亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        法尼基化蛋白翻譯后修飾對植物抗旱的影響

        2024-02-10 00:00:00鄒曉璐劉鑫程治軍
        寧夏農(nóng)林科技 2024年11期
        關(guān)鍵詞:農(nóng)藝性狀抗旱植物

        摘 要:抗旱基因的發(fā)掘及其功能研究對增強(qiáng)作物對干旱環(huán)境的抵抗能力,培育適合在干旱、半干旱環(huán)境生長的品種具有重要意義。研究發(fā)現(xiàn),一些抗旱相關(guān)的基因受到各種類型的蛋白質(zhì)翻譯后修飾。法尼基化是一種重要的蛋白質(zhì)翻譯后修飾方式,近年來,越來越多的研究表明,這種修飾方式在作物抗旱中發(fā)揮著重要作用,同時(shí)對作物生長發(fā)育也有明顯影響。綜述了法尼基化影響植物抗旱的研究進(jìn)展,對挖掘到的法尼基化修飾相關(guān)重要農(nóng)藝性狀的基因進(jìn)行了總結(jié),并展望了法尼基化在植物功能基因組研究中的重要作用。

        關(guān)鍵詞:植物; 法尼基化; 抗旱; 農(nóng)藝性狀; 蛋白修飾

        中圖分類號:Q948"""""" 文獻(xiàn)標(biāo)識碼:A""""" 文章編號:1002-204X(2024)11-0033-06

        doi:10.3969/j.issn.1002-204x.2024.11.005

        Effects of Post-Translational Modification of Farnesylated Proteins on Plant Drought Resistance

        Zou Xiaolu1, Liu Xin1,2, Cheng Zhijun1,2*

        (1.National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Hainan, Sanya 572024;

        2.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081)

        Abstract The discovery of drought resistance genes and their functional studies are of great importance for breeding varieties available growing in arid and semi-arid environments. Previous studies show that some drought-related genes suffer various types of post-translational protein modifications. Farnesylation is an important post-translational modification manner. In recent years, a growing body of research has shown that this type of modification plays an important role in the drought resistance of plants, impacting on plant growth and development. The progress of farnesylation on plant drought resistance is systematically reviewed, and the genes related to farnesylation modification of important agronomic traits are summarized, and the importance of farnesylation in plant functional genomics research is prospected.

        Key words" Plant; Farnesylation; Drought resistance; Agronomic traits; Protein modification

        基金項(xiàng)目:南繁專項(xiàng)(YBXM2425)。

        作者簡介:鄒曉璐(1998—),女,山西太原人,在讀博士,主要從事水稻分子遺傳和育種研究。

        *通信作者:程治軍(1964—),男,安徽六安人,研究員,主要從事水稻分子遺傳和育種研究。

        收稿日期:2024-10-10

        作物經(jīng)常遭遇極端溫度、高鹽水平、礦物質(zhì)虧欠與土壤和水體污染等多種自然環(huán)境的非生物脅迫[1-3]。由于全球氣候變化和農(nóng)業(yè)用水量的增加,作物生產(chǎn)正面臨著灌溉用水供給不足的持續(xù)挑戰(zhàn)。研究顯示,僅旱災(zāi)每年所導(dǎo)致的農(nóng)作物產(chǎn)量損失就超過了病原體帶來的所有損失之和[4-5]。為此研發(fā)需水量少、抗旱性強(qiáng)的作物品種對確保全球糧食供給至關(guān)重要。然而,抗旱屬于數(shù)量性狀(Quantitative trait locus,QTL),遺傳復(fù)雜,需要借助全基因組關(guān)聯(lián)研究(GWASs)、QTL定位、蛋白質(zhì)組學(xué)分析等多種技術(shù)手段,對基因組進(jìn)行深入挖掘和解析,才能全面揭示抗旱性遺傳機(jī)制[6-8]。在干旱脅迫環(huán)境下,作物會通過改變自身的生理機(jī)能,如根系長度增加、表面積增大和皮層組織增厚等根系結(jié)構(gòu)變化,以及葉片變小、厚度增加和表面蠟質(zhì)層增厚等葉片形態(tài)變化以適應(yīng)環(huán)境。ABA信號傳遞過程被認(rèn)為是植物抵御干旱環(huán)境的重要途徑。ABA的合成從9-順式環(huán)氧類胡蘿卜素氧化裂解形成黃質(zhì)醛開始,然后被氧化為一種酮,再轉(zhuǎn)化成脫落酸-醛,到最終合成植物激素脫落酸(Abscisic acid, ABA)[9]。ABA和其受體蛋白PYLs結(jié)合,隨后ABA和PYLs的結(jié)合體與絲氨酸/蘇氨酸蛋白磷酸酶(PP2C-type protein phosphatases, PP2Cs)互作,去除PP2Cs對蔗糖非發(fā)酵-1-相關(guān)蛋白激酶2(Sucrose non-fermenting-1-related protein kinase 2, SnRK2)活性的抑制作用[10-12]。SnRK2s再通過磷酸化(Phosphorylation)離子通道蛋白SLAC1(Slowanionchannel-associated 1)調(diào)節(jié)葉片氣孔關(guān)閉,減少水分蒸發(fā)的損失,以避免對植物造成損傷[12]。

        在植物生命活動的過程中,一些基因編碼的蛋白質(zhì)需要經(jīng)過某種程度的修飾尤其是翻譯后修飾(Post-translational modification, PTM)才能生成具有生物功能的蛋白質(zhì)[13-15]。在植物中包括添加簡單的化學(xué)基團(tuán)在內(nèi)已經(jīng)鑒定出300多種修飾方式,如磷酸化修飾、泛素化修飾(Ubiquitination)、甲基化修飾(Methylation)、乙?;揎棧ˋcetylation)、糖基化修飾(Glycosylation)、亞硝基化修飾(Nitrosylation)、脂質(zhì)化修飾(Lipidation)等[13,16-19],涉及改變蛋白質(zhì)的化學(xué)結(jié)構(gòu)、提升蛋白質(zhì)的活性、維持蛋白質(zhì)的穩(wěn)定性以及影響蛋白質(zhì)的亞細(xì)胞定位。如對ABA信號通路的研究發(fā)現(xiàn),CIPK1位于ABA受體的上游,與14個(gè)PYLs中的7個(gè)存在蛋白互作(PYR1/PYL1-6),通過磷酸化修飾PYL4的第129位絲氨酸,進(jìn)而導(dǎo)致PYLs成為無活性的ABA受體,負(fù)調(diào)控ABA信號與干旱脅迫響應(yīng)[12]。ZHU C等[20]發(fā)現(xiàn)番茄(Solanum lycopersicum L.)中的蛋白激酶CPK27介導(dǎo)的干旱誘導(dǎo)蛋白與糖代謝途徑高度相關(guān),CPK27位于ABA信號的下游發(fā)揮功能,發(fā)現(xiàn)磷酸化糖轉(zhuǎn)運(yùn)蛋白TST2與CPK27互作,且TST2突變體抗旱性顯著下降,并進(jìn)一步促進(jìn)可溶性糖的積累,從而提高植株的干旱抗性。

        脂質(zhì)化修飾是細(xì)胞內(nèi)調(diào)控蛋白質(zhì)功能的一種重要機(jī)制。該修飾過程是通過在蛋白質(zhì)上共價(jià)附著脂質(zhì)基團(tuán)的一種特殊的PTM[21],廣泛發(fā)生在真核細(xì)胞的蛋白質(zhì)中,并調(diào)節(jié)膜運(yùn)輸、蛋白質(zhì)分泌、信號轉(zhuǎn)導(dǎo)和凋亡等多種生物途徑[22-23]。脂質(zhì)化修飾分為細(xì)胞外定向修飾和細(xì)胞質(zhì)定向修飾兩種類型,前者主要包括糖基化磷脂酰肌醇(Glycosylphosphatidylinositol, GPI)即膽固醇化(Cholesteroylation)和脂肪酰化修飾(Fatty acylation);后者主要包括棕櫚?;≒almitoylation)(C16)、肉豆烷?;∕yristoylation)(C14)、異戊烯基化〔法尼基化(Farnesylation)(C15)、牻牛兒基牻牛兒基化(Geranylgeranylation)(C20)〕等多種方式[21-24]。近年來,法尼基化修飾在植物生長發(fā)育過程中的重要性逐漸受到關(guān)注,特別是在ABA信號轉(zhuǎn)導(dǎo)過程中,法尼基化修飾發(fā)揮著至關(guān)重要的作用。本文將重點(diǎn)介紹相關(guān)的研究進(jìn)展。

        1 法尼基化修飾原理

        法尼基是一種在甲羥戊酸途徑(Mevalonic acid, MVA)中生成的倍半萜類物質(zhì),常以法尼基焦磷酸(Farnesyl diphosphate, FPP)的形式出現(xiàn)[25-27]。在MVA途徑中,乙酰輔酶A(CoA)首先通過HMG-CoA合酶(HMG-CoA synthase)轉(zhuǎn)化為羥甲基戊二酰輔酶A(HMG-CoA),然后通過HMG-CoA還原酶(HMG-CoA reductase)轉(zhuǎn)化為MVA,隨后,通過FPP合酶(FPP synthase,F(xiàn)PPS)由類異戊二烯二磷酸(Isopentenyl diphosphate,IPP)合成FPP后,可通過不同的途徑修飾靶蛋白(圖1)。其中一種即通過法尼基轉(zhuǎn)移酶(FTase)或牻牛兒基牻牛兒基轉(zhuǎn)移酶(Geranylgeranyl-transferase,GGTase)對含有CAAX〔C表示半胱氨酸殘基(Cys),A表示脂肪族氨基酸,X表示任意氨基酸〕基序的蛋白質(zhì)進(jìn)行異戊烯基化[28]。其中當(dāng)X為絲氨酸(Ser)、甲硫氨酸(Met)、丙氨酸(Ala)和谷氨酰胺(Gln)時(shí),蛋白被法尼基化修飾;當(dāng)X為苯丙氨酸(Phe)時(shí),蛋白既可被法尼基化修飾(Farnesyl)又可被牻牛兒基牻牛兒基化修飾(Geranylgeranyl)[29]。據(jù)報(bào)道,植物中約有200多種含CAAX基序的靶蛋白[30-31],包括小GTP酶(Small GTPases)家族成員(H-Ras、K-Ras、N-Ras、Ras2、Rap2、RhoB、Rheb、TC10、TC21),以及核層蛋白層膜蛋白A和B(Nuclear lamina proteins lamin A and B)、著絲粒蛋白CENP-E和CENP-F(Kinetochore proteins CENP-E and CENP-F)、cGMP磷酸二酯酶α(cGMP phosphodiesterase α)、G蛋白γ亞基變體(γ subunit variants of G proteins)、DnaJ熱休克蛋白同源物(DnaJ heat-shock protein homologs)、視紫質(zhì)激酶(Rhodopsin kinase)、過氧化物酶體膜蛋白Pex19和PxF(Peroxisomal membrane proteins Pex19 and PxF)等[28]。

        法尼基轉(zhuǎn)移酶(Farnesyltransferase, FTase)在法尼基化修飾中起到關(guān)鍵作用[27-28],它最早是在動物中發(fā)現(xiàn)的。CASEY P J等[32]采用標(biāo)記免疫沉淀(Immunoprecipitation, IP)發(fā)現(xiàn)哺乳動物中Ras蛋白在半胱氨酸殘基上發(fā)生法尼基化。REISS Y等[33]從小鼠大腦提取純化并經(jīng)過高效液相色譜(HPLC)分析發(fā)現(xiàn),F(xiàn)Tase是由MVA作為膽固醇(Cholesterol)生物合成途徑的中間產(chǎn)物生成。作為一種異源二聚體,它由一個(gè)必需的α亞基Ram2和一個(gè)非必需的β亞基Ram1組成[34]。FTase中的α亞基負(fù)責(zé)識別FPP,而β亞基可以識別含CAAX基序的靶蛋白,再將FPP的法尼基基團(tuán)通過疏水相互作用(法尼基化底物周圍的芳香族殘基)和靜電相互作用(法尼基化底物和蛋白質(zhì)之間形成的若干氫鍵產(chǎn)生)結(jié)合到蛋白質(zhì)的Cys上[35]。在細(xì)胞質(zhì)內(nèi),被法尼基化加工后的蛋白質(zhì)會通過囊泡運(yùn)輸?shù)姆绞竭\(yùn)輸?shù)郊?xì)胞膜附近,通過特定受體或蛋白相互作用的結(jié)構(gòu)域與細(xì)胞膜融合,進(jìn)一步通過蛋白質(zhì)水解和羧基甲基化等加工發(fā)揮作用[22]。異戊基半胱氨酸甲基轉(zhuǎn)移酶(ICMT)是已知的唯一能甲基化異戊烯基半胱氨酸底物的細(xì)胞酶,它能在異戊烯化修飾的羧基末端加上一個(gè)甲基集團(tuán)的帽子[30],通過這種甲基化修飾可能改變蛋白質(zhì)的親疏水性,使其更有效地定位到細(xì)胞膜上合適的區(qū)域,從而參與細(xì)胞內(nèi)的信號傳遞過程。在哺乳動物中,Ras蛋白經(jīng)法尼基化修飾后,其Cys末端的-AAX殘基如果不被去除,Ras蛋白可能無法正確地定位到細(xì)胞膜上。研究發(fā)現(xiàn),細(xì)胞膜上Ras-轉(zhuǎn)換內(nèi)肽酶1(RAS endoprotease 1, RCE1)[36]和鋅金屬蛋白酶(Zinc metalloprotease, ZMPSte24)[37]可以去除法尼基化后蛋白的-AAX殘基。

        2 法尼基化修飾在植物抗旱中的作用

        RANDALL S K等[38]從懸浮培養(yǎng)煙草細(xì)胞中發(fā)現(xiàn)FTase,建立了煙草FTase的體外測定方法。ZHOU D等[39]從豌豆中克隆FTase β亞基同源基因。在擬南芥中,F(xiàn)Tase β亞基首次被鑒定為增強(qiáng)對脫落酸的反應(yīng)(Enhanced responses to ABA 1, ERA1),在ABA信號通路中起負(fù)調(diào)節(jié)作用,ERA1功能缺失的突變體具有ABA超敏反應(yīng)[40]。MANAVALAN L P等[41]研究表明,通過RNA干擾(RNA interference, RNAi)抑制水稻中的FTaseβ基因SQS的表達(dá),可降低轉(zhuǎn)基因植株的氣孔導(dǎo)度,提高水分含量,從而增強(qiáng)耐旱性。這可能是因?yàn)榉峄揎椀臏p少影響了與抗旱性相關(guān)的蛋白質(zhì)的功能和定位,參與到水分的吸收、運(yùn)輸或ABA信號轉(zhuǎn)導(dǎo)等過程,從而增強(qiáng)植物對干旱的適應(yīng)性。WANG Y等[42]對攜帶由干旱誘導(dǎo)的rd29A啟動子驅(qū)動的ERA1(AtFTB)反義構(gòu)建體的轉(zhuǎn)基因歐洲油菜(Linum usitatissimum L.)進(jìn)行了檢測。結(jié)果發(fā)現(xiàn)YPT株系中ERA1反義轉(zhuǎn)錄本積累增加,氣孔導(dǎo)度、蒸騰作用和光合作用降低,水分損失減少,耐旱性增強(qiáng),且在花期對水分脅迫更耐受。ALLEN G J等[43]發(fā)現(xiàn)擬南芥中era1-2突變體表現(xiàn)為分生組織變大,ABA誘導(dǎo)的質(zhì)膜鈣通道電流[Ca2+]cyt增加和質(zhì)膜Ca2+內(nèi)流通道激活,era1-2突變可以恢復(fù)部分顯性蛋白磷酸酶2C突變體(Dominant protein phosphatase 2C mutant, abi2-1)對ABA的不敏感性,導(dǎo)致對ABA反應(yīng)敏感,氣孔關(guān)閉。PARASYRI A等[44]發(fā)現(xiàn)過表達(dá)大麥法尼基蛋白1(Hordeumvulgare farnesylated protein 1, HvFP1)使大麥葉片葉綠素含量和光系統(tǒng)Ⅱ(Photosystem Ⅱ, PSⅡ)效率降低,葉片衰老推遲,抑制了干旱和衰老過程中ABA途徑相關(guān)的基因(如HvNCED、HvS40、HvDhn1、HvSAG39、HvSBT)的表達(dá)。同時(shí)還發(fā)現(xiàn)在葉片發(fā)育后期及干旱脅迫下表達(dá)反而增加,表明其參與大麥對干旱的復(fù)雜響應(yīng)。

        FTase通過控制蛋白法尼基化調(diào)節(jié)細(xì)胞信號轉(zhuǎn)導(dǎo)、蛋白質(zhì)定位,從而影響了植物生長發(fā)育中的許多過程。然而,鑒于法尼基化潛在的作用靶點(diǎn)眾多,確定法尼基化在植物生長發(fā)育中的具體作用充滿挑戰(zhàn)。在擬南芥基因組中,將CAAX基序擴(kuò)展到包括以CCXX或CCXXX結(jié)尾的蛋白質(zhì),可以識別出大約700個(gè)ERA1介導(dǎo)的法尼基化潛在靶點(diǎn)[45]。目前,法尼基化靶蛋白HSP40、CYP85A2和ASG2已被證明是ABA信號傳導(dǎo)的負(fù)調(diào)控因子。BARGHETTI A等[45]發(fā)現(xiàn)熱休克蛋白40(HSP40)由J2和J3基因編碼,J3的法尼基化可促進(jìn)植物體內(nèi)膜的結(jié)合,缺乏J3的突變體導(dǎo)致miR397/

        miR398/miR408/miR857表達(dá)缺陷,從而影響ABA信號傳導(dǎo)相關(guān)基因的表達(dá)和對ABA的敏感性;研究還發(fā)現(xiàn),油菜素內(nèi)酯與ABA存在拮抗關(guān)系,era1突變體中油菜素內(nèi)酯水平降低,外源施加油菜素內(nèi)酯可恢復(fù)部分表型。NORTHEY J G B等[46]的研究發(fā)現(xiàn)只有法尼基化的細(xì)胞色素P450(CYP85A2)才能正確定位于內(nèi)質(zhì)網(wǎng)(ER)亞結(jié)構(gòu)域,與葉綠體相鄰,促進(jìn)油菜素內(nèi)酯(Brassinosteroids,BR)在特定組織中的生物合成。JAMSHED M等的[47]研究進(jìn)一步發(fā)現(xiàn),法尼基化的靶點(diǎn)還可能通過某種方式控制分生組織中細(xì)胞增殖和分化的平衡,從而影響分生組織的大小,缺乏CYP85A2或其法尼基化基序會導(dǎo)致BR積累減少、對ABA超敏感和植物耐旱性增加;由于CYP85A2的N端分泌信號和C端法尼基化基序?qū)ζ渫暾δ芫潜匦璧?,N端單獨(dú)存在時(shí)無法挽救CYP85A2-2的表型,需要法尼基化CAAX基序才能靶向ER區(qū)室發(fā)揮功能。OGATA T等[48]報(bào)道稱,通過CRISPR/cas9技術(shù)產(chǎn)生的水稻OsERA1突變體表現(xiàn)出主根生長增加,對ABA的敏感性增加,對干旱脅迫的響應(yīng)增強(qiáng)。ASG2(Altered seed germination 2)是一種與DDB1(Damage DNA binding protein 1)相互作用的法尼基化蛋白,它具有WD40結(jié)構(gòu)域和四肽重復(fù)序列。DUTILLEUL C等[49]的研究發(fā)現(xiàn),ASG2突變體在萌發(fā)過程中對ABA敏感性的增加,可以與植物脫落酸不敏感蛋白5(Abscisic acid-insensitive 5, ABI5)穩(wěn)定地結(jié)合。

        3 法尼基化對植物其他農(nóng)藝性狀的影響

        FTase除了增強(qiáng)對ABA的反應(yīng)外,法尼基化修飾可能改變某些生長因子的活性或定位,進(jìn)而影響植物的生長速度和形態(tài)。在擬南芥中,F(xiàn)Tase β突變體還表現(xiàn)出許多其他突變表型,包括種子發(fā)育、葉型改變、花器官數(shù)量增加、開花晚、耐熱性缺陷、對毒性細(xì)菌和卵菌病原體的敏感性增強(qiáng)等[50-54]。WU J R等[50]的研究表明,F(xiàn)Tase在植物對熱脅迫的響應(yīng)中也發(fā)揮著重要作用,擬南芥era1突變體對高溫的敏感性顯著增強(qiáng)。YALOVSKY S等[55]發(fā)現(xiàn)MADS-box轉(zhuǎn)錄因子APETALA1(AP1)是FTase的一個(gè)靶點(diǎn),通過法尼基化改變了AP1的功能和特異性,在調(diào)控復(fù)合末端花的發(fā)育中發(fā)揮作用。GALICHET A等[56]的研究表明,定位于細(xì)胞核的核小體組裝蛋白1(AtNAP1;1)在擬南芥葉片發(fā)育的細(xì)胞增殖階段通過法尼基化促進(jìn)細(xì)胞分裂。YALOVSKY S等[52]發(fā)現(xiàn),突變體era1-2在分生組織器官大小和數(shù)量、開花時(shí)間以及花發(fā)育(如形成絲狀結(jié)構(gòu)、同源異型轉(zhuǎn)變等)等異常表型,將番茄中編碼FTase β亞基的基因LeFTB導(dǎo)入到擬南芥era1-2突變體中可以使era1-2的異常表型得到恢復(fù)。GALICHET A等[57]發(fā)現(xiàn),細(xì)胞分裂素生物合成酶磷酸腺苷異戊烯基轉(zhuǎn)移酶3(IPT3)可以被法尼基化;IPT3的法尼基化形式存在于細(xì)胞質(zhì)和細(xì)胞核中,而非法尼基化形式存在于質(zhì)體中,分別與異戊烯基型或是玉米素(Zeatin, ZT)型細(xì)胞分裂素(Cytokinin, CTK)的合成有關(guān)。因此,法尼基化的調(diào)控機(jī)制可能與其他激素之間存在復(fù)雜的相互作用,從而對植物的農(nóng)藝性狀產(chǎn)生影響。故此,有必要進(jìn)一步深入探討這種作用,以便更好地理解其對植物生長發(fā)育的影響。

        在植物感染病原體時(shí),F(xiàn)Tase β的調(diào)控機(jī)制同樣表現(xiàn)出其重要性。ABOELFOTOH HENDY A等[58]發(fā)現(xiàn)并報(bào)道了稻瘟病菌(Magnaporthe oryzae)中FTase β(RAM1),通過靶向破壞RAM1,導(dǎo)致M. oryzae菌絲生長和產(chǎn)孢量減少,并增加了對各種脅迫的敏感性,同時(shí),RAM1的缺失也導(dǎo)致了對植物宿主的毒力減弱。這些發(fā)現(xiàn)表明,法尼基化參與了RAS蛋白介導(dǎo)的M. oryzae附著胞形成和感染的信號通路。這意味著ERA1可能不僅限于水分和熱應(yīng)激,還在植物的免疫反應(yīng)中扮演關(guān)鍵角色[54]。

        4 結(jié)論與展望

        迄今為止,大多數(shù)關(guān)于異戊烯基化的研究都集中在哺乳動物和酵母上[55]。植物中異戊烯基化在擬南芥上雖有報(bào)道,但在主要作物如水稻、小麥(Triticum aestivum L.)、大豆(Glycine max L.)等還未得到關(guān)注,在主要作物完成測序后,大量含有CAAX尾結(jié)構(gòu)域的推測蛋白靶點(diǎn)尚未得到實(shí)驗(yàn)驗(yàn)證。未來的研究除了需要深入探究FTase調(diào)控植物激素信號轉(zhuǎn)導(dǎo)的作用機(jī)制,解析其在抗旱過程中的分子調(diào)控網(wǎng)絡(luò)外,還應(yīng)深入研究FTase與其他植物激素如生長素(Auxin, IAA)、CTK等的交互作用調(diào)控其他農(nóng)藝性狀的機(jī)理,挖掘FTase的具體功能及調(diào)控網(wǎng)絡(luò),全面理解FTase在植物生長和發(fā)育過程中的重要作用,為培育具有更高產(chǎn)量和更強(qiáng)逆境抗性的植物品種提供理論基礎(chǔ)。

        參考文獻(xiàn):

        [1] HOSSAIN M A, WANI S H, BHATTACHARJEE S, et al. Drought stress tolerance in plants, Volume 2[M]. Switzerland: Springer, 2016.

        [2] REYNOLDS M, FOULKES J, FUREANK R, et al. Achieving yieldgains in wheat[J]. Plant, Cell amp; Environment, 2012, 35(10): 1799-1823.

        [3] CHEN L P, ZHAO Y, XU S J, et al. OsMADS 57 together with OsTB 1 coordinates transcription of its target OsWRKY 94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. New Phytologist, 2018,

        218(1): 219-231.

        [4] GUPTA A, RICO-MEDINA A, CA?O-DELGADO A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269.

        [5] SUN X M, XIONG H Y, JIANG C H, et al. Natural variation of DROT1 confers drought adaptation in upland rice[J]. Nature Communications, 2022, 13(1): 4265.

        [6] DIXIT S, SINGH A, STA CRUZ M T, et al. Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities[J]. BMC Genetics, 2014, 15: 1-13.

        [7] TIAN T, WANG S H, YANG S P, et al. Genome assembly and genetic dissection of a prominent drought-resistant maize germplasm[J]. Nature Genetics, 2023, 55(3): 496-506.

        [8] KIM TAEHEON K T H, HUR YEONJAE H Y J, HAN SANGIK H S I, et al. Drought-tolerant QTL qVDT11 leads to stable tiller formation under drought stress conditions in rice[J]. Plant Science, 2017, 256: 131-138.

        [9] CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1): 25-54.

        [10] ZHU C G, JING B Y, LIN T, et al. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato[J]. Plant Physiology, 2024, 195(2): 1005-1024.

        [11] YOU Z, GUO S Y, LI Q, et al. The CBL1/9-CIPK1 calcium sensor negatively regulates drought stress by phosphorylating the PYLs ABA receptor[J]. Nature Communications, 2023, 14(1): 5886.

        [12] GEIGER D, SCHERZER S, MUMM P, et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stresss ignaling kinase-phosphatasepair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21425.

        [13] NALIVAEVA N N, TURNER A J. Post-translational modifications of proteins: acetylcholinesterase as a model system[J]. Proteomics, 2001, 1: 735-747.

        [14] WANG J, ZHOU L, SHI H, et al. A single transcription factor promotes both yield and immunity in rice[J]. Science, 2018, 361(6406): 1026-1028.

        [15] ELAM C, HESSON L, VOS M D, et al. RRP22 is a farnesylated, nucleolar, Ras-related protein with tumor suppressor potential[J]. Cancer Research, 2005, 65(8): 3117-3125.

        [16] CAMEJO D, CARMEN ROMERO-PUERTAS M, RODRíGUEZ-SERRANO M, et al. Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins[J]. Journal of Proteomics, 2013, 79: 87-99.

        [17] CAMEJO D, GUZMáN-CEDE?O A, VERA-MACIAS L, et al. Oxidative post-translational modifications controlling plant-pathogen interaction[J]. Plant Physiology and Biochemistry, 2019, 144: 110-117.

        [18] YANG Z L, YANG J, WANG Y, et al. PROTEIN PHOSPHATASE95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice[J]. The Plant Cell, 2020, 32(3): 740-757.

        [19] HIGO A, SAIHARA N, MIURA F, et al. DNA methylation is reconfigured at the onset of reproduction in rice shoot apical meristem[J]. Nature Communications, 2020, 11(1): 4079.

        [20] ZHU C G, JING B Y, LIN T L, et al. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato[J]. Plant Physiology, 2024, 195(2): 1005-1024.

        [21] MAGEE T, SEABRA M C. Fatty acylation and prenylation of proteins: What's hot in fat[J]. Current Opinion in Cell Biology, 2005, 17(2): 190-196.

        [22] JIANG H, ZHANG X Y, CHEN X, et al. Protein lipidation: Occurrence, mechanisms, biological functions, and enabling technologies[J]. Chemical Reviews, 2018, 118(3): 919-988.

        [23] RAY A, JATANA N, THUKRAL L. Lipidated proteins: Spotlight on protein-membrane binding interfaces[J]. Progress in Biophysics and Molecular Biology, 2017, 128: 74-84.

        [24] CASEY P J. Protein lipidation in cell signaling[J]. Science, 1995, 268(5208): 221-225.

        [25] CASEY P J, SEABRA M C. Protein prenyltransferases[J]. Journal of Biological Chemistry, 1996, 271(10): 5289-5292.

        [26] SHEN M Y, PAN P G, LI Y Y, et al. Farnesyltransferase and geranylgeranyltransferase I: Structures, mechanism, inhibitors and molecular modeling[J]. Drug Discovery Today, 2015, 20(2): 267-276.

        [27] 黃凌雯,黃浩. 法尼基化修飾與法尼基轉(zhuǎn)移酶抑制劑[J]. 生物學(xué)通報(bào),2020,55(10):7-10.

        [28] XU N, SHEN N, WANG X X, et al. Protein prenylation and human diseases: A balance of protein farnesylation and geranylgeranylation[J]. Science China

        Life Sciences, 2015, 58: 328-335.

        [29] McTAGGART S J. Isoprenylated proteins[J]. Cellular and Molecular Life Sciences, 2006, 63(3): 255-267.

        [30] DIVER M M, PEDI L, KOIDE A, et al. Atomic structure of the eukaryotic intramembrane RAS methyltransferase ICMT[J]. Nature, 2018, 553(7689): 526-529.

        [31] STORCK E M, MORALES-SANFRUTOS J, SERWA R A, et al. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics[J]. Nature Chemistry, 2019, 11(6): 552-561.

        [32] CASEY P J, SOLSKI P A, DER C J, et al. p21ras is modified by a farnesyl isoprenoid[J]. Proceedings of the National Academy of Sciences, 1989, 86(21): 8323-8327.

        [33] REISS Y, GOLDSTEIN J L, SEABRA M C, et al. Inhibition of purified p21ras farnesyl: Protein transferase by Cys-AAX tetrapeptides[J]. Cell, 1990, 62(1): 81-88.

        [34] PARK H W, BODULURI S R, MOOMAW J F, et al. Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution[J]. Science, 1997, 275(5307): 1800-1804.

        [35] TURNBULL D, HEMSLEY P A. Fats and function: Protein lipid modifications in plant cell signalling[J]. Current Opinion in Plant Biology, 2017, 40: 63-70.

        [36] WAHLSTROM A M, CUTTS B A, KARLSSON C, et al. Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease[J]. Blood, 2007, 109(2): 763-768.

        [37] BABATZ T D, SPEAR E D, XU W X, et al. Site specificity determinants for prelamin a cleavage by the zinc metalloprotease ZMPSTE24[J]. Journal of Biological Chemistry, 2021, 296: 1-12.

        [38] RANDALL S K, MARSHALL M S, CROWELL D N. Protein isoprenylation in suspension-cultured tobacco cells[J]. The Plant Cell, 1993, 5(4): 433-442.

        [39] ZHOU D F, QIAN D Q, CRAMER C L, et al. Developmental and environmental regulation of tissue-and cell-specific expression for a pea protein farnesyltransferase gene in transgenic plants[J]. The Plant Journal, 1997, 12(4): 921-930.

        [40] CUTLER S, GHASSEMIAN M, BONETTA D, et al. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis[J]. Science, 1996, 273(5279): 1239-1241.

        [41] MANAVALAN L P, CHEN X, CLARKE J, et al. RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice[J]. Journal of Experimental Botany, 2012, 63(1): 163-175.

        [42] WANG Y, YING J F, KUZMA M, et al. Molecular tailoring of farnesylation for plant drought tolerance and yield protection[J]. The Plant Journal, 2005, 43(3): 413-424.

        [43] ALLEN G J, MURATA Y, CHU S P, et al. Hypersensitivity of abscisic acid-induced cytosolic calcium increases in the Arabidopsis farnesyltransferase mutant era1-2[J]. The Plant Cell, 2002, 14(7): 1649-1662.

        [44] PARASYRI A, BARTH O, ZSCHIESCHE W, et al. The barley heavy metal associated isoprenylated plant protein HvFP1 is involved in a crosstalk between the leaf development and abscisic acid-related drought stress responses[J]. Plants, 2022, 11(21): 2851.

        [45] BARGHETTI A, SJ?GREN L, FLORIS M, et al. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance[J]. Genes amp; Development, 2017, 31(22): 2282-2295.

        [46] NORTHEY J G B, LIANG S Y, JAMSHED M, et al. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses[J]. Nature Plants, 2016, 2(8): 1-7.

        [47] JAMSHED M, LIANG S Y, M N HICKERSON N, et al. Farnesylation-mediated subcellular localization is required for CYP85A2 function[J]. Plant Signaling amp; Behavior, 2017, 12(10): 16114.

        [48] OGATA T, ISHIZAKI T, FUJITA M, et al. CRISPR/

        Cas9-targeted mutagenesis of OsERA1 confers enhanced responses to abscisic acid and drought stress and increased primary root growth under nonstressed conditions in rice[J]. PloS One, 2020, 15(12): e0243376.

        [49] DUTILLEUL C, RIBEIRO I, BLANC N, et al. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis[J]. Plant, Cell amp; Environment, 2016, 39(1): 185-198.

        [50] WU J R, WANG L C, LIN Y R, et al. The Arabidopsis heat-intolerant 5(hit5)/enhanced response to aba 1(era1) mutant reveals the crucial role of protein farnesylation in plant responses to heat stress[J]. New

        Phytologist, 2017, 213(3): 1181-1193.

        [51] GORITSCHNIG S, WEIHMANN T, ZHANG Y L, et al. A novel role for protein farnesylation in plant innate immunity[J]. Plant Physiology, 2008, 148(1): 348-357.

        [52] YALOVSKY S, KULUKIAN A, RODRíGUEZ-CONCEPCIóN M, et al. Functional requirement of plant farnesyltransferase during development in Arabidopsis[J]. The Plant Cell, 2000, 12(8): 1267-1278.

        [53] RUNNING M P. The role of lipid post-translational modification in plant developmental processes[J]. Frontiers in Plant Science, 2014, 5: 50.

        [54] VERGèS V, DUTILLEUL C, GODIN B, et al. Protein farnesylation takes part in Arabidopsis seed development[J]. Frontiers in Plant Science, 2021, 12: 620325.

        [55] YALOVSKY S, RODRíGUEZ-CONCEPCIóN M, BRACHA K, et al. Prenylation of the floral transcription factor APETALA1 modulates its function[J]. The Plant Cell, 2000, 12(8): 1257-1266.

        [56] GALICHET A, GRUISSEM W. Developmentally controlled farnesylation modulates AtNAP1; 1 function in cell proliferation and cell expansion during Arabidopsis leaf development[J]. Plant Physiology, 2006, 142(4): 1412-1426.

        [57] GALICHET A, HOYEROVá K, KAMíNEK M, et al. Farnesylation directs AtIPT3 subcellular localization and modulates cytokinin biosynthesis in Arabidopsis[J]. Plant Physiology, 2008, 146(3): 1155-1164.

        [58] ABOELFOTOH HENDY A, XING J J, CHEN X, et al. The farnesyltransferase β-subunit RAM1 regulates localization of RAS proteins and appressorium-mediated infection in Magnaporthe oryzae[J]. Molecular Plant Pathology, 2019, 20(9): 1264-1278.

        責(zé)任編輯:周慧

        猜你喜歡
        農(nóng)藝性狀抗旱植物
        美國聯(lián)邦政府撥款8 400萬美元用于西部地區(qū)抗旱
        種子穿新“外衣”鎖水抗旱長得好
        果園抗旱“24字方針”
        哦,不怕,不怕
        防汛抗旱
        將植物穿身上
        新型緩釋肥在全膜雙壟溝播玉米上的應(yīng)用效果研究
        武運(yùn)粳24號水稻機(jī)插精確定量高產(chǎn)栽培技術(shù)研究
        不同夾心肥料對玉米生長的影響
        從農(nóng)藝性狀及化學(xué)成分測定分析遠(yuǎn)志藥材商品品規(guī)和良種選育的合理性
        一级片久久| 麻豆五月婷婷| 亚洲加勒比久久88色综合| 日韩午夜免费视频精品一区| 亚洲中文字幕无码不卡电影| 国产看黄网站又黄又爽又色| 亚洲va欧美va日韩va成人网| 久久精品国产99国产精2020丨| 成人午夜福利视频| 日本系列有码字幕中文字幕| 国产三级黄色的在线观看| 色丁香久久| 国产xxxx99真实实拍| 日韩夜夜高潮夜夜爽无码| 国产精品国产三级国产剧情| 亚洲一区二区三在线播放| 大陆一级毛片免费播放| 风间由美性色一区二区三区| 国内少妇毛片视频| 中文字幕av长濑麻美| 国产少妇一区二区三区| 中文字幕久久久人妻无码| 亚洲人成网7777777国产| 久久久精品一区aaa片| 久久精品国产亚洲超碰av| 精品视频手机在线免费观看| 国产美女自拍国语对白| 久久精品无码一区二区2020| www插插插无码免费视频网站| 人妻夜夜爽天天爽三区麻豆av网站| 美女午夜福利视频网址| 亚洲精品中文字幕乱码无线| 美女福利一区二区三区在线观看 | 精品在线视频免费在线观看视频| 国产精品丝袜美女在线观看| 97se在线| 7777精品伊人久久久大香线蕉| 亚洲国产成人精品无码区二本 | 国产欧美综合一区二区三区 | 国产av专区一区二区三区| 日本免费人成视频播放|