劉涌泉,李剛,方達(dá)
雙曲空間中漸近擬非擴(kuò)張映射與幾乎漸近擬非擴(kuò)張映射混合迭代的強(qiáng)收斂
劉涌泉1,2,李剛1,2,方達(dá)1,2
(1. 吉安職業(yè)技術(shù)學(xué)院 小學(xué)教育學(xué)院,江西 吉安 343000;2. 吉安幼兒師范高等專科學(xué)校 教師教育學(xué)院,江西 吉安 343000)
在雙曲空間中,引入了關(guān)于三個(gè)漸近擬非擴(kuò)張映射和三個(gè)幾乎漸近擬非擴(kuò)張映射新的SP-迭代算法, 獲得了漸近擬非擴(kuò)張映射和幾乎漸近擬非擴(kuò)張映射在新的SP-迭代算法下的強(qiáng)收斂性定理,所得結(jié)果推廣和改進(jìn)了相關(guān)文獻(xiàn)的結(jié)論.
雙曲空間;漸近擬非擴(kuò)張映射;幾乎漸近擬非擴(kuò)張映射;SP-迭代算法;公共不動(dòng)點(diǎn)
2011年,PHUENGRATTANA[1]等引入了一種新的SP-迭代算法逼近連續(xù)映射的不動(dòng)點(diǎn),并證明了該算法在Bananch空間中的強(qiáng)收斂性,通過數(shù)值結(jié)果顯示,相比于傳統(tǒng)的Mann迭代、Ishikawa迭代和Noor迭代,SP-迭代的收斂速度更快.2014年,KANG[2]等在雙曲空間中引入了S-迭代算法逼近非Lipschitzian連續(xù)Lipschitzian型映射的不動(dòng)點(diǎn),并建立了該迭代算法關(guān)于一個(gè)幾乎漸近擬非擴(kuò)張映射不動(dòng)點(diǎn)的強(qiáng)收斂定理.2017年,聞道君[3]等改進(jìn)了KANG等的S-迭代算法,在雙曲空間中引入了SP-迭代算法逼近幾乎漸近擬映射的不動(dòng)點(diǎn),并證明了該迭代算法關(guān)于一個(gè)漸近擬非擴(kuò)張映射不動(dòng)點(diǎn)的強(qiáng)收斂定理.
本文將文獻(xiàn)[1]的SP-迭代算法從Banach空間推廣到更為一般的雙曲空間,改進(jìn)文獻(xiàn)[2]的S-迭代算法以及文獻(xiàn)[3]的迭代算法,引入新的混合SP-迭代算法,在雙曲空間中建立了關(guān)于三個(gè)漸近擬非擴(kuò)張映射和三個(gè)幾乎漸近擬非擴(kuò)張映射公共不動(dòng)點(diǎn)的強(qiáng)收斂定理.
注漸近擬非擴(kuò)張映射是幾乎漸近擬非擴(kuò)張映射.反之,一般不成立.
利用式(1), 類似可得
借助式(4)~(6),可得
證明必要性顯然成立.
由定理3可得到推論1~2.
由定理4可得到推論3~4.
本文所用的方法以及所得的結(jié)果是文獻(xiàn)[9-12]一些相應(yīng)結(jié)果的重要推廣.
[1] PHUENGRATTANA W,SUANTAI S.On the rate of convergence of Mann,Ishikawa,Noor and SP-iterations for continuous functions on an arbitrary interval[J].Journal of Computational and Applied Mathematics,2011(235):3006-3014.
[2] KANG S M,DASHPUTR E,MALAGAR B L,et al.On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces[J].Fixed Point Theory and Applications,2014(1):1-15.
[3] 聞道君,宋樹枝,萬波.雙曲空間中幾乎漸近非擴(kuò)張型映象不動(dòng)點(diǎn)的收斂性定理[J].云南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,39(2):172-177.
[4] KOHLENBACH U.Some logical metatheorems with applications in functional analysis[J].Transactions of the American Mathematical Society,2005,357(1):89-128.
[5] TAKAHASHI W.A convexity in metric space and nonexpansive mappings[J].Kodai Mathematical Seminar Reports,1970,22(2):142-149.
[6] SHIMIZU T,AKAHASHI W.Fixed points of multivalued mappings in certain convex metric spaces[J].Topological Methods in Nonlinear Analysis,1996,8(1):197-203 .
[7] KABG S M,DASHPUTRE S,MALAGAR B L,et al.On the convergence of fixed points for Lipschitz type mappings in hyperbolic spaces[J].Fixed Point Theory and Applications,2014(1):229-231.
[8] LIU Q H.Iterative sequences for asymptotically quasi-nonexpansive mappings with error member[J].Journal of Mathematical Analysis and Applications,2001,259(1):18-24.
[9] SINGH SALUJA G.Convergence results for nearly asymptotically quasi-nonexpansive mappings in hyperbolic spaces[J].Gulf Journal of Mathematics,2017,5(3):91-107.
[10] 劉涌泉,黃星,饒永生.漸近擬非擴(kuò)張映射的新型混合迭代算法及應(yīng)用[J].哈爾濱師范大學(xué)自然科學(xué)學(xué)報(bào),2018,34(1):15-20.
[11] 劉涌泉,楊旭,謝濤.漸近擬非擴(kuò)張映射三步混合迭代算法的收斂性[J].井岡山大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,39(5):7-12.
[12] SHARMA A.Approximating fixed points of nearly asymptotically nonexpansive mappings in CAT()spaces[J].Arab Journal of Mathematical Sciences,2018,24 (2):166-181.
Strong convergence for mixed type iteration of asymptotically quasi-nonexpansive mappings and nearly asymptotically quasi-nonexpansive mappings in hyperbolic spaces
LIU Yongquan1,2,LI Gang1,2,F(xiàn)ANG Da1,2
(1. School of Primary Education,Ji′an Vocational and Technical College,Ji′an 343000,China;2. School of Teacher Education,Ji′an Preschool Teachers College,Ji′an 343000,China)
A new SP-iterative scheme for three asymptotically quasi-nonexpansive mappings and three nearly asymptotically quasi-nonexpansive mappings is introduced in hyperbolic spaces.The strong convergence theorems of three asymptotically quasi-nonexpansive mappings and three nearly asymptotically quasi-nonexpansive mappings are established under the new SP-iterative scheme.The results improve and extend the results of some relevant literature.
hyperbolic spaces;asymptotically quasi-nonexpansive mappings;nearly asymptotically quasi-nonexpansive mappings;SP-iterative scheme;common fixed point
1007-9831(2023)12-0009-06
O177.91
A
10.3969/j.issn.1007-9831.2023.12.002
2023-05-02
江西省教育廳科技計(jì)劃項(xiàng)目(GJJ219409)
劉涌泉(1987-),男,江西高安人,講師,碩士,從事非線性泛函分析研究.E-mail:z1597966abc@163.com