摘 要 :柴達(dá)木盆地西部中央凹陷區(qū)中深層鹵水鉀含量高,但巖性復(fù)雜,孔隙類(lèi)型多樣,為尋找富鉀鹵水層,進(jìn)行鉀元素測(cè)井響應(yīng)規(guī)律研究,利用地層水電阻率譜與體積模型對(duì)鹵水層鉀離子含量進(jìn)行定量評(píng)價(jià)。結(jié)果表明:基于微電阻率成像數(shù)據(jù)得到的地層水電阻率譜,通過(guò)提取均值和幾何均值可有效識(shí)別水層,水層的地層水電阻率譜分布窄,譜峰靠前,平均值和幾何均值較??;利用鉀元素計(jì)算體積模型得到儲(chǔ)層孔隙度、骨架及泥質(zhì)含量,結(jié)合洗鹽前后的電感耦合等離子體發(fā)射光譜儀(ICP-OES)可以定量評(píng)價(jià)鹵水層鉀離子含量;ICP-OES與自然伽馬能譜測(cè)井可以對(duì)鹵水層總鉀含量進(jìn)行標(biāo)定,結(jié)合多元線性回歸能夠建立鹵水層元素評(píng)價(jià)方法。用體積模型計(jì)算的鹵水鉀含量與試驗(yàn)結(jié)果一致性較好。研究結(jié)果能夠快速、有效的判別鹵水鉀含量,提高鹵水儲(chǔ)層的識(shí)別能力,為預(yù)測(cè)研究區(qū)鹵水空間展布提供重要依據(jù)。
關(guān)鍵詞 :柴達(dá)木盆地;鹵水層;鉀元素;測(cè)井評(píng)價(jià) "中圖分類(lèi)號(hào):P 631.84
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1672 - 9315(2024)02 - 0311 - 08
DOI :10.13800/j.cnki.xakjdxxb.2024.0211 "開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Recognition model of potassium-rich brines in the middle
and deep layers of the Qaidam Basin
LUO Shaocheng1,ZHANG Cheng’en1,CHENG Liang1,LI Na1,
ZHAO Pan1,BIAN Huiyuan2,ZHOU Jun2
(1.China Petroleum Logging Co. ,Ltd. ,Xi’an 710077,China;
2.College of Geology and Environment,Xi’ an University of Science and Technology,Xi’ an 710054,China)
Abstract :The central depression area in the western part of the Qaidam Basin is rich in potassium-bearing deep brines with high development value.The deep brines have complex lithology and diverse pore types,which makes it difficult to evaluate the potassium element in the brines.In order to explore industrial grade potassium rich brine layers and study the response law of potassium element logging,quantitative evaluation of potassium ion content in brine layers was carried out using formation water resistance spectra and volume models.The results show that:the formation water resistivity spectrum obtained based on the micro-resistivity imaging data can effectively identify the water layer by extracting the mean and geometric mean,and the formation water resistivity spectrum of the water layer has a narrow distribution,with the peak of the spectrum at the front,and the mean and geometric mean are smaller;the porosity,skeleton and mud content of the reservoir is obtained by using the calculated volumetric model of elemental potassium,and the results can be quantitatively evaluated by using the Inductively Coupled Plasma Emission Spectrometry spectroscopy(ICP-OES)before and after the salt washing,which can be used to quantify the brine content.OES can quantitatively evaluate the potassium ion content of the brine layer;ICP-OES and natural gamma energy spectrometry logging can calibrate the total potassium content of the brine layer,and the combination of multivariate linear regression can establish an elemental evaluation method for the brine layer.The lithium content of brine calculated by volumetric model is in good agreement with the experimental results,and this study can quickly and effectively identify the potassium content of brine,improve the identification ability of brine reservoir,and provide an important basis for the prediction of the spatial distribution of brine in the study area. "Key words :Qaidam Basin;brine layer;potassium;logging evaluation
0 引 言
柴達(dá)木盆地礦產(chǎn)資源豐富多樣,除油氣資源外,鉀、鎂、鋰、鍶、硼、石鹽、石膏、天然堿等鹽類(lèi)及有色金屬礦產(chǎn)蘊(yùn)藏豐富,地下水、氦氣、地?zé)岬人澳茉吹V產(chǎn)也有一定的分布[1 - 5]。
柴達(dá)木盆地深層鹵水鉀鹽礦產(chǎn)勘查取得了重大突破,先后發(fā)現(xiàn)大浪灘 - 黑北凹地超大型深層砂礫孔隙鹵水鉀鹽礦,大浪灘鹽類(lèi)晶間鹵水鉀鹽礦床、昆特依凹地深層砂礫孔隙鹵水鉀鹽礦床和黑北凹地深層砂礫孔隙鹵水鉀鹽礦床等大型深層鹵水鉀鹽礦,察汗斯拉圖凹地小型深層鹵水鉀鹽礦等多處[6 - 9]。
在識(shí)別鹵水層方面,主要應(yīng)用的方法有地震勘探、電法勘探和測(cè)井解釋等[10 - 11],深層鹽類(lèi)晶間鹵水儲(chǔ)層為湖相的石鹽、石膏、芒硝等,在地震剖面上反映的是一套同相軸反射器強(qiáng)度較強(qiáng)、較連續(xù)的地震響應(yīng)特征,同時(shí)反射能量呈條帶狀分布[12]。
深層構(gòu)造裂隙孔隙鹵水的儲(chǔ)層為斷層構(gòu)造裂隙和地層孔隙,在地震剖面上反映的是同向軸反射強(qiáng)度較強(qiáng)、連續(xù)性相對(duì)較差的地震響應(yīng)特征,橫向連續(xù)性較差,反射能量呈塊狀分布[13]。
綜合利用錄井、試采、測(cè)井(常規(guī)測(cè)井、電成像測(cè)井、核磁測(cè)井)、巖石物理測(cè)試及水分析化驗(yàn),建立多信息融合測(cè)井分析模型,可對(duì)儲(chǔ)層的巖性、物性等進(jìn)行有效劃分[14]。
聶曉敏等利用微電阻率成像測(cè)井中的視地層水電阻率譜形態(tài)與核磁測(cè)井T 2譜峰形態(tài)確定鹵水層位置[15];陳科貴等利用BP神經(jīng)網(wǎng)絡(luò)對(duì)川東地"區(qū)深層鹵水進(jìn)行了有效劃分[16];黃華等利用地層水電阻率法與中子壽命法計(jì)算了鹵水層的礦化度,為鹵水層的品位評(píng)價(jià)提供決策依據(jù)[17];陳科貴等基于體積模型通過(guò)選擇合適的測(cè)井曲線評(píng)價(jià)了地層中K 2O的含量[18],為鹵水鉀的評(píng)價(jià)提供了研究思路。
1 地質(zhì)概況
柴達(dá)木盆地是中國(guó)最大鹽類(lèi)沉積盆地,被阿爾金山、祁連山和昆侖山環(huán)繞[19 - 21]。深層鹵水先后在大浪灘、察汗斯拉圖凹地、昆特依凹地、馬海等區(qū)域相繼取得了找礦突破,目前在柴達(dá)木盆地西部堿石山、鳳凰山、小冒泉、鴨子湖地區(qū)等處探尋到深層砂礫石鹵水[22]。
柴達(dá)木盆地古近紀(jì)至新近紀(jì)沉積凹地在后期新構(gòu)造運(yùn)動(dòng)的作用下,受到擠壓產(chǎn)生斷裂,地層變形褶皺隆起。沿山前斷線凹地形成深層鹽類(lèi)晶間鹵水鉀鹽礦。而在背斜構(gòu)造區(qū)域多形成深層構(gòu)造裂隙孔隙鹵水鉀鹽礦。柴達(dá)木盆地西部的古近系、新近系是深層鹵水的產(chǎn)出層位,在下干柴溝組上段到上油砂山組均有發(fā)育。
堿石山、鴨子湖地處柴達(dá)木盆地西部(圖1),處于中央坳陷帶,地質(zhì)條件十分復(fù)雜,后期構(gòu)造運(yùn)動(dòng)改造作用強(qiáng)烈,斷裂極為發(fā)育。上干柴溝組主要為黃綠色砂巖和棕紅色泥巖互層;下油砂山組巖性以灰色泥巖、砂質(zhì)泥巖為主,夾棕褐色泥巖,灰色鈣質(zhì)泥巖,上油砂山組巖性以灰色泥巖、砂質(zhì)泥巖為主,夾少量灰色泥質(zhì)粉砂巖。
2 儲(chǔ)層特征
柴達(dá)木盆地鄂博梁、堿石山、南翼山等中深部鹵水層砂礫巖呈灰黑至深黑色。儲(chǔ)層以砂泥巖為主,富含方解石,非均質(zhì)性強(qiáng)。儲(chǔ)層中的鉀主要來(lái)源于鉀長(zhǎng)石、黏土礦物及鹵水氯化鉀。孔隙度范圍6.4%~32.4%,平均孔隙度19.9%,滲透率范圍為0.025~475×10-3 μm2,平均滲透率為54.6×10-3 μm2(圖2)。
巖石以石英、斜長(zhǎng)石、方解石為主,含量分別為37.09%、16.10%和10.70%,鉀長(zhǎng)石含量為3.42%(圖3)。
巖石黏土礦物約為15.26%,包含高嶺石、綠泥石、伊利石和伊蒙混層,黏土礦物以伊利石為主,含量在48.4%~66.6%之間,平均59.4%,見(jiàn)表1。
根據(jù)巖心鑄體薄片資料(圖4),儲(chǔ)層多為方解石質(zhì)粗粉砂巖,填隙物為方解石膠結(jié)物;以殘余粒間孔隙為主(圖4(a),(b)),微裂隙次之(圖4(c));部分含方解石極細(xì)粒長(zhǎng)石砂巖,填隙物為方解石膠結(jié)物,為殘余粒間孔隙(圖4(d),(e));少量泥巖段沿層理發(fā)育微裂隙(圖4(f))。
核磁共振T 2譜分布可以指示巖石孔隙結(jié)構(gòu)(圖5),柴達(dá)木盆地西部鴨湖地區(qū)晚白堊紀(jì)地層孔隙結(jié)構(gòu)主要為3類(lèi):Ⅰ類(lèi)為高孔高滲儲(chǔ)層,以2號(hào)樣品為例,核磁T 2譜以大孔隙分量為主,呈現(xiàn)單峰,譜峰偏右(圖5(a));Ⅱ類(lèi)為中低孔滲儲(chǔ)層,以5號(hào)樣品為例,核磁T 2譜呈現(xiàn)雙峰,(圖5(b));Ⅲ類(lèi)為低孔低滲儲(chǔ)層,以12號(hào)樣品為例,核磁T 2譜以小孔隙分量為主,左側(cè)峰值較高,右側(cè)譜峰較低(圖5(c))。
3 地層水電阻率譜識(shí)別含水層
綜合全巖分析、黏土分析、鑄體薄片和核磁T 2譜可見(jiàn),柴達(dá)木盆地中深部鹵水層儲(chǔ)層巖性多樣,孔隙結(jié)構(gòu)復(fù)雜,利用常規(guī)測(cè)井解釋效果較差,微電阻率成像測(cè)井縱向分辨率高,可準(zhǔn)確識(shí)別鹵水層。
地層水電阻率是求取含水飽和度的關(guān)鍵參數(shù),能一定程度上反映含水飽和度的精度。對(duì)于均質(zhì)性地層采用常規(guī)測(cè)井方法能夠較準(zhǔn)確的計(jì)算地層水電阻率,對(duì)于非均質(zhì)性強(qiáng)、地層水束縛水含量高的地層,地層地下水宏觀上處于不斷運(yùn)動(dòng)狀態(tài),非均質(zhì)性地層的礦化度和導(dǎo)電性存在著非均質(zhì)譜特征[23 - 25]。
3.1 微電阻率成像測(cè)井計(jì)算孔隙度譜
利用常規(guī)淺側(cè)向電阻率(RLLS)對(duì)微電阻率成像測(cè)井的紐扣電極電導(dǎo)率數(shù)據(jù)進(jìn)行刻度得到電阻率R i,利用R i求得的孔隙度為 "i;用RLLS求得的孔隙度為 "0,將RLLS,R i, "i, "0帶入Archie公式得到
i=
m
σ i
× "0
(1) 式中 σ i為紐扣電極電導(dǎo)率,s/m;"為電導(dǎo)率均值,s/m;m為膠結(jié)指數(shù)。
根據(jù)上式計(jì)算出對(duì)應(yīng)深度點(diǎn)的孔隙度,使用一定窗長(zhǎng)對(duì)孔隙度數(shù)據(jù)進(jìn)行統(tǒng)計(jì)得到孔隙度頻率數(shù)據(jù)。以各深度點(diǎn)的孔隙度區(qū)間為橫坐標(biāo),頻率為縱坐標(biāo),即可繪制孔隙度譜[26]。
3.2 微電阻率成像的電阻率譜計(jì)算
基于成像孔隙度譜的計(jì)算結(jié)果,結(jié)合Archie公式,得到地層水電阻率的計(jì)算公式
R w=R xo× m
(2) 式中 "為孔隙度,%;R w為地層水電阻率,Ω ·m;R xo為沖洗帶電阻率,Ω ·m。
油氣層段在地層水電阻率譜中表現(xiàn)為譜峰相對(duì)靠后的寬譜型,數(shù)值大小分布不勻,普遍偏大,徑向上離散性強(qiáng),視地層水電阻率譜方差大(圖6);水層段在地層水電阻率譜中表現(xiàn)為譜峰相對(duì)靠前的窄譜型,數(shù)值分布相對(duì)均勻,普遍較小,徑向上離散性弱,地層水電阻率譜方差小[27 - 30]。
3.3 電阻率譜表征參數(shù)
電阻率譜均值(R wa)表示利用某一深度附近各鈕扣電極電阻率曲線計(jì)算的電阻率均值,均值越大,儲(chǔ)集性越好,電阻率譜均值一般與地層電阻率較接近。電阻率譜均值計(jì)算公式[31]為
R wa
=∑ n i=1 R wiP i
∑ n i=1 P i
(3) 式中 R wi為每個(gè)深度點(diǎn)對(duì)應(yīng)的地層水電阻率,Ω ·m;P i為該地層水電阻率對(duì)應(yīng)的頻率;n為對(duì)應(yīng)深度點(diǎn)的紐扣電極數(shù)量。
電阻率譜幾何均值(V gm)用于計(jì)算地層水電阻率的平均增長(zhǎng)率,計(jì)算公式[31 - 32]為
V gm
=
∑ n i=1 p i
∏ n i=1 R waP i
(4)
通過(guò)地層水電阻率譜與電阻率譜表征參數(shù)對(duì)柴達(dá)木盆地西部鴨湖A井的含水層進(jìn)行劃分,以便進(jìn)一步研究含水層中的鉀元素含量。
4 基于體積模型的孔隙鉀元素含量計(jì)算
在測(cè)井評(píng)價(jià)中,經(jīng)常將混合復(fù)雜的巖石等效為相對(duì)均勻的幾種礦物組合模型。復(fù)合物質(zhì)是由多種物質(zhì)均勻混合構(gòu)成,其物理性質(zhì)受各組成成分含量的線性關(guān)系影響。復(fù)合物質(zhì)的物理性質(zhì)可以通過(guò)各組成成分的體積加權(quán)平均來(lái)描述。
由X衍射資料可知,礦物骨架中含有鉀元素,為求取孔隙鉀元素含量,需要將巖石體積模型等效為含鉀礦物、無(wú)鉀礦物、泥質(zhì)和孔隙流體4個(gè)部分,體積模型如圖7所示。由體積模型可得到砂巖鹵水中鉀元素含量K f。
K f=(K-K 1V 1-K shV sh)/
(5) 式中 K為目的層鉀含量,%;K 1為含鉀礦物中鉀含量,%;K sh為泥質(zhì)中鉀含量,%;V 1為含鉀礦物體積,%;V sh為泥巖體積,%。
為了準(zhǔn)確獲取目的層鉀元素含量,對(duì)自然伽馬能譜進(jìn)行解譜得到目的層鉀元素含量,但利用該方法獲取的鉀元素需要用XRD元素分析得到的鉀元素進(jìn)行標(biāo)定,試驗(yàn)結(jié)果如圖8所示。
含鉀礦物中的鉀含量與泥質(zhì)中鉀含量需要先計(jì)算礦物和泥質(zhì)中K 2O含量,將K 2O含量轉(zhuǎn)換為礦物鉀含量和泥質(zhì)鉀含量,計(jì)算公式如下
K 1=1.037 6V 1/ρ b
K sh=0.119 5V sh/ρ b
(6) 式中 V 1為含鉀礦物含量,%;
V sh為泥質(zhì)含量,%
;ρ b為地層密度,g/cm3。
泥質(zhì)含量利用無(wú)鈾伽馬計(jì)算,結(jié)合公式(5)即可得到孔隙流體中鉀元素的含量。
5 模型效果分析
將鉀元素計(jì)算體積模型應(yīng)用到柴達(dá)木盆地西部鴨湖A井(圖9)。1137.8~1148.1 m層段無(wú)鈾伽馬在52~78 API之間,聲波時(shí)差在330~360 μs/m,深側(cè)向電阻率較低,小于1 Ω ·m,利用常規(guī)測(cè)井結(jié)合微電阻率成像測(cè)井綜合識(shí)別為鹵水層。
自然伽馬能譜測(cè)井顯示地層總鉀含量為1.86%~3.29%,儲(chǔ)層巖性以砂泥巖為主,碳酸鹽巖含量約為20%,泥質(zhì)含量在10%~45%之間,含鉀礦物含量小于2%。利用體積模型計(jì)算得到泥質(zhì)鉀含量、含鉀礦物鉀含量及鹵水鉀含量,表明該層段的鉀主要來(lái)源于鹵水,鹵水鉀含量計(jì)算結(jié)果與水分析鉀含量數(shù)據(jù)一致性高(圖9)。
6 結(jié) 論
1)測(cè)井技術(shù)在鹵水層識(shí)別上具有獨(dú)到的優(yōu)勢(shì),不僅可以找到并找準(zhǔn)鹵水層,也能夠準(zhǔn)確的確定鹵水鉀的含量。
2)利用微電阻率成像數(shù)據(jù)計(jì)算地層水電阻率譜,并提取譜的均值和幾何均值表征參數(shù)來(lái)識(shí)別水層。水層地層水電阻率譜分布窄,譜峰靠前,平均值和幾何均值較小;干層地層水電阻率譜分布寬,譜峰靠后,平均值和幾何均值較大。
3)目前鹵水層鉀元素含量的計(jì)算方法,對(duì)砂巖鹵水層鉀元素定量評(píng)價(jià)方法進(jìn)行適應(yīng)性分析,建立泥質(zhì)砂巖體積模型,流體鉀含量定量測(cè)井解釋模型與試驗(yàn)結(jié)果表現(xiàn)出良好的一致性。
參考文獻(xiàn)(References):
[1] ""鄭綿平,齊文,張永生.中國(guó)鉀鹽地質(zhì)資源現(xiàn)狀與找鉀方向初步分析[J].地質(zhì)通報(bào),2006,25(11):1239- 1246.
ZHENG Mianping,QI Wen,ZHANG Yongsheng.Present situation of potash resources and direction of potash search in China[J].Geological Bulletin of China,2006,25(11):1239 - 1246.
[2] 張湘如,樊啟順,魏海成,等.青海察爾汗鹽湖碳酸鹽的硼同位素地球化學(xué)特征[J].地質(zhì)學(xué)報(bào),2017,91(10):2299 - 2308.
ZHANG Xiangru,F(xiàn)AN Qishun,WEI Haicheng,et al.Boron isotope geochemistry characteristics of carbonates in Qerhan Salt Lake,Qinghai Province[J].Acta Geologica Sinica,2017,91(10):2299 - 2308.
[3] TAN H B,RAO W B,MA H Z,et al.Hydrogen,oxygen,helium and strontium isotopic constraints on the formation of oilfield waters in the western Qaidam Basin[J].Journal of Asian Earth Sciences,2011,40(2):651 -660.
[4] 曹琴,周訓(xùn),張歡,等.四川盆地臥龍河儲(chǔ)鹵構(gòu)造地下鹵水的水化學(xué)特征及成因[J].地質(zhì)通報(bào),2015,34(5):990 - 997.
CAO Qin,ZHOU Xun,ZHANG Huan,et al.Hydrochemical characteristics and genesis of the subsurface brines in the Wolonghe brine-bearing structure of Sichuan Basin[J].Geological Bulletin of China,2015,34(5):990- 997.
[5] 穆延宗,乜貞,卜令忠,等.我國(guó)油(氣)田水鉀資源研究進(jìn)展[J].地球科學(xué)進(jìn)展,2016,31(2):147 - 160.
MU Yanzong,NEI Zhen,BU Lingzhong,et al.Progress in study of potash resources of oil(gas)field brine in China[J].Advance in Earth Science,2016,31(2):147- 160.
[6] 校韓立.柴達(dá)木盆地黑北凹地新型砂礫型含鉀鹵水成因研究[D].北京:中國(guó)礦業(yè)大學(xué)(北京),2018.
XIAO Hanli.Study on origin of potassium-bearing brine in sandy gravel bed of Heibei concave in Qaidam Basin[D].Beijing:China University of Mining and Technology,Beijing,2018.
[7] 沈振樞,程果,祁國(guó)柱.察汗斯拉圖鹽湖第四紀(jì)地層劃分的初步探討[J].海洋與湖沼,1990,21(3):241- 254.
SHEN Zhenshu,CHENG Guo,QI Guozhu.Priliminary study of quarternary strata in Chananshilatu salt lake[J].Oceanologia et Limnologia Sinica,1990,21(3):241 - 254.
[8] 牛雪,焦鵬程,曹養(yǎng)同,等.青海察爾汗鹽湖別勒灘區(qū)段雜鹵石成因及其成鉀指示意義[J].地質(zhì)學(xué)報(bào),2015,89(11):2087 - 2095.
NIU Xue,JIAO Pengcheng,CAO Yangtong,et al.The origin of polyhalite and its indicating significance for the Potash Formation in the Bieletan area of the Qarhan Salt Lake,Qinghai[J].Acta Geologica Sinica,2015,89(11):2087 - 2095.
[9] 余小燦,劉成林,王春連,等.江漢盆地大型富鋰鹵水礦床成因與資源勘查進(jìn)展:綜述[J].地學(xué)前緣,2022,29(1):107 - 123.
YU Xiaocan,LIU Chenglin,WANG Chunlian,et al.Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration:A review[J].Earth Science Frontiers,2022,29(1):107 - 123.
[10] LIU X X,YUE X,YU X L,et al.Characteristics and genesis of the double potash layer metallogenetic model of Kunteyi Depression in the northwest margin of Qaidam Basin[J].Journal of Lake Sciences,2020,32(1):246 - 258.
[11] 侯獻(xiàn)華,馮磊,鄭綿平,等.南翼山富鉀鋰鹵水儲(chǔ)層識(shí)別方法[J].地球科學(xué),2022,47(1):45 - 55.
HOU Xianhua,F(xiàn)ENG Lei,ZHENG Mianping.et al.Recognition method of potassium-rich lithium brine reservoir in Nanyishan[J].Earth Science,2022,47(1):45 - 55.
[12] 閻建國(guó),侯磊,趙玉紅,等.地震勘探方法在川東深層富鉀鹵水勘探中的應(yīng)用[J].中國(guó)工程科學(xué),2013,15(10):59 - 65.
YAN Jianguo,HOU Lei,ZHAO Yuhong,et al.Application of seismic exploration method in East Sichuan deep-seated potassium-rich brine exploration[J].
Strategic Study of CAE,2013,15(10):59 - 65.
[13] 廖磊.地震資料在富鉀鹵水中的應(yīng)用[D].荊州:長(zhǎng)江大學(xué),2018.
LIAO Lei.Seismic data in the application of potassium rich brine[D].Jingzhou:Yangtze University,2018.
[14] 黃道軍,李新虎,劉燕,等.鄂爾多斯盆地中東部本溪組致密砂巖儲(chǔ)層特征及有利層段優(yōu)選[J].西安科技大學(xué)學(xué)報(bào),2023,43(1):109 - 118.
HUANG Daojun,LI Xinhu,LIU Yan,et al.Characteristics and favorable intervals selection of tight sandstone reservoirs in Benxi Formation,central-eastern Ordos Basin[J].Journal of Xi’an University of Science and Technology,2023,43(1):109 - 118.
[15] 聶曉敏,張程恩,陸志奇,等.測(cè)井技術(shù)在鹵水研究中的應(yīng)用[J].石化技術(shù),2023,30(6):143 - 145.
NIE Xiaomin,ZHANG Chengen,LU Zhiqi,et al.Application of logging technology in brine research[J].Petrochemical Technology,2023,30(6):143 - 145.
[16] 陳科貴,李進(jìn),黃長(zhǎng)兵,等.BP神經(jīng)網(wǎng)絡(luò)在富鉀鹵水中的應(yīng)用研究[J].地球科學(xué)進(jìn)展,2018,33(6):614- 622.
CHEN Kegui,LI Jin,HUANG Changbing,et al.Application research of BP neural network in potassiumrich brine[J].Advance in Earth Science,2018,33(6):614- 622.
[17] 黃華,余嫦娥,張士萬(wàn),等.基于地球物理測(cè)井參數(shù)的深層鹵水礦化度方法研究[J].礦床地質(zhì),2016,35(6):1293 - 1299.
HUANG Hua,YU Chang’e,ZHANG Shiwan,et al.Research on calculation methods of salinity of deep brine based on geophysical well logging parameters[J].Mineral Deposit Geology,2016,35(6):1293 - 1299.
[18] 陳科貴,李春梅,李利,等.四川盆地含鉀地層的地球物理測(cè)井標(biāo)志、判別模型與應(yīng)用——以川中廣安地區(qū)為例[J].地球?qū)W報(bào),2013,34(5):623 - 630.
CHEN Kegui,LI Chunmei,LI Li,et al.Geophysical logging criteria and discriminant model for the potassium-rich strata and their application to Sichuan Basin:A case study of Guang’an area of central Sichuan[J].Journal of Earth Sciences,2013,34(5):623 - 630.
[19] 曾旭,付鎖堂,王波,等.柴達(dá)木盆地古近系下干柴溝組上段碎屑鋯石U-Pb測(cè)年及盆山耦合探討[J].地質(zhì)學(xué)報(bào),2023,98(1):1 - 28.
ZENG Xu,F(xiàn)U Suotang,WANG Bo,et al.Detrital zircons U-Pb dating of the Paleogene Lower Ganchaigou Formation in Qaidam Basin and discussion of basin-mountain coupling[J].Acta Geologica Sinica,2023,98(1):1 -28.
[20] TIAN M Z,LIU Z G,ZHU C,et al.Lithofacies characteristics and methodology to identify lacustrine carbonate rocks via log data:A case study in the Yingxi area,Qaidam Basin[J].Energies,2023,16(16):6041.
[21] 邊會(huì)媛,韓博華,王飛,等.柴北緣牛東地區(qū)砂礫巖儲(chǔ)層特征及分類(lèi)評(píng)價(jià)[J].西安科技大學(xué)學(xué)報(bào),2020,40(5):894 - 901.
BIAN Huiyuan,HAN Bohua,WANG Fei,et al.Characteristics and classification of glutenite reservoirs in Niudong area,north margin of Qaidam Basin[J].Journal of Xi’an University of Science and Technology,2020,40(5):894 - 901.
[22] 李洪普.柴達(dá)木盆地深層含鉀鹵水成礦與利用研究[M].武漢:中國(guó)地質(zhì)大學(xué)出版社,2021.
[23] MABROUK
W M,SOLIMAN
K S,SAMAR S A.New method to calculate the formation water resistivity(R w)[J].Journal of Petroleum Science and Engineering,2013,104:49 - 52.
[24]
LIU Z L,WU H P,CHEN R J.Evaluation of volcanic reservoir heterogeneity in eastern sag of Liaohe Basin based on electrical image logs[J].Journal of Petroleum Science and Engineering,2022,211:110 - 115.
[25] 李厚義.對(duì)油層水電阻率的思考[J].測(cè)井技術(shù),1996,20(4):303 - 307.
LI Houyi.Notes on water resistivity of oil zone[J].Well Logging Technology,1996,20(4):303 - 307.
[26] LAI J,PANG X J,XIAO Q Y,et al.Prediction of reservoir quality in carbonates via porosity spectrum from image logs[J].Journal of Petroleum Science and Engineering,2019,173:197 - 208.
[27]
白松濤,萬(wàn)金彬,楊銳祥,等.地層水電阻率評(píng)價(jià)方法綜述[J].地球物理學(xué)進(jìn)展,2017,32(2):566 - 578.
BAI Songtao,WAN Jinbin,YANG Ruixiang,et al.Summary on formation water resistivity evaluation methods Progress in Geophysics[J].Progress in Geophysics,2017,32(2):566 - 578.
[28] 李慶峰,李曉峰,劉巖.白云巖儲(chǔ)層電成像視地層水電阻率流體識(shí)別技術(shù)[J].測(cè)井技術(shù),2017,41(4):412 - 415.
LI Qingfeng,LI Xiaofeng,LIU Yan.Fluid identification technique based on imaging apparent formation water resistivity in dolomite reservoirs[J].Well Logging Technology,2017,41(4):412 - 415.
[29] WANG G W,LAI J,LIU B C,et al.Fluid property discrimination in dolostone reservoirs using well logs[J].Acta Geologica Sinica(English Edition),2020,94(3):831 - 846.
[30] FAN X Q,WANG G W,DAI Q Q,et al.Using image logs to identify fluid types in tight carbonate reservoirs via apparent formation water resistivity spectrum[J].Journal of Petroleum Science and Engineering,2019,178:937 - 947.
[31] 張帆,高明,陳國(guó)軍,等.電成像孔隙度譜在砂礫巖有效儲(chǔ)層識(shí)別的應(yīng)用[J].科學(xué)技術(shù)與工程,2022,22(2):488 - 495.
ZHANG Fan,GAO Ming,CHEN Guojun,et al.Application of electrical imaging logging porosity spectrum in identification of effective reservoir in sandy conglomeratic reservoirs[J].Science Technology and Engineering,2022,22(2):488 - 495. [32] GE X M,F(xiàn)AN Y R,DENG S G,et al.An improvement of the fractal theory and its application in pore structure evaluation and permeability estimation[J].
Journal of Geophysical Research:Solid Earth,2016,121:6333 -6345.
(責(zé)任編輯:李克永)