【摘要】 消化道腫瘤是一種常見的惡性腫瘤,對于其治療和預(yù)后的研究一直備受關(guān)注。鐵死亡作為一種新型的細(xì)胞死亡方式,近年來在消化道腫瘤的研究中逐漸受到重視。鐵死亡是一種不同于細(xì)胞凋亡、細(xì)胞焦亡及自噬和非程序性壞死相關(guān)的細(xì)胞死亡過程的一種細(xì)胞死亡方式,其在消化道腫瘤中的作用和機(jī)制引起了研究人員的廣泛興趣。鐵死亡存在于炎癥、缺血再灌注損傷、急性腎損傷及腫瘤中,并在疾病過程中發(fā)揮重要作用。鐵死亡在消化道腫瘤中的研究具有重要的臨床意義,對于深入了解消化道腫瘤的發(fā)病機(jī)制、開發(fā)新的治療方法具有重要意義。因此,本綜述旨在對鐵死亡在消化道腫瘤中的研究情況進(jìn)行總結(jié)和分析,以期為相關(guān)領(lǐng)域的研究提供理論支持。
【關(guān)鍵詞】 消化道腫瘤 鐵死亡 脂質(zhì)過氧化 耐藥
Research Progress of Ferroptosis in Gastrointestinal Tumors/LI Guanghao, WANG Xiaotong, HUANG Haige. //Medical Innovation of China, 2024, 21(06): -154
[Abstract] Gastrointestinal cancer is a common malignant tumor, and the research on its treatment and prognosis has attracted much attention. As a new type of cell death, ferroptosis has been paid more and more attention in the study of digestive tract tumors in recent years. Ferroptosis is a way of cell death that is different from apoptosis, pyroptosis, autophagy and non-programmed necrosis-related cell death, and its role and mechanism in digestive tract tumors have attracted extensive interest from researchers. Ferroptosis exists in inflammation, ischemia-reperfusion injury, acute kidney injury and tumor, and plays an important role in the process of disease. The study of ferroptosis in digestive tract tumors has important clinical significance, which is of great significance for understanding the pathogenesis of digestive tract tumors and developing new treatment methods. Therefore, this review aims to summarize and analyze the research of ferroptosis in digestive tract tumors, in order to provide theoretical support for the research in related fields.
[Key words] Gastrointestinal cancer Ferroptosis Lipid peroxidation Resistance
First-author's address: Graduate School, Youjiang Medical University for Nationalities, Baise 533000, China
doi:10.3969/j.issn.1674-4985.2024.06.036
癌癥作為全球第二大死亡原因,其死亡病例和新發(fā)例數(shù)在逐年上升,對人類的期望壽命造成影響,帶來嚴(yán)重的疾病負(fù)擔(dān)。根據(jù)國際癌癥研究機(jī)構(gòu)(international agency for research on cancer,IARC)統(tǒng)計(jì)分析顯示,新發(fā)病例排位前十的分別是乳腺癌(11.7%)、肺癌(11.4%)、結(jié)直腸癌(10.0%)、前列腺癌(7.3%)、胃癌(5.6%)、肝癌(4.7%)、子宮頸癌(3.1%)、食管癌(3.1%)、甲狀腺癌(3.0%)、膀胱癌(3.0%)[1]。在消化道腫瘤中有四種排在前十位新發(fā)病例之中。根據(jù)我國國家癌癥中心數(shù)據(jù),結(jié)直腸癌、胃癌在我國新增病例中排名前三位[2]。
鐵死亡作為一種獨(dú)特的細(xì)胞死亡模式,在形態(tài)學(xué)、遺傳學(xué)和生物化學(xué)等方面與凋亡、壞死和自噬有較大的區(qū)別。鐵死亡是一種以鐵超載和脂質(zhì)過氧化物(ROS)累積為特點(diǎn)的一種非凋亡的程序性細(xì)胞死亡形式,主要通過多種代謝途徑,如硫醇代謝、脂肪酸代謝、鐵處理、甲羥戊酸途徑和線粒體呼吸,來直接影響細(xì)胞對脂質(zhì)過氧化和鐵死亡的敏感性。鐵死亡的主要細(xì)胞形態(tài)變化通常表現(xiàn)線粒體萎縮、線粒體膜密度增加、線粒體嵴減少或消失。鐵死亡有望成為新的抗腫瘤藥物的研究方向。
1 鐵死亡的發(fā)生機(jī)制
1.1 脂質(zhì)過氧化
脂質(zhì)過氧化被認(rèn)為是鐵死亡的特征。在鐵死亡環(huán)境中,脂質(zhì)過氧化主要發(fā)生在酯化的多不飽和脂肪酸中,而對于游離多不飽和脂肪酸沒有影響。通過敲低ACLS4和LPCAT3抑制酯酰輔酶A的生成以及花生四烯酸轉(zhuǎn)化為溶血磷脂的過程,從而可以增強(qiáng)細(xì)胞對鐵死亡的抵抗能力[3-4]。細(xì)胞中含有足夠的多不飽和脂肪酸是細(xì)胞發(fā)生鐵死亡的先決條件[5]。脂氧合酶(LOX)是非血紅素含鐵雙加氧酶家族,被認(rèn)為在脂質(zhì)過氧化中發(fā)揮核心作用,特別是ALOX15的作用已被反復(fù)驗(yàn)證[6-7],小支架蛋白PEBP1可以促進(jìn)ALOX15催化花生四烯酸的氧化反應(yīng)[8],提高細(xì)胞內(nèi)脂質(zhì)過氧化物濃度,從而促進(jìn)細(xì)胞發(fā)生鐵死亡。
1.2 鐵代謝異常
鐵代謝異常是鐵死亡發(fā)生的一個(gè)必要條件,在生理?xiàng)l件下,細(xì)胞鐵的吸收主要受質(zhì)膜蛋白轉(zhuǎn)鐵蛋白受體1(transferrin receptor protein 1,TFR1)控制,它通過受體介導(dǎo)的內(nèi)吞作用將轉(zhuǎn)鐵蛋白結(jié)合的鐵轉(zhuǎn)運(yùn)到細(xì)胞中。而通過敲低TFR1可以防止Erastin或胱氨酸剝奪誘導(dǎo)的鐵死亡。
1.3 胱氨酸/谷氨酸反向轉(zhuǎn)運(yùn)體(cystine/glutamate antiporter,System Xc-)受抑制
谷胱甘肽(glutathione,GSH)作為一種細(xì)胞中重要的代謝調(diào)節(jié)物質(zhì),與細(xì)胞內(nèi)的各種氧化還原過程中產(chǎn)生的氧自由基相結(jié)合,從而保護(hù)細(xì)胞內(nèi)脂質(zhì)和蛋白避免被氧化,從而減少細(xì)胞內(nèi)脂質(zhì)過氧化物的產(chǎn)生。
Erastin和RSL3通過抑制谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4)或System Xc-使細(xì)胞內(nèi)谷胱甘肽含量減少,脂質(zhì)過氧化物含量增加,致使細(xì)胞發(fā)生鐵死亡[9-10]。SLC7A11是Xc-系統(tǒng)中的一種膜通道轉(zhuǎn)運(yùn)蛋白,對胱氨酸具有高特異性,通過增加細(xì)胞中胱氨酸含量促進(jìn)谷胱甘肽的合成來減輕由ROS和鐵積累引起的鐵死亡。它已被廣泛認(rèn)為是腫瘤細(xì)胞抵抗鐵死亡的保護(hù)因子[11-12]。胱氨酸/谷胱甘肽/GPX4軸已被認(rèn)為是控制鐵死亡的中流砥柱,同時(shí)GPX4也被認(rèn)為是鐵死亡調(diào)控的中心[13]。
1.4 其他通路
FSP1/CoQ10/NAD(P)H通路,輔酶Q10是一種內(nèi)源性脂溶性化合物,是線粒體電子傳遞鏈中的重要組成部分,能夠有效清除細(xì)胞內(nèi)氧自由基,防止蛋白質(zhì)和脂質(zhì)氧化。FIN56化合物不僅能誘導(dǎo)GPX4的降解,還能通過甲羥戊酸途徑消耗CoQ10來提高細(xì)胞對鐵死亡的敏感性。FSP1/CoQ10/NAD(P)H系統(tǒng),通過不斷監(jiān)測和中和細(xì)胞膜的氧化損傷發(fā)揮作用。由于其為治療干預(yù)提供了各種易于處理的藥理學(xué)節(jié)點(diǎn),因此具有重要意義。
GCH1/BH4/DHFR通路,GTP環(huán)化水解酶1/四氫生物蝶呤可保護(hù)細(xì)胞避免受到鐵死亡過程中的脂質(zhì)過氧化損傷;它與GPX4氧化還原系統(tǒng)平行[14-15]。GCH1是BH4生物合成的關(guān)鍵酶,BH4是氧化應(yīng)激和炎癥的調(diào)節(jié)中的一種必需的輔助因子[16],GCH1表達(dá)產(chǎn)生親脂性抗氧化劑BH4,BH4通過將苯丙氨酸轉(zhuǎn)化為酪氨酸來促進(jìn)CoQ10的合成,從而提高細(xì)胞對鐵死亡的抵抗能力[13]。
2 鐵死亡與消化道腫瘤
2.1 鐵死亡與食管癌
食管癌(esophageal cancer,EC)是全球最常見的消化道惡性腫瘤之一,在患病早期沒有明顯的臨床特征,目前內(nèi)窺鏡檢查作為簡易準(zhǔn)確的診斷及預(yù)測措施,由于體驗(yàn)感較差,以至于大多數(shù)EC患者在確診時(shí)已處于癌癥中晚期。在行根治手術(shù)后,存在遠(yuǎn)處轉(zhuǎn)移及復(fù)發(fā)問題,因此患者5年生存率仍然較低。在行根治術(shù)后放化療對于提高食管癌患者預(yù)后有很大意義。食管癌在缺氧條件下,腫瘤細(xì)胞變得更容易遷移,同時(shí)腫瘤缺氧與放療或化療的高抵抗和預(yù)后不良有關(guān)。在缺氧條件下誘導(dǎo)E2F7上調(diào),而后轉(zhuǎn)錄激活QKI。QKI通過環(huán)化外顯子并置增加circBCAR3的合成,最終circBCAR3通過miR-27a-3p促進(jìn)食管癌細(xì)胞的增殖、遷移、侵襲和鐵凋亡[17]。放射抵抗是食管鱗狀細(xì)胞癌放療失敗的重要原因,斯鈣素2(stanniocalcin 2,STC2)在食管鱗狀細(xì)胞癌中表現(xiàn)為高表達(dá),且與不良預(yù)后相關(guān),STC2通過與PRMT5相互作用,激活PRMT5后,進(jìn)一步通過NHEJ和HR途徑來促進(jìn)腫瘤細(xì)胞發(fā)生DNA損傷應(yīng)答,同時(shí)STC2的過表達(dá)也使得腫瘤細(xì)胞內(nèi)使得細(xì)胞內(nèi)ROS及脂質(zhì)過氧化水平降低,共同促進(jìn)食管鱗狀細(xì)胞癌的輻射抗性[18-19]。在食管鱗癌干細(xì)胞中發(fā)現(xiàn)其通過CDK7/YAP/LDHD軸來增加細(xì)胞內(nèi)D-乳酸的消耗從而抑制由D-乳酸介導(dǎo)的鐵死亡[20]。
2.2 鐵死亡與胃癌
胃癌的早期癥狀特異性差,臨床表現(xiàn)不明顯,預(yù)后相對較差。中晚期胃癌的治療方式主要為手術(shù)治療為主要方式的綜合治療。在進(jìn)行化療的過程中胃癌細(xì)胞的耐藥性是造成胃癌患者治療失敗的重要原因之一[21]。索拉菲尼可作為鐵死亡誘導(dǎo)劑誘導(dǎo)包括胃癌在內(nèi)的多種癌癥,激活轉(zhuǎn)錄因子2(activation transcription factor 2,ATF2)通過促進(jìn)熱休克蛋白110(heat shock protein-110,HSPH1)與SLC7A11結(jié)合,并增加其穩(wěn)定性抑制鐵死亡發(fā)生[22]。miR-203-3p在胃癌細(xì)胞中高表達(dá),使癌細(xì)胞中l(wèi)ipid-ROS降低,并且miR-203-3p通過靶向抑制ALOX15的表達(dá)來抑制細(xì)胞發(fā)生鐵死亡[23]。GPX4作為保護(hù)性因子在鐵死亡中發(fā)揮作用,而半胱氨酸蛋白酶抑制劑SN(cystatin SN, CST1)通過募集OTUB1來解除GPX4泛素化修飾,提高GPX4穩(wěn)定性從而減少細(xì)胞內(nèi)ROS來抑制鐵死亡,促進(jìn)胃癌細(xì)胞發(fā)生轉(zhuǎn)移[24]。雙硫侖(disulfiram,DSF)被報(bào)道可抑制腫瘤細(xì)胞增長、侵襲,誘導(dǎo)腫瘤細(xì)胞死亡。同時(shí)DSF可提高腫瘤細(xì)胞對放化療的敏感性[25]。聯(lián)合奧沙利鉑(Oxa)與雙硫侖用藥可誘導(dǎo)胃癌細(xì)胞內(nèi)lipid-ROS合成增多,使PTGS2mRNA表達(dá)水平上升,抑制GPX4、SLC7A11mRNA表達(dá)促使胃癌細(xì)胞發(fā)生鐵死亡[26]。甲硫氨酸代謝是保護(hù)細(xì)胞免于鐵死亡的關(guān)鍵因素[27]。甲硫氨酸腺苷轉(zhuǎn)移酶2A(methionine adenosyltransferase 2A,MAT2A)可以催化甲硫氨酸和ATP產(chǎn)生S-腺苷甲硫氨酸,為細(xì)胞活動(dòng)提供甲基。特定的MAT2A抑制劑不僅可以靶向具有高甲硫氨酸循環(huán)活性的癌細(xì)胞,而且還可以與鐵死亡誘導(dǎo)劑協(xié)同作用。MAT2A-ACSL3信號(hào)軸在鐵死亡介導(dǎo)的癌癥治療功效中的潛在作用。種新的癌癥治療策略。腹膜轉(zhuǎn)移是胃癌遠(yuǎn)處轉(zhuǎn)的主要部位,并且表明不良預(yù)后。缺氧的微環(huán)境是胃癌腹膜轉(zhuǎn)移的共同特征。在胃癌腹膜轉(zhuǎn)移中,缺氧誘導(dǎo)因子-1α(hypoxia inducible factor 1 alpha,HIF-1α)表達(dá)增加,通過調(diào)節(jié)PMAN來提高ELAV樣RNA結(jié)合蛋白1在細(xì)胞質(zhì)內(nèi)的分布,提高鐵死亡保護(hù)因子SLC7A11的穩(wěn)定性來抑制鐵死亡[28]。
2.3 鐵死亡與肝癌
近年來,越來越多的證據(jù)表明,免疫療法的療效與癌癥的鐵死亡密切相關(guān)[29-30]。當(dāng)GPX4缺失的肝癌細(xì)胞死亡時(shí)會(huì)觸發(fā)CXCL10依賴的CD8+T細(xì)胞浸潤的腫瘤抑制性免疫反應(yīng),但是該過程會(huì)被腫瘤細(xì)胞上調(diào)的PD-L1和HMGB1介導(dǎo)的髓源性抑制性細(xì)胞浸潤所平衡。PD-1或HMGB1的阻斷可以激活CD8+T細(xì)胞并延長其在GPX4缺失的肝腫瘤小鼠中的存活時(shí)間[29,31]。多納非尼聯(lián)合GSK-J4通過促進(jìn)HMOX1基因的高表達(dá),進(jìn)而增加細(xì)胞內(nèi)鐵離子(Fe2+)含量,從而誘導(dǎo)肝癌細(xì)胞發(fā)生鐵死亡[32]。有研究發(fā)現(xiàn),S1R基因在索拉菲尼處理的肝癌細(xì)胞中過表達(dá),S1R通過NRF2途徑和System Xc-上調(diào)氧化應(yīng)激中ROS的積累,保護(hù)肝癌細(xì)胞抵抗鐵死亡[33-34]。相反,使用氟哌啶醇抑制S1R可以顯著增強(qiáng)Erastin和索拉菲尼通過增加細(xì)胞中的Fe2+、GSH和脂質(zhì)過氧化作用誘導(dǎo)的鐵死亡[35]。在乙肝病毒相關(guān)的肝癌發(fā)生過程中,HSPA8通過將乙肝核心蛋白募集到HBV共價(jià)閉合環(huán)狀DNA(covalently closed circular DNA,cccDNA)微染色體上,形成一個(gè)正反饋環(huán),從而促進(jìn)HBVDNA的復(fù)制。HSPA8通過上調(diào)SLC7A11/GPX4的表達(dá),減少Erastin介導(dǎo)的ROS和Fe2+在體內(nèi)外細(xì)胞中的積聚,從而抑制肝癌細(xì)胞的鐵死亡。抑制HSPA8可抑制HBV陽性肝腫瘤的生長,并增加對Erastin的敏感性。靶向HSPA8可能是一種很有前途的控制乙肝和肝癌發(fā)生的策略[36]。核糖核苷酸還原酶調(diào)節(jié)亞基M2(ribonucleotide reductase regulatory subunit M2,RRM2)的蛋白質(zhì)表達(dá)在細(xì)胞收到刺激時(shí)發(fā)生動(dòng)態(tài)表達(dá)變化。并常在癌癥中高表達(dá),被認(rèn)為是許多癌癥的有前途的腫瘤生物標(biāo)志物[37]。RRM2在肝癌組織中特異性升高,并通過GSS刺激GSH合成從而保護(hù)肝癌細(xì)胞免受鐵死亡的影響[38]。而RRM2的過表達(dá)可以抑制由索拉菲尼引起的肝癌細(xì)胞鐵死亡,從而促進(jìn)了肝癌細(xì)胞對于索拉菲尼的耐藥[39]。因此可以通過抑制RRM2的過表達(dá)從而降低肝癌細(xì)胞對于鐵死亡的耐藥性。
2.4 鐵死亡與結(jié)直腸癌
結(jié)直腸癌作為臨床常見的消化道腫瘤,其每年發(fā)病率呈現(xiàn)增長趨勢。對于中晚期結(jié)直腸癌,手術(shù)治療后的化療及新輔助化療可以很好地提高預(yù)后,而結(jié)直腸癌的耐藥是相關(guān)化療失敗的主要原因。與不耐藥的結(jié)直腸腺癌細(xì)胞相比,在順鉑耐藥的結(jié)直腸腺癌細(xì)胞中促進(jìn)鐵死亡相關(guān)的基因表達(dá)降低,而鐵死亡抑制基因表達(dá)升高,向耐藥細(xì)胞中加入順鉑聯(lián)合鐵死亡激活劑可以提高耐藥細(xì)胞中p53的表達(dá),進(jìn)一步抑制鐵死亡相關(guān)蛋白SLC7A11的表達(dá),同時(shí)GPX4的表達(dá)也明顯下降從而誘導(dǎo)細(xì)胞發(fā)生鐵死亡,增加其對順鉑的敏感性[40-41]。肝臟是結(jié)直腸癌轉(zhuǎn)移最多、最常見的器官[42]。Liproxstatin-1可以通過抑制脂質(zhì)過氧化促進(jìn)小鼠結(jié)直腸癌肝臟定植。在肝轉(zhuǎn)移結(jié)直腸癌中AADAC通過激活NRF2抑制脂質(zhì)過氧化,從而使SLC7A11上調(diào),減少細(xì)胞內(nèi)脂質(zhì)過氧化物的堆積,從而保護(hù)結(jié)直腸癌細(xì)胞免受鐵死亡的影響[43]。
隨著中醫(yī)藥的發(fā)展,有學(xué)者發(fā)現(xiàn)在使用青蒿素衍生物青蒿琥酯處理對5-氟尿嘧啶耐藥的結(jié)腸癌細(xì)胞后,細(xì)胞中的鐵死亡相關(guān)基因Nrf2、GPX4的表達(dá)水平降低,細(xì)胞的耐藥性被逆轉(zhuǎn)[44]。在甘草水提物聯(lián)合Erastin的干預(yù)下,結(jié)直腸癌細(xì)胞中的GSH 水平及SLC7A11、GPX4蛋白表達(dá)顯著降低,細(xì)胞中ROS生成量、MDA含量、Fe2+含量升高,甘草水提取物可以促進(jìn)Erastin誘導(dǎo)的鐵死亡發(fā)生[45]。未來可能同樣可以逆轉(zhuǎn)腫瘤的抗藥性。
3 總結(jié)
總的來說,鐵死亡在消化道腫瘤的增殖、侵襲、轉(zhuǎn)移及在消化道腫瘤對于放療和化療的抵抗過程中發(fā)揮著重要的作用。鐵死亡在消化道腫瘤治療中具有重要的應(yīng)用前景,當(dāng)前的研究成果為未來開發(fā)新的治療策略提供了重要的參考。隨著對鐵死亡調(diào)節(jié)機(jī)制及鐵死亡相關(guān)的腫瘤微環(huán)境在消化道腫瘤中的深入研究,相信鐵死亡將成為治療消化道腫瘤的重要靶點(diǎn),為患者帶來更好的治療效果和預(yù)后。
參考文獻(xiàn)
[1] FERLAY J,COLOMBET M,SOERJOMATARAM I,et al.
Cancer statistics for the year 2020: an overview[J].International Journal of Cancer,2021,149(4):778-789.
[2] ZHENG R,ZHANG S,ZENG H,et al.Cancer incidence and mortality in China, 2016[J].Journal of the National Cancer Center,2022,2(1):1-9.
[3] KüCH E,VELLARAMKALAYIL R,ZHANG I,et al.Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol[J].Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2014,1841(2):227-239.
[4] SHINDOU H,SHIMIZU T.Acyl-CoA:lysophospholipid acyltransferases[J].Journal of Biological Chemistry,2009,284(1):1-5.
[5] KAGAN V E,TYURINA Y Y,SUN W Y,et al.Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death[J].Free Radic Biol Med,2020,147:231-241.
[6] YANG W S,KIM K J,GASCHLER M M,et al.Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J/OL].
Proceedings of the National Academy of Sciences,2016,113(34):E4966-E4975.https://www.pnas.org/doi/abs/10.1073/pnas.1603244113.
[7] KAGAN V E,MAO G,QU F,et al.Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J].Nature Chemical Biology,2017,13(1):81-90.
[8] WENZEL S E,TYURINA Y Y,ZHAO J,et al.PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J].Cell,2017,171(3):628-641.
[9] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5): 1060-1072.
[10] YANG W S,SRIRAMARATNAM R,WELSCH M E,et al.
Regulation of ferroptotic cancer cell death by GPX4[J].Cell,2014,156(1):317-331.
[11] LEI G,ZHANG Y,KOPPULA P,et al.The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression[J].Cell Res,2020,30(2):146-162.
[12] LIU T,JIANG L,TAVANA O,et al.The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11[J].Cancer Research,2019,79(8):1913-1924.
[13] ZHENG J,CONRAD M.The metabolic underpinnings of ferroptosis[J].Cell Metabolism,2020,32(6):920-937.
[14] KRAFT V A N,BEZJIAN C T,PFEIFFER S,et al.GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J].ACS Central Science,2020,6(1):41-53.
[15] SOULA M,WEBER R A,ZILKA O,et al.Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J].Nat Chem Biol,2020,16(12):1351-1360.
[16] FANET H,CAPURON L,CASTANON N,et al.Tetrahydrobioterin (BH4) pathway: from metabolism to neuropsychiatry[J].Curr Neuropharmacol,2021,19(5):591-609.
[17] XI Y,SHEN Y,WU D,et al.CircBCAR3 accelerates esophageal cancer tumorigenesis and metastasis via sponging miR-27a-3p[J].Mol Cancer,2022,21(1):145.
[18] JIANG K,YIN X,ZHANG Q,et al.STC2 activates PRMT5 to induce radioresistance through DNA damage repair and ferroptosis pathways in esophageal squamous cell carcinoma[J].Redox Biology,2023,60:102626.
[19] KIM H,RONAI Z A.PRMT5 function and targeting in cancer[J].Cell Stress,2020,4(8):199-215.
[20] LV M,GONG Y,LIU X,et al.CDK7-YAP-LDHD axis promotes D-lactate elimination and ferroptosis defense to support cancer stem cell-like properties[J].Signal Transduct Target Ther,2023,8(1):302.
[21] WEI L,SUN J,ZHANG N,et al.Noncoding RNAs in gastric cancer: implications for drug resistance[J].Molecular Cancer,2020,19(1):62.
[22] XU X,LI Y,WU Y,et al.Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer[J].Redox Biology,2023,59:102564.
[23]唐鳳英,董汾,曾玉婷,等.miR-203a-3p通過ALOX15途徑抑制胃癌細(xì)胞鐵死亡[J].中南醫(yī)學(xué)科學(xué)雜志,2022,50(6):796-800.
[24] LI D,WANG Y,DONG C,et al.CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1[J].Oncogene,2023,42(2):83-98.
[25]駱玲玲,朱梓睿,趙馨媛,等.雙硫侖抗腫瘤作用及其機(jī)制研究進(jìn)展[J].中國藥理學(xué)與毒理學(xué)雜志,2022,36(1):71-78.
[26]喻鑫,劉弋,周波,等.雙硫侖協(xié)同奧沙利鉑誘導(dǎo)胃癌細(xì)胞鐵死亡[J].安徽醫(yī)科大學(xué)學(xué)報(bào),2022,57(9):1453-1458.
[27] MA M,KONG P,HUANG Y,et al.Activation of MAT2A-ACSL3 pathway protects cells from ferroptosis in gastric cancer[J].Free Radical Biology and Medicine,2022,181:288-299.
[28] LIN Z,SONG J,GAO Y,et al.Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer[J].Redox Biology,2022,52:102312.
[29] WANG W,GREEN M,CHOI J E,et al.CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J].Nature,2019,569(7755):270-274.
[30] LIAO P,WANG W,WANG W,et al.CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J].Cancer Cell,2022,40(4):365-378.
[31] CONCHE C,F(xiàn)INKELMEIER F,PE?I? M,et al.Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade[J].Gut,2023,72(9):1774-1782.
[32] ZHENG C,ZHANG B,LI Y,et al.Donafenib and GSK-J4 synergistically induce ferroptosis in liver cancer by upregulating HMOX1 expression[J/OL].Advanced Science,2023,10(22):e2206798.https://onlinelibrary.wiley.com/doi/10.1002/advs.202206798.
[33] WANG J,SHANMUGAM A,MARKAND S,et al.Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via NRF2 signaling and system Xc-, the Na+-independent glutamate-cystine exchanger[J].Free Radical Biology and Medicine,2015,86:25-36.
[34] BAI T,LEI P,ZHOU H,et al.Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells[J].Journal of Cellular and Molecular Medicine,2019,23(11):7349-7359.
[35] BAI T,WANG S,ZHAO Y,et al.Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells[J].Biochemical and Biophysical Research Communications,2017,491(4):919-925.
[36] WANG Y,ZHAO M,ZHAO L,et al.HBx-induced HSPA8 stimulates HBV replication and suppresses ferroptosis to support liver cancer progression[J]. Cancer Res,2023,83(7):1048-1061.
[37] MORIKAWA T,MAEDA D,KUME H,et al.Ribonucleotide reductase M2 subunit is a novel diagnostic marker and a potential therapeutic target in bladder cancer[J].Histopathology,2010,57(6):885-892.
[38] YANG Y,LIN J,GUO S,et al.RRM2 protects against ferroptosis and is a tumor biomarker for liver cancer[J].Cancer Cell Int,2020,20(1):587.
[39] YANG P M,LIN L S,LIU T P.Sorafenib inhibits ribonucleotide reductase regulatory subunit M2 (RRM2) in hepatocellular carcinoma cells[J].Biomolecules,2020,10(1):117.
[40]牛爽,何忠時(shí),曾煉,等.p53介導(dǎo)的鐵死亡在調(diào)控人結(jié)直腸癌順鉑耐藥中的作用及機(jī)制[J].中國病理生理雜志,2023,39(1):9-19.
[41]張麗媛,李芙蓉,王超,等.p53對鐵死亡的調(diào)節(jié)作用及潛在應(yīng)用[J].中國病理生理雜志,2019,35(12):2299-2304.
[42] TSILIMIGRAS D I,BRODT P,CLAVIEN P A,et al.Liver metastases[J].Nat Rev Dis Primers,2021,7(1):27.
[43] SUN R,LIN Z,WANG X,et al.AADAC protects colorectal cancer liver colonization from ferroptosis through SLC7A11-dependent inhibition of lipid peroxidation[J].Journal of Experimental amp; Clinical Cancer Research,2022,41(1):284.
[44]陳書琴,周宋匯,汪瑞辰,等.青蒿琥酯通過介導(dǎo)鐵死亡逆轉(zhuǎn)結(jié)腸癌細(xì)胞5-氟尿嘧啶耐藥的作用研究[J].腫瘤藥學(xué),2023,13(2):161-166.
[45]尚韜,王城磊,龐石凱.甘草水提物促進(jìn)Erastin誘導(dǎo)CRC細(xì)胞株發(fā)生鐵死亡[J].中藥材,2023(5):1261-1266.
(收稿日期:2024-01-02) (本文編輯:占匯娟)
中國醫(yī)學(xué)創(chuàng)新2024年6期