上皮性卵巢癌患者組織中DJ-1表達(dá)水平與預(yù)后的相關(guān)性研究[D].保定: 河北大學(xué), 2023: 3-4.
[58]GONG F M, PENG X C, ZENG Z, et al. Proteomic analysis of cisplatin resistance in human ovarian cancer using 2-DE method[J]. Mol Cell Biochem, 2011, 348: 141-147. DOI: 10.1007/s11010-010-0648-6.
[59]GUPTA N, BAHR J M, SHARMA S, et al. Inhibition of ovarian tumor-associated DJ-1 expression and tumor progression[J]. J Clin Oncol, 2014, 32(15_suppl): e16527. DOI: 10.1200/jco.2014.32.15_suppl.e16527.
(責(zé)任編輯:高艷華)