王東萍 葛萬文 袁國強
[摘要]?目的?通過網(wǎng)絡藥理學、分子對接的方法探究鷹嘴豆芽素A治療神經(jīng)膠質(zhì)瘤的作用機制。方法?檢索中藥系統(tǒng)藥理學數(shù)據(jù)庫與分析平臺(traditional?Chinese?medicine?systems?pharmacology?database?and?analysis?platform,TCMSP)、TargetNet、Swiss?Target?Prediction等數(shù)據(jù)庫和分析平臺,篩選出鷹嘴豆芽素A對應靶點,利用DisGeNET、GeneCards等數(shù)據(jù)庫獲得神經(jīng)膠質(zhì)瘤的作用靶點。取藥物與疾病的交集靶點,借助STRING數(shù)據(jù)庫進行蛋白-蛋白相互作用(protein-protein?interaction,PPI)分析,利用Cytoscape?3.9.1軟件構建潛在靶點網(wǎng)絡關系圖。對交集靶點通過DAVID數(shù)據(jù)庫進行本體論富集分析(gene?ontology,GO)和京都基因和基因組百科全書(Kyoto?encyclopedia?of?genes?and?genomes,KEGG)通路富集分析。通過DockThor數(shù)據(jù)庫對鷹嘴豆芽素A和關鍵靶點進行分子對接,Pymol軟件進行可視化處理。結果?共篩選出鷹嘴豆芽素A靶點149個,神經(jīng)膠質(zhì)瘤相關靶點5654個,藥物與疾病交集靶點97個,核心靶點為表皮生長因子受體(epidermal?growth?factor?receptor,EGFR)、雌激素受體(estrogen?receptor,ESR1)、熱休克蛋白(heat?shock?protein,HSP)90AA1、基質(zhì)金屬蛋白酶(matrix?metalloproteinase,MMP)9、PPARG、PTGS2,靶點參與的功能主要與腫瘤細胞增殖、侵襲、凋亡等過程有關。GO富集分析發(fā)現(xiàn)鷹嘴豆芽素A在生物過程、細胞組成、分子功能多方面參與神經(jīng)膠質(zhì)瘤的治療。KEGG通路108條,包括腫瘤、化學致癌作用-受體活性、脂質(zhì)和動脈粥樣硬化、PI3K/Akt等信號通路。分子對接結果顯示鷹嘴豆芽素A與關鍵靶點均有較好的結合活性。結論?鷹嘴豆芽素A可能通過抑制腫瘤細胞增殖、誘導凋亡、增強化療敏感性等發(fā)揮治療神經(jīng)膠質(zhì)瘤的作用。
[關鍵詞]?鷹嘴豆芽素A;神經(jīng)膠質(zhì)瘤;網(wǎng)絡藥理學;分子對接
[中圖分類號]?R739.4????[文獻標識碼]?A ????[DOI]?10.3969/j.issn.1673-9701.2024.05.001
Mechanism?of?Biochanin?A?in?treating?gliomas?based?on?network?pharmacology?and?molecular?docking
WANG?Dongping1,?GE?Wanwen2,?YUAN?Guoqiang3
1.School?of?traditional?Chinese?and?Western?Medicine,?Gansu?University?of?Chinese?Medicine;?Department?of?Clinical?Teaching,?Gansu?Provincial?Hospital,?Lanzhou?730000,?Gansu,?China;?2.Cuiying?Biomedical?Research?Center,?Lanzhou?University?Second?Hospital,?Lanzhou?730030,?Gansu,?China;?3.Key?Laboratory?of?Neurology,?Gansu?Province,?Lanzhou?730030,?Gansu,?China
[Abstract]?Objective?To?analyze?the?mechanism?of?Biochanin?A?in?the?treatment?of?Gliomas?based?on?network?pharmacology?and?molecular?docking.?Methods?Traditional?Chinese?medicine?systems?pharmacology?database?and?analysis?platform?(TCMSP),?TargetNet,?Swiss?Target?Prediction?were?used?to?search?the?active?components?and?targets?of?Biochanin?A.?DisGeNET,?GeneCards?databases?were?used?to?search?the?corresponding?targets?of?Gliomas.?The?intersection?of?active?components?of?Biochanin?A?and?gliomas?target?were?selected?to?obtain?the?potential?target?of?Biochanin?A?in?treating?Gliomas.?Protein?gene?interaction?data?were?obtained?by?STRING?database,?and?protein-protein?interaction?network?was?constructed?by?importing?into?Cytoscape?software.?Gene?ontology?(GO)?function?and?Kyoto?encyclopedia?of?genes?and?genomes?(KEGG)?pathway?enrichment?analysis?of?the?same?target?proteins?of?drug?and?disease?were?carried?out?by?DAVID?database.?Molecular?docking?was?performed?by?using?DockThor?and?Pymol?software.?Results?A?total?of?149?targets?of?Biochanin?A,?5654?gliomas?relate-genes,?97?common?targets?of?Biochanin?A?and?gliomas?are?collected.?The?key?targets?were?epidermal?growth?factor?receptor?(EGFR),?estrogen?receptor?(ESR1),?heat?shock?protein?(HSP)90AA1,?matrix?metalloproteinase?(MMP)9,?PPARG?and?PTGS2.?The?targets?were?mainly?play?an?essential?role?in?cell?proliferation,?invasion,?cell?apoptosis,?and?other?biological?pathways.?GO?enrichment?analysis?demonstrated?that?Biochanin?A?could?involve?the?treatment?of?Gliomas?in?biological?process,?cell?composition?and?molecular?function.?KEGG?108?signaling?pathways?mainly?related?to?pathways?in?cancer,?chemical?carcinogenesis-receptor?activation,?Lipid?and?atherosclerosis,?PI3K/Akt?pathway.?Molecular?docking?indicated?that?Biochanin?A?had?a?good?bonding?activity?with?the?key?targets.?Conclusion?Biochanin?A?may?play?a?role?in?the?treatment?of?glioma?by?inhibiting?tumor?cell?proliferation,?inducing?apoptosis?and?enhancing?chemotherapy?sensitivity.?The?study?built?a?foundation?for?drug?development?and?innovative?research.
[Key?words]?Biochanin?A;?Gliomas;?Network?pharmacology;?Molecular?docking
神經(jīng)膠質(zhì)瘤是最常見的原發(fā)性中樞神經(jīng)系統(tǒng)腫瘤,起源于膠質(zhì)細胞,增殖快,侵襲性強,預后極差[1]。它是最復雜的癌癥類型之一,約占中樞神經(jīng)系統(tǒng)腫瘤的45%,5年生存率約為5%[2]。膠質(zhì)瘤的主要治療方法是基于經(jīng)典的Stupp方案,包括手術切除聯(lián)合術后放療和替莫唑胺化療。此外,免疫治療、靶向治療和其他新的治療方法在膠質(zhì)瘤的治療方面取得了很大的進展。然而總體結果仍然不令人滿意,治療后易轉(zhuǎn)移和復發(fā)[3]。中醫(yī)具有完整的理論體系和辨證論治的主導思想,在增效減毒,改善臨床癥狀,提高生活質(zhì)量,降低復發(fā)率,延長患者生存期等方面發(fā)揮重要作用,是神經(jīng)膠質(zhì)瘤防治的重要方法。
鷹嘴豆芽素A(Biochanin?A,BCA)是一種存在于紅三葉草、鷹嘴豆、大豆、花生等豆科植物中的含異黃酮的天然化合物,在體內(nèi)某些生理和病理過程中可以起到植物雌激素的作用。大量研究表明,鷹嘴豆素A具有防治骨質(zhì)疏松、降血脂、抗氧化、抗炎、抗菌和抗腫瘤等生物學功能[4]。與其他一些植物雌激素在婦科癌癥中的促進作用不同,BCA還對咽鱗癌、肝細胞性肝癌、胰腺癌、前列腺癌和結腸腫瘤有抗腫瘤作用[5]。本研究基于網(wǎng)絡藥理學和分子對接技術,綜合分析鷹嘴豆素A的作用靶點及其與神經(jīng)膠質(zhì)瘤相關的作用途徑,以期發(fā)現(xiàn)鷹嘴豆素A治療神經(jīng)膠質(zhì)瘤的潛在作用靶點,闡明鷹嘴豆素A治療神經(jīng)膠質(zhì)瘤的作用機制。
1??資料與方法
1.1??獲取藥物靶點
分別從TargetNet(http://targetnet.scbdd.com/),TCMSP(https://old.tcmsp-e.com/tcmsp.php),STITCH(http://stitch.embl.de/)數(shù)據(jù)庫和Swiss?Target?Prediction平臺(http://www.swisstargetprediction.ch/)查詢鷹嘴豆芽素A的藥物靶點,合并去重。
1.2??獲取神經(jīng)膠質(zhì)瘤靶點
以“Gliomas”為關鍵詞,從DisGeNET(https://?www.disgenet.org/),GeneCards(https://www.genecards.?org/),TTD(http://db.idrblab.net/ttd/)數(shù)據(jù)庫檢索神經(jīng)膠質(zhì)瘤的靶點基因,獲得的疾病靶點合并去重后在UniProt(https://www.uniprot.org/)數(shù)據(jù)庫中進行標準化處理。
1.3??構建蛋白質(zhì)-蛋白質(zhì)相互作用網(wǎng)絡
為進一步明確BCA治療神經(jīng)膠質(zhì)瘤的潛在作用靶點之間的相互作用關系,將篩選出的BCA和神經(jīng)膠質(zhì)瘤的共同靶點導入STRING數(shù)據(jù)庫獲取蛋白互作信息,物種設為“Homo?sapiens”,設置互作強度大于0.4,隱藏沒有相互作用的靶點,借助Cytoscape?3.9.1軟件構建PPI網(wǎng)絡進行進一步分析和可視化。
1.4??富集分析以及通路分析
對BCA治療神經(jīng)膠質(zhì)瘤潛在靶點通過DAVID數(shù)據(jù)庫(https://david.ncifcrf.?gov/tools.jsp)進行基因本體論富集分析(gene?ontology,GO),檢索其生物過程(biological?process,BP),分子功能(molecular?function,MF),細胞組分(cellular?component,CC)與京都基因和基因組百科全書(Kyoto?encyclopedia?of?genes?and?genomes,KEGG)通路富集分析。分別選取前10個進行富集分析繪制富集分析圖。
1.5??分子對接
通過Pubchem(https://pubchem.ncbi.nlm.nih.?gov/)檢索獲得BCA的3D結構,從PDB(http://?www.rcsb.org/pdb/home/home.do)中檢索獲取關鍵靶點的受體蛋白,將活性成分的3D結構和關鍵靶點的受體蛋白結構上傳至在線分析平臺DockThor[6](https://dockthor.lncc.br/v2/)進行分子對接,利用Pymol軟件通過加氫,去除水分子等步驟,對受體和配體之間的相互作用進行可視化。
2??結果
2.1??藥物和疾病靶點的預測
利用TCMSP、Swiss?Target?Predication等數(shù)據(jù)庫檢索BCA對應的靶點,整理后去重,在STRING數(shù)據(jù)庫中進行標準化,共得到BCA藥物靶點149個。
通過GeneCards、DisGeNET、TTD數(shù)據(jù)庫檢索神經(jīng)膠質(zhì)瘤相關靶點基因,最后將3個數(shù)據(jù)庫靶點基因匯總后去重,即得到神經(jīng)膠質(zhì)瘤的相關靶點基因5654個。建立成分靶點及疾病靶點數(shù)據(jù)集,對活性成分和疾病靶點取交集,獲得97個相交靶點,繪制韋恩圖(圖1)。
2.2??鷹嘴豆芽素A治療神經(jīng)膠質(zhì)瘤的靶點PPI網(wǎng)絡分析
為進一步揭示鷹嘴豆芽素A抗神經(jīng)膠質(zhì)瘤的作用機制,用Cytoscape軟件繪制97個關鍵靶點網(wǎng)絡關系圖(用Degree值排序關鍵靶點),Degree值越高表明該靶點與疾病的關聯(lián)性越高。整合后,保留了6個degree值最高的作為鷹嘴豆芽素A治療神經(jīng)膠質(zhì)瘤的關鍵靶點EGFR、ESR1、HSP90AA1、MMP9、PPARG、PTGS2。
2.3??GO和KEGG富集分析
對BCA與神經(jīng)膠質(zhì)瘤的潛在靶點通過DAVID數(shù)據(jù)庫進行GO富集分析得到BP359條,CC60條,MF121條,共540條,分別篩選前10條作富集分析圖(圖2)。生物過程包括蛋白質(zhì)磷酸化、信號轉(zhuǎn)導、炎癥反應、細胞凋亡、RNA聚合酶調(diào)節(jié);細胞組成包括質(zhì)膜、胞液、細胞質(zhì)、細胞核、線粒體、內(nèi)質(zhì)網(wǎng)膜等;分子功能包括蛋白質(zhì)結合、ATP結合、DNA結合、蛋白激酶活性等。KEGG通路富集分析108條,選取P值最小的前20條通路并制作成氣泡圖,主要富集于腫瘤通路、化學致癌作用-受體活性、脂質(zhì)和動脈粥樣硬化、PI3K/Akt、神經(jīng)活性受體配體、CAMP信號通路、活性氧等信號通路具體通路結果見圖3。
2.4??分子對接
選取神經(jīng)膠質(zhì)瘤PPI網(wǎng)絡中degree較高的6個核心蛋白EGFR、ESR1、HSP90AA1、MMP9、PPARG、PTGS2進行分子對接,對接結合能見表1。根據(jù)Dockthor計算,配體與受體相結合時,所需結合能越低,結合就越穩(wěn)定,效果越好。將結果導入Pymol軟件進行可視化,得到分子對接三維圖(圖4)。
3??討論
神經(jīng)膠質(zhì)瘤患者的中位生存期很少超過18個月,預后極差,所以確定膠質(zhì)瘤患者新的治療方案至關重要[7]。網(wǎng)絡藥理學是一種有前途的生物信息學方法,可以從整體水平上系統(tǒng)地了解藥物與其靶標之間相互作用的分子機制及其在疾病中的意義[8]。近年來,網(wǎng)絡藥理學已被用于預測某些化合物在多種疾病中的有效靶點和途徑,尤其是與信號轉(zhuǎn)導密切相關的癌癥。分子對接技術是從已知的蛋白質(zhì)和小分子化合物出發(fā),通過模擬蛋白質(zhì)的幾何構型和能量匹配來識別藥物的重要方法[9]。
通過網(wǎng)絡藥理學對BCA治療神經(jīng)膠質(zhì)瘤的作用機制進行系統(tǒng)研究,發(fā)現(xiàn)其中degree值較大的6個靶點為EGFR、ESR1、HSP90AA1、MMP9、PPARG、PTGS2。EGFR是表皮生長因子受體其與腫瘤細胞的增殖、血管生成、腫瘤侵襲、轉(zhuǎn)移及細胞凋亡等有關。BCA和替莫唑胺聯(lián)合應用對U-87和T98膠質(zhì)母細胞瘤細胞通過調(diào)控p-ERK、p-AKT、EGFR及c-Myc的水平,BCA增強替莫唑胺抗腫瘤作用,增強化療藥物的敏感性[10]。ESR1是雌激素受體,鷹嘴豆芽素A屬于異黃酮類植物雌激素,其分子結構和大小類似于雌激素,可以發(fā)揮雌激素作用,可以起到神經(jīng)保護的作用[11]。
研究證明BCA在缺血缺氧再灌注大鼠模型中通過減輕腦水腫、減少腦梗死面積起到神經(jīng)保護作用[12]。HSP90AA1屬于熱休克蛋白90α家族,在腦膠質(zhì)瘤組織中HSP90蛋白的表達水平上調(diào)是腫瘤細胞增殖和產(chǎn)生耐藥的關鍵蛋白,與患者的預后呈負相關[13]。PPARG調(diào)節(jié)脂肪細胞分化并控制脂質(zhì)和葡萄糖穩(wěn)態(tài)相關基因的表達。PPARG通過抑制炎癥介質(zhì)的產(chǎn)生具有抗炎作用[14]。PTGS2是花生四烯酸合成前列腺素的限速酶,在多種腫瘤中表達上調(diào)。Tan等[7]研究發(fā)現(xiàn)PTGS2在神經(jīng)膠質(zhì)瘤放療耐藥患者中高表達,可激活NF-κB信號通路,防止放療后DNA損傷。PTGS2可促進腫瘤細胞增殖,提高放射耐受性。MMP9是基質(zhì)金屬蛋白酶,參與多種腫瘤的病理學過程。有研究表明,在神經(jīng)膠質(zhì)瘤患者血清中基質(zhì)金屬蛋白酶MMP1、MMP2、MMP9水平明顯升高,與腫瘤分期和臨床分期呈正相關,和預后呈負相關[15]。BCA可通過降低MMP9的酶活性導致U87膠質(zhì)母細胞瘤細胞的侵襲性降低[16]。
GO功能分析顯示,BCA主要通過調(diào)控細胞增殖、凋亡過程、一氧化氮生物合成、缺氧和炎癥反應等方面參與神經(jīng)膠質(zhì)瘤治療。KEGG通路富集分析表明,癌癥通路、PI3K-Akt、脂質(zhì)和動脈粥樣硬化、活性氧等信號通路是治療神經(jīng)膠質(zhì)瘤的主要作用機制。激活的PI3K/AKT/mTOR途徑增加了血管內(nèi)皮生長因子的表達,導致血管無力,血流緩慢和間質(zhì)壓力上升,該通路介導腫瘤轉(zhuǎn)移[17]。有研究表明鷹嘴豆芽素A有降血脂作用,在高脂血癥的小鼠中鷹嘴豆芽素A可降低低密度脂蛋白膽固醇和總膽固醇水平[18]。氧化應激也是導致神經(jīng)變性、衰老、腫瘤發(fā)生的重要因素[19],因此,清除自由基和激活細胞保護防御系統(tǒng)有利于健康。鷹嘴豆素A可對神經(jīng)炎癥和氧化應激引起的神經(jīng)退行性疾病有保護作用[20]。
鷹嘴豆芽素A可能通過調(diào)節(jié)PI3K-Akt、脂質(zhì)和動脈粥樣硬化、神經(jīng)受體配體、活性氧起作用。分子對接顯示,鷹嘴豆芽素A與EGFR、ESR1、HSP90AA1、MMP9、PPARG、PTGS2等關鍵靶點有較好的結合活性。綜上所述,本研究采用網(wǎng)絡藥理學和分子對接技術初步探討了鷹嘴豆芽素A治療神經(jīng)膠質(zhì)瘤的潛在作用機制,這是一個多靶點、多通路、多途徑的復雜過程。但本研究僅從理論角度探討了其參與抗腫瘤的機制,后續(xù)研究可在此基礎上進一步開展臨床和基礎實驗加以驗證,深入研究鷹嘴豆芽素A治療神經(jīng)膠質(zhì)瘤的作用機制。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] MA?X?Q,?YU?M?X,?HAO?C?X,?et?al.?Shikonin?induces?tumor?apoptosis?in?glioma?cells?via?endoplasmic?reticulum?stress,?and?Bax/Bak?mediated?mitochondrial?outer?membrane?permeability[J].?J?Ethnopharmacol,?2020,?263:?113059.
[2] KUNDU?M,?DAS?S,?DHARA?D,?et?al.?Prospect?of?natural?products?in?glioma:?A?novel?avenue?in?glioma?management[J].?Phytother?Res,?2019,?33(10):?2571–2584.
[3] ZHAN?Z?XI,?LIU?Z?Q,?ZHANG?C?C,?et?al.?Anticancer?effects?of?OSW-1?on?glioma?cells?via?regulation?of?the?PI3K/AKT?signal?pathway:?A?network?pharmacology?approach?and?experimental?validation?in?vitro?and?in?vivo[J].?Front?Pharmacol,?2022,?13:?967141.
[4] 李彥軍,?鄭楠,?王加啟,?等.?鷹嘴豆素A的生物學功能研究進展[J].?動物營養(yǎng)學報,?2022,?34(4):?2177–2185.
[5] LUO?Q,?SHI?X,?DING?J?R,?et?al.?Network?pharmacology?integrated?molecular?docking?reveals?the?antiosteosarcoma?mechanism?of?biochanin?A[J].?Evidence-based?Complemen?Altern?Med,?2019,?2019:?1410495.
[6] SANTOS?K?B,?GUEDES?I?A,?KARL?A?L?M,?et?al.?Highly?flexible?ligand?docking:?benchmarking?of?the?dock?thor?program?on?the?LEADS-PEP?protein-peptide?data?set[J].?J?Chemical?Inform?Mode,?2020,?60(2):?667–683.
[7] TAN?C,?LIU?L,?LIU?X?Y,?et?al.?Activation?of?PTGS2/?NF-κB?signaling?pathway?enhances?radiation?resistance?of?glioma[J].?Cancer?Medi,?2019,?8(3):?1175–1185.
[8] CHATUPHEERAPHAT?C,?NANTASENAMAT?C,?DEESRISAK?K,?et?al.?Bioinformatics?and?experi-?mental?studies?of?anti-leukemic?activity?from?6-gingerol?demonstrate?its?role?in?p53?mediated?apoptosis?pathway[J].?Excli?J,?2020,?19:?582–595.
[9] ZENG?Y?J,?WU?M,?ZHANG?H,?et?al.?Effects?of?qinghuang?powder?on?acute?myeloid?leukemia?based?on?network?pharmacology,?molecular?docking,?and?in?vitro?experiments[J].?Evidence-based?Complement?Altern?Medi,?2021,?2021:?6195174.
[10] DESAI?V,?JAIN?A,?SHAGHAGHI?H,?et?al.?Combination?of?biochanin?A?and?temozolomide?impairs?tumor?growth?by?modulating?cell?metabolism?in?glioblastoma?multiforme[J].?Anticancer?Res,?2019,?39(1):?57–66.
[11] DADáKOVá?K,?TRNKOVá?A,?KA?PAROVSKá?J,?et?al.?In?vitro?metabolism?of?red?clover?isoflavones?in?rumen?fluid[J].?J?Animal?Physiol?Animal?Nutr,?2020,?104(6):?1647–1654.
[12] WANG?W?B,?TANG?L?J,?LI?Y,?et?al.?Biochanin?A?protects?against?focal?cerebral?ischemia/reperfusion?in?rats?via?inhibition?of?p38-mediated?inflammatory?responses[J].?J?Neurolo?Sci,?2015,?348:?121–125.