摘 要 :為研究再生復(fù)合微粉復(fù)摻比對(duì)混凝土界面過渡區(qū)性能的影響機(jī)理,用宏微觀試驗(yàn)相結(jié)合的方法,分析不同復(fù)摻比對(duì)混凝土劈裂抗拉強(qiáng)度和顯微硬度的影響規(guī)律,并利用灰色關(guān)聯(lián)法探究力學(xué)性能與微觀結(jié)構(gòu)的關(guān)系。結(jié)果表明:再生磚粉對(duì)混凝土的改善效果優(yōu)于再生混凝土粉,且摻入合理的再生復(fù)合微粉會(huì)改善混凝土界面過渡區(qū)的微觀結(jié)構(gòu);再生復(fù)合微粉混凝土各組相顯微硬度關(guān)系為:骨料相>砂漿相>界面過渡區(qū)相,且界面過渡區(qū)厚度隨養(yǎng)護(hù)齡期的增加而逐漸減?。唤缑孢^渡區(qū)厚度與劈裂抗拉強(qiáng)度關(guān)系顯著,呈線性負(fù)相關(guān),所建立的模型擬合度較高。界面過渡區(qū)厚度能準(zhǔn)確地表征再生復(fù)合微粉混凝土宏觀性能變化規(guī)律,當(dāng)再生混凝土粉/再生磚粉為2"∶8時(shí),可制備出性能良好的C30混凝土,具有良好的推廣應(yīng)用價(jià)值。
關(guān)鍵詞 :再生復(fù)合微粉混凝土;劈裂抗拉強(qiáng)度;顯微硬度;界面過渡區(qū);灰色關(guān)聯(lián)法 "中圖分類號(hào):TU 528
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1672 - 9315(2024)02 - 0359 - 07
DOI :10.13800/j.cnki.xakjdxxb.2024.0216 "開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
The performance of interface transition zone of recycled
composite micro-powder concrete
GUAN Xiao1,ZHANG Yuan1,SUN Jia2,QIU Jisheng1,LI Le1
(1.College of Architecture and Civil Engineering,Xi’ an University of Science and Technology,Xi’ an 710054,China;
2.Power China Northwest Engineering Co. ,Ltd. ,Xi’an 710065,China)
Abstract :
In order to study the influence mechanism of recycled composite micro-powder compound mixing ratio on the performance of the interface transition zone of concrete,the influence of different compound mixing ratios on the splitting tensile strength and microhardness of concrete was analyzed by combining macro and micro experiments,and the correlation between mechanical properties and microstructure was explored using the grey correlation method.The results show that the improvement effect of recycled brick powder on concrete is better than that of recycled concrete powder,and the microstructure of the interface transition zone of concrete can be improved by adding reasonable recycled composite micro-powder.The microhardness relationship of each phase of
recycled composite micro-powder
concrete is as follows:the aggregate phase>the mortar phase>the interface transition zone phase,with the interface transition zone thickness gradually decreasing as the maintenance ages increase.The thickness of the interface transition zone has a significant relationship with the splitting tensile strength,showing a linear negative correlation.The established model has a high degree of fit.The study suggests that the thickness of the interface transition zone can accurately characterize the macroscopic performance change rule of recycled composite micro-powder concrete.When the ratio of recycled concrete powder to recycled brick powder is 2 ∶8,high-performance C30 concrete can be prepared,which has good promotion and application value. "Key words :recycled composite micro-powder concrete;splitting tensile strength;microhardness;interface transition zone;grey correlation method
0 引 言
再生微粉(<0.16 mm)是制備再生骨料時(shí)所產(chǎn)生的副產(chǎn)品,約占建筑垃圾總量的15~20%[1 - 3],具有水泥水化產(chǎn)物和未水化的礦物成分,有一定的潛在活性[4];中國(guó)的水泥產(chǎn)量常年位居全球第一,每年因生產(chǎn)水泥而排放的CO 2量高達(dá)12億t以上[5]。考慮將再生微粉用于取代部分水泥制備混凝土材料,不僅可以實(shí)現(xiàn)建筑垃圾的全資源化利用,而且能降低因生產(chǎn)水泥而造成的CO 2排放量,具有良好的經(jīng)濟(jì)和生態(tài)環(huán)境效益[6]。界面過渡區(qū)(Interfacial Transition Zone,ITZ)為混凝土內(nèi)部結(jié)構(gòu)的薄弱區(qū),近年來國(guó)內(nèi)外眾多學(xué)者對(duì)混凝土ITZ開展了大量的相關(guān)研究,其中大多數(shù)研究[7 - 10]聚焦在骨料的種類及理化性質(zhì)對(duì)混凝土ITZ性能演化規(guī)律的影響,文獻(xiàn)[11 - 14]通過強(qiáng)化骨料來提高混凝土ITZ性能,文獻(xiàn)[15 - 16]表明再生微粉對(duì)提高混凝土強(qiáng)度和微觀結(jié)構(gòu)的致密性有積極作用。
通過對(duì)不同復(fù)摻比下再生復(fù)合微粉混凝土在各齡期時(shí)的劈裂抗拉強(qiáng)度和ITZ顯微硬度進(jìn)行測(cè)試,基于灰色關(guān)聯(lián)法探究ITZ參數(shù)與劈裂抗拉強(qiáng)度之間的關(guān)系,進(jìn)而建立相關(guān)模型,結(jié)合SEM測(cè)試技術(shù),從微觀角度揭示再生復(fù)合微粉對(duì)混凝土ITZ的影響機(jī)理。
1 試驗(yàn)
1.1 原材料水泥:海螺牌P ·O42.5普通硅酸鹽水泥;細(xì)集料:灞河中砂(Ⅱ區(qū)),細(xì)度模數(shù)為2.7 g/cm3,含泥量小于2%,含水率為4.1%;粗集料:5~25 mm連續(xù)級(jí)配的天然碎石,表觀密度為2 840 kg/m3,壓碎指標(biāo)為6.1%;外加劑:聚羧酸液體高性能減水劑,減水率為25%;拌合水:普通自來水。再生復(fù)合微粉:來源于西安當(dāng)?shù)胤课莶鸪a(chǎn)生的廢棄混凝土、廢棄磚,經(jīng)EP - 3B型破碎機(jī),破碎為<25 mm的粗骨料,放入PCZ180×150型制砂機(jī)制成<5 mm的再生混凝土、再生磚細(xì)集料,后利用GMJ/B型球磨機(jī)細(xì)磨制得再生混凝土粉與再生磚粉,兩者按不同比例混合制成再生復(fù)合微粉。
1.2 配合比及試件制備試驗(yàn)共7組配合比,純水泥組作為對(duì)照組,再生復(fù)合微粉以20%等質(zhì)量取代水泥,再生混凝土粉/再生磚粉分別為0 ∶10、2 ∶8、4 ∶6、6 ∶4、8 ∶2和10 ∶0,水膠比為0.45,試件尺寸為100 mm×100 mm×100 mm混凝土立方體,齡期分別為3,7,14,28,56和90 d。試件編號(hào)C代表再生混凝土粉,B代表再生磚粉,如C2B8代表?yè)饺?0%等質(zhì)量的再生復(fù)合微粉(其中再生混凝土粉占20%,再生磚粉占80%),以此類推。再生復(fù)合微粉混凝土配合比見表1,試件制作流程參照《混凝土物理力學(xué)性能試驗(yàn)方法標(biāo)準(zhǔn)》(GB/T 50081—2019)相關(guān)規(guī)定。
1.3 試驗(yàn)方法
1.3.1 劈裂抗拉強(qiáng)度測(cè)試采用YES - 2000B型數(shù)顯式壓力試驗(yàn)機(jī),根據(jù)“GB/T 50081—2019”對(duì)混凝土試件進(jìn)行強(qiáng)度測(cè)試,加載速率為0.05~0.08 MPa/s。
1.3.2 顯微硬度試驗(yàn)采用HVS - 1000Z型顯微硬度儀,硬度標(biāo)度為HV0.1,載荷為0.98 N。測(cè)試步驟:①對(duì)待測(cè)試件砂漿基體隨機(jī)打50個(gè)點(diǎn),以確定砂漿基體的顯微硬度標(biāo)準(zhǔn)區(qū)間;②沿骨料邊緣向外作5條不相鄰的法線,對(duì)砂漿區(qū)域進(jìn)行點(diǎn)陣測(cè)試,間距為10 μm(圖1);③測(cè)試時(shí)將顯微硬度儀壓頭壓入待測(cè)試件表面10 s后自動(dòng)卸載,讀取系統(tǒng)自動(dòng)計(jì)算的維氏硬度值。
2 結(jié)果與分析
2.1 劈裂抗拉試驗(yàn)
2.1.1 破壞形態(tài)因混凝土破壞時(shí)水泥漿體不能有效地阻止裂縫的發(fā)展,導(dǎo)致裂縫穿過粗骨料,形成了以粗骨料斷裂為主,部分粗骨料被拔出的破壞形態(tài),且部分漿體與骨料間的黏結(jié)界面出現(xiàn)微裂紋(圖2)。再生復(fù)合微粉吸水率較高,使得混凝土基體存有較多的孔,而在外荷載的作用下,粗骨料與水泥漿體的黏結(jié)界面由于孔洞的存在,易發(fā)生應(yīng)力集中現(xiàn)象,從而導(dǎo)致粗骨料的斷裂或被整體拔出。
2.1.2 劈裂抗拉強(qiáng)度經(jīng)時(shí)變化規(guī)律復(fù)摻6組試件的劈裂抗拉強(qiáng)度均低于對(duì)照組C0B0,這是因?yàn)閾饺朐偕鷱?fù)合微粉會(huì)降低混凝土基體中的水泥含量,另一方面由于再生復(fù)合微粉的早期水化程度不及水泥[17],進(jìn)而導(dǎo)致強(qiáng)度的下降(圖3)。但隨著齡期的增加,各組強(qiáng)度差距逐漸縮小,即28 d時(shí)C2B8組試件的劈裂抗拉強(qiáng)度與對(duì)照組相當(dāng)。這是因?yàn)槲⒓媳砻妗八Wo(hù)層”[18]的存在,阻礙了內(nèi)部活性物質(zhì)參與“二次水化”,延長(zhǎng)了水化反應(yīng)所需要的時(shí)間,表明再生復(fù)合微粉的水化反應(yīng)是一個(gè)由表及里、循序漸進(jìn)的過程,因此,再生復(fù)合微粉對(duì)混凝土強(qiáng)度的增強(qiáng)是逐漸顯現(xiàn)的,即90 d時(shí)C2B8組試件劈裂抗拉強(qiáng)度較對(duì)照組降低了0.13 MPa。但這與文獻(xiàn)[16]結(jié)論有所不同,分析其主要原因是原材料的理化性質(zhì)差異導(dǎo)致的。由表1抗壓強(qiáng)度及圖3可知,C2B8組試件在全齡期內(nèi)強(qiáng)度較高,這表明再生混凝土粉/再生磚粉為2 ∶8時(shí)其力學(xué)性能表現(xiàn)最佳。
2.2 復(fù)摻比對(duì)ITZ性能影響
箱型圖上、下四分位點(diǎn)為砂漿相顯微硬度的標(biāo)準(zhǔn)區(qū)間,各組區(qū)間上、下四分位點(diǎn)關(guān)系為:C0B0>C2B8>C0B10>C10B0>C4B6>C6B4>C8B2(圖4),這說明再生復(fù)合微粉的水化程度弱于水泥,導(dǎo)致復(fù)摻組的混凝土砂漿相顯微硬度低于對(duì)照組,同時(shí)注意到再生混凝土粉/再生磚粉為2 ∶8時(shí),其混凝土砂漿相顯微硬度相對(duì)較高。
7組試件的顯微硬度呈現(xiàn)出相同的規(guī)律,即骨料相>砂漿相>ITZ相(圖5),各組顯微硬度谷底值均位于ITZ,這表明ITZ雖屬于砂漿相,但為“相對(duì)薄弱區(qū)”[19 - 20]。由于混凝土基體中微孔洞及微裂縫的存在,導(dǎo)致骨料相、砂漿相及ITZ相顯微硬度值有較大波動(dòng)[21]。C2B8組試件ITZ厚度(42.33 μm)較對(duì)照組C0B0組ITZ厚度(41.15 μm)上升了2.87%,表明C2B8組試件的ITZ厚度可與對(duì)照組相媲美,因?yàn)樵偕鷱?fù)合微粉表面粗糙且粒徑小于水泥,能夠發(fā)揮微集料的填充效應(yīng)及火山灰特性,與氫氧化鈣(CH)發(fā)生二次水化反應(yīng),使得混凝土內(nèi)部結(jié)構(gòu)更加穩(wěn)定。
2.3 養(yǎng)護(hù)齡期對(duì)ITZ性能影響
砂漿相顯微硬度隨齡期的延長(zhǎng)而增大,但增長(zhǎng)趨勢(shì)是逐漸放緩的。14~28 d時(shí)增幅最為顯著,原因是再生復(fù)合微粉在早齡期有“外部水化層”的束縛,僅發(fā)揮了微集料的填充效應(yīng),隨著養(yǎng)護(hù)時(shí)間的逐漸增進(jìn),水分子會(huì)逐漸滲入再生復(fù)合微粉顆粒內(nèi)部,表面的“外部水化層”逐漸削弱、瓦解,與CH發(fā)生二次水化反應(yīng),未水化的水泥會(huì)借助微集料顆粒表面的吸附水及孔隙中的水分繼續(xù)發(fā)生水化,這使得混凝土基體中砂漿相顯微硬度有所提高(圖6)。
隨著齡期增加,ITZ厚度逐漸減小,但I(xiàn)TZ谷底值在逐漸升高(圖7)。隨距骨料相距離的增加,顯微硬度值呈現(xiàn)出逐漸增大且趨于平緩的趨勢(shì),這說明ITZ已經(jīng)過渡到砂漿相[22]。
2.4 宏微觀性能關(guān)系研究
2.4.1 灰色關(guān)聯(lián)分析灰色關(guān)聯(lián)是分析若干個(gè)子序列對(duì)母序列相關(guān)性重要程度的一種分析方法[23 - 24],基于灰色關(guān)聯(lián)法文中綜合選取骨料相平均顯微硬度、砂漿相平均顯微硬度、ITZ平均顯微硬度、ITZ谷底值及ITZ厚度分別與再生復(fù)合微粉混凝土劈裂抗拉強(qiáng)度進(jìn)行相關(guān)性分析,分辨系數(shù)為0.50(圖8),可知ITZ厚度與劈裂抗拉強(qiáng)度的相關(guān)性顯著,文獻(xiàn)[25]也表明ITZ厚度對(duì)混凝土性能影響較大。
2.4.2 宏微觀性能關(guān)系模型的建立分別對(duì)不同齡期、復(fù)摻比下再生復(fù)合微粉混凝土劈裂抗拉強(qiáng)度與ITZ厚度試驗(yàn)值進(jìn)行回歸擬合,結(jié)果如圖9所示,可發(fā)現(xiàn)隨著ITZ厚度的增加,其劈裂抗拉強(qiáng)度均呈現(xiàn)出線性下降的趨勢(shì)。
3 ITZ微觀結(jié)構(gòu)研究
3.1 微觀形貌
C0B0組試件骨料相與砂漿相之間的微裂縫明顯大于C2B8組,即未摻入再生復(fù)合微粉的ITZ微觀結(jié)構(gòu)較疏松(圖10)。這是由于再生復(fù)合微粉微集料的物理填充效應(yīng)和火山灰特性,在隨齡期不斷增進(jìn)的水化過程中,內(nèi)部活性物質(zhì)SiO 2及Al 2O 3 與CH會(huì)發(fā)生二次水化,生成水化硅酸鈣(C - S - H)和水化硅鋁酸鈣(C - A - S - H)凝膠,填充了混凝土基體內(nèi)部大量的微孔洞和微裂縫。
3.2 再生復(fù)合微粉對(duì)ITZ的影響作用機(jī)理微集料顆粒表面通常會(huì)附有“外部水化層”[18],阻礙水分子進(jìn)入顆粒內(nèi)部,導(dǎo)致再生復(fù)合微粉水化進(jìn)程緩慢,如圖11(a)所示。
而隨著齡期的增加,水泥水化產(chǎn)生的CH會(huì)釋放(OH)-離子使混凝土處于堿性環(huán)境[26],此時(shí)再生復(fù)合微粉與堿性溶液充分接觸,其內(nèi)部具有高結(jié)晶相的活性物質(zhì)SiO 2和Al 2O 3可發(fā)揮其良好的火山灰效應(yīng),其釋放的[SiO 4]4-和[Al(OH) 4]-陰離子團(tuán),可以與CH釋放的Ca2+發(fā)生二次水化聚合反應(yīng),形成具有高強(qiáng)度和高穩(wěn)定性的C - S - H和C - A - S - H網(wǎng)狀凝膠;與此同時(shí),水化產(chǎn)物鈣礬石(AFt)具有針棒狀結(jié)構(gòu),能夠與CH、C - S - H和C - A - S - H協(xié)同工作,從而有效填補(bǔ)、拉結(jié)再生復(fù)合微粉混凝土基體中的微孔洞和微裂縫,對(duì)混凝土ITZ改善具有積極影響作用,如圖11(b)所示。
4 結(jié) 論1)再生磚粉對(duì)混凝土的改善效果優(yōu)于再生混凝土粉,且摻入合理的再生復(fù)合微粉會(huì)改善混凝土ITZ的微觀結(jié)構(gòu),當(dāng)再生混凝土粉/再生磚粉為2∶8時(shí),其28 d劈裂抗拉強(qiáng)度與對(duì)照組相當(dāng);再生復(fù)合微粉混凝土強(qiáng)度增長(zhǎng)初期主要來源于微集料的物理填充效應(yīng),而中后齡期是物理填充效應(yīng)和火山灰特性共同發(fā)揮作用。2)再生復(fù)合微粉混凝土各組相顯微硬度關(guān)系為:骨料相>砂漿相>ITZ相;ITZ厚度隨齡期的增加而逐漸減小,且與劈裂抗拉強(qiáng)度灰色關(guān)系顯著,呈線性負(fù)相關(guān)。
3)當(dāng)再生復(fù)合微粉總?cè)〈蕿?0%,再生混凝土粉/再生磚粉為2 ∶8時(shí)可制備出性能良好的C30混凝土材料,這有利于促進(jìn)再生復(fù)合微粉在混凝土中的應(yīng)用和發(fā)展。
4)參考文獻(xiàn)(References):
[1] ""楊琳.再生混凝土微粉制備再生膠凝材料的研究[D].南京:東南大學(xué),2016. "YANG Lin.Investigation on recycled cementitious materials preparing with recycled concrete powder[D].Nanjing:Southeast University,2016.
[2] 劉斌.建筑垃圾再生細(xì)骨料及微粉制備再生砂漿試驗(yàn)研究[D].鄭州:鄭州大學(xué),2019. "LIU Bin.Experimental study on preparation of recycled mortar by construction waste recycled fine aggregate and powder[D].Zhengzhou:Zhengzhou University,2019.
[3]
康曉明.再生微粉顆粒級(jí)配對(duì)再生砂漿力學(xué)性能及微觀結(jié)構(gòu)的影響研究[D].西寧:青海大學(xué),2019. "KANG Xiaoming.Study on the influence of the particle size distribution of recycled concrete powder on the mechanical properties and microstructure of recycled mortar[D].Xining:Qinghai University,2019.
[4]
周一方,李瀅.基于再生微粉的復(fù)合膠凝體系水化特性研究[J].青海大學(xué)學(xué)報(bào),2023,41(2):16 - 22. "ZHOU Yifang,LI Ying.Study on the hydration characteristics of composite cementitious system based on the recycled micro powder[J].Journal of Qinghai University,2023,41(2):16 - 22.
[5]
廖志鵬.基于建筑垃圾再生微粉的輔助性膠凝材料制備和性能[D].綿陽(yáng):西南科技大學(xué),2022. "LIAO Zhipeng.Preparation and properties of supplementary cementitious materials based on recycled construction waste powder[D].Mianyang:Southwest University of Science and Technology,2022.
[6]
邱繼生,肖智杰,馮澤平,等.循環(huán)荷載作用下煤矸石混凝土損傷劣化機(jī)理[J].西安科技大學(xué)學(xué)報(bào),2023,43(2):332 - 341. "QIU Jisheng,XIAO Zhijie,F(xiàn)ENG Zeping,et al.Damage degradation mechanism of coal gangue concrete under cyclic loading[J].Journal of Xi’an University of Science and Technology,2023,43(2):332 - 341.
[7]
QUDOOS A,ATTA UR R,KIM H G,et al.Influence of the surface roughness of crushed natural aggregates on the microhardness of the interfacial transition zone of concrete with mineral admixtures and polymer latex[J].Construction and Building Materials,2018,168:946 -957.
[8]
MA H Y,TU Y,YU H F,et al.Mechanical properties and microstructural characteristics of coral-aggregate-concrete ITZ:Experimental study[J].Journal of Building Engineering,2023,72:106647.
[9]
李曉光,王攀奇,張郁,等.再生骨料混凝土毛細(xì)管負(fù)壓和界面過渡區(qū)研究[J].建筑材料學(xué)報(bào),2022,25(6):572 - 576. "LI Xiaoguang,WANG Panqi,ZHANG Yu,et al.Study on capillary negative pressure and interfacial transition zone of regenerated aggregate concrete[J].Journal of Building Materials,2022,25(6):572 - 576.
[10]
肖前慧,郭欣怡,邱繼生,等.再生骨料摻量對(duì)混凝土碳化性能的影響[J].西安科技大學(xué)學(xué)報(bào),2023,43(5):972 - 979. "XIAO Qianhui,GUO Xinyi,QIU Jisheng,et al.Influence of recycled aggregate content on carbonation performance of concrete[J].Journal of Xi’an University of Science and Technology,2023,43(5):972 - 979.
[11]
WU K Y,LUO S R,ZHENG J L,et al.Influence of carbonation treatment on the properties of multiple interface transition zones and recycled aggregate concrete[J].Cement and Concrete Composites,2022,127:104402.
[12]
HOSAN A,SHAIKH F U A,SARKER P,et al.Nano-and micro-scale characterisation of interfacial transition
zone(ITZ)of high volume slag and slag-fly ash blended concretes containing nano SiO 2 and nano CaCO 3[J].Construction and Building Materials,2021,269:121311.
[13]
楊志遠(yuǎn).納米二氧化硅改善再生骨料混凝土性能研究[D].深圳:深圳大學(xué),2018. "YANG Zhiyuan.Influence of nano-silica soaked recycled aggregates on properties of concrete[D].Shenzhen:Shenzhen University,2018.
[14]
邱繼生,朱夢(mèng)宇,周云仙,等.粉煤灰對(duì)煤矸石混凝土界面過渡區(qū)的改性效應(yīng)[J].材料導(dǎo)報(bào),2023,37(2):75 - 81. "QIU Jisheng,ZHU Mengyu,ZHOU Yunxian,et al.Modification effect of fly ash on interfacial transition zone of coal gangue concrete[J].Materials Reports,2023,37(2):75 - 81.
[15]
何智海,張夢(mèng)圓,詹培敏,等.再生微粉對(duì)超高性能混凝土力學(xué)性能和微觀結(jié)構(gòu)的影響[J].混凝土與水泥制品,2021(5):85 - 90. "HE Zhihai,ZHANG Mengyuan,ZHAN Peimin,et al.Effect of hybrid recycled powder on mechanical properties and microstructure of ultra-high performance concrete[J].China Concrete and Cement Products,2021(5):85 - 90.
[16]
劉超,胡天峰,劉化威,等.再生復(fù)合微粉對(duì)混凝土力學(xué)性能及微觀結(jié)構(gòu)的影響[J].建筑材料學(xué)報(bào),2021,24(4):726 - 735. "LIU Chao,HU Tianfeng,LIU Huawei,et al.Effect of recycled composite micro-powder on mechanical properties and microstructure of concrete[J].Journal of Building Materials,2021,24(4):726 - 735.
[17]
陳立俊,李瀅,陳文浩.不同氯鹽侵蝕作用對(duì)再生微粉混凝土力學(xué)性能的影響[J].青海大學(xué)學(xué)報(bào),2023,41(5):19 - 25,52. "CHEN Lijun,LI Ying,CHEN Wenhao.Effects of different chloride erosion on the mechanical properties of regenerated powder concrete[J].Journal of Qinghai University,2023,41(5):19 - 25,52.
[18]
李瑤.硅酸鹽水泥 - 硅灰復(fù)合膠凝材料低溫水化特征研究[D].大連:大連理工大學(xué),2016. "LI Yao.Research on hydration characteristics of Porland cement-silica fume composite cementitious material at lower temperatures[D].Dalian:Dalian University of Technology,2016.
[19]
鐘何,趙羽習(xí),孟濤.貽貝粗骨料混凝土的宏微觀性能[J].建筑材料學(xué)報(bào),2022,25(11):1160 - 1167. "ZHONG He,ZHAO Yuxi,MENG Tao.Macroscopic and microscopic properties of mussel coarse aggregate concrete[J].Journal of Building Materials,2022,25(11):1160 - 1167.
[20]
PENG H,CUI C,CAI C S,et al.Microstructure and microhardness property of the interface between a metakaolin/GGBFS-based geopolymer paste and granite aggregate[J].Construction and Building Materials,2019,221:263 - 273.
[21]
王犇.濕熱高鹽環(huán)境珊瑚骨料混凝土宏觀性能與微觀結(jié)構(gòu)關(guān)系研究[D].西安:西安建筑科技大學(xué),2022. "WANG Ben.Study on the relationship between macroscopic performance and microstructure of coral aggregate concrete in the hot-humid climate zone[D].Xi’an:Xi’an University of Architecture and Technology,2022.
[22]
胡延燕,何廷樹,張賢哲,等.石英粉、礦粉對(duì)壓蒸高強(qiáng)混凝土強(qiáng)度和界面顯微硬度的影響[J].硅酸鹽通報(bào),2014,33(10):2695 - 2700. "HU Yanyan,HE Tingshu,ZHANG Xianzhe,et al.Influence of quartz powder and slag on compressive strength and microhardness of high-strength concrete in the steam-autoclaved curing[J].Bulletin of the Chinese Ceramic Society,2014,33(10):2695 - 2700.
[23] 付勇,薛翠真,何江紅,等.混凝土再生微粉顆粒特征及其砂漿性能研究[J].材料導(dǎo)報(bào),2022,36(10):98 - 103. "FU Yong,XUE Cuizhen,HE Jianghong,et al.Study on the particle characteristics of recycled concrete powder and the performance of mortar[J].Materials Reports,2022,36(10):98 - 103.
[24]
ZHU L H,ZHAO C,Dai J.Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis[J].Construction and Building Materials,2021,273:121750.
[25]
刁益彤.混凝土界面過渡區(qū)宏觀力學(xué)性能及其與微結(jié)構(gòu)的關(guān)系研究[D].南京:南京航空航天大學(xué),2021. "DIAO Yitong.Research on macroscopic mechanical properties of concrete interfacial transition zone and its relationship with microstructure[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2021.
[26]
王一名,常立君,李瀅.廢棄混凝土再生微粉固化鹽漬土的強(qiáng)度特性及微觀機(jī)理研究[J].材料導(dǎo)報(bào),2021,35(S2):268 - 274. "WANG Yiming,CHANG Lijun,LI Ying.Study on strength characteristics and micro mechanism of saline soil solidified by recycled fine powder of waste concrete[J].Materials Reports,2021,35(S2):268 - 274.
(責(zé)任編輯:李克永)