摘要 新污染物(emerging contaminants,ECs)具有濃度低、毒性大等特點,是飲用水和再生水水質(zhì)安全的重要威脅。生物炭因制備成本低、處理效率高等特點,在水環(huán)境ECs 的去除領(lǐng)域受到廣泛關(guān)注。為了推進生物炭在水環(huán)境新污染物去除的應(yīng)用,本文從水環(huán)境中ECs 污染現(xiàn)狀、生物炭的性質(zhì)、生物炭在水環(huán)境ECs 去除過程中的研究和應(yīng)用等方面進行綜述,分別總結(jié)生物炭作為吸附劑、高級氧化催化劑與微生物固定化載體對ECs 的去除研究進展,并提出展望。
關(guān)鍵詞 生物炭; 新污染物; 水環(huán)境; 吸附; 高級氧化; 生物降解
中圖分類號 X703 文獻標識碼 A 文章編號 1000-2421(2024)02-0010-12
新污染物(emerging contaminants,ECs)是指在環(huán)境中以痕量形式存在的有機污染物,主要包括持久性有機污染物、內(nèi)分泌干擾物和抗生素等,對人類與動植物具有潛在危害[1]。近十幾年世界各地的水環(huán)境中已頻繁檢測出各種ECs,地表水中ECs 通常以每升納克至毫克的水平存在[2]。雖然這些ECs 在環(huán)境中濃度低,短時間內(nèi)不會對人體健康造成嚴重危害,但由于其生物難降解性與強蓄積性,可能會在水體中積累和富集,最終進入食物鏈,對水生生物和人體將造成潛在和持續(xù)性的危害[3]。因此,及時采取有效的措施減少水環(huán)境中的新污染物對于保護人類健康和維護生態(tài)環(huán)境至關(guān)重要。我們以“環(huán)境內(nèi)分泌干擾物(endocrine disrupting chemicals,EDCs)”“ 藥物與個人護理品(pharmaceutical and personal careproducts,PPCPs)”與“water”為關(guān)鍵詞在Web of Science上進行檢索,發(fā)現(xiàn)1999-2021年間收錄關(guān)于ECs研究文章呈逐年快速增加趨勢(圖1),可見針對ECs的治理已成為21世紀環(huán)境保護工作的熱點與重點。
我國高度重視新污染物的管控與防治,“十四五”期間新污染物治理成為生態(tài)環(huán)保工作的重點。2020 年10 月,黨的十九屆五中全會明確提出要“重視新污染物治理”。2021 年3 月,十三屆全國人大四次會議明確“健全有毒有害化學(xué)物質(zhì)環(huán)境風(fēng)險管理體制”。2022 年5 月,國務(wù)院辦公廳發(fā)布《新污染物治理行動方案》,指出“十四五”期間將對一批重點管控新污染物開展專項治理,并規(guī)劃于2025 年底前初步建立新污染物環(huán)境調(diào)查監(jiān)測體系。為貫徹落實《新污染物治理行動方案》,2022 年12 月,生態(tài)環(huán)境部等六部門聯(lián)合發(fā)布《重點管控新污染物清單(2023 年版)》,將14 種新污染物納入重點管控清單,嚴格實施禁止、限制、限排等管控措施。新污染物治理已成為當(dāng)前環(huán)境保護工作的核心任務(wù)。
目前,去除水環(huán)境中ECs 的方法主要有物理化學(xué)法[4]、氧化還原法[5]和生物降解法[6]等。物理化學(xué)法主要利用多孔的固體物質(zhì)作為吸附劑,使污染物吸附于固體表面而被去除,可操作性高、運行穩(wěn)定且效率較高。但材料較難回收、易產(chǎn)生二次污染。氧化還原法是降解有機污染物的常見方法,如Fenton氧化法、光催化氧化法、臭氧氧化法、超聲氧化法等,其中高級氧化法具有反應(yīng)時間短、去除效果好等優(yōu)點,常用于實驗室中去除ECs 的研究,但高成本限制了其廣泛應(yīng)用。生物降解法是利用微生物、酶等生物成分降解水環(huán)境中的新污染物的方法。微生物通過吸收、分解、利用有機廢物,并將其轉(zhuǎn)化為無害的物質(zhì),從而清除水中的污染物。這種方法具有環(huán)保、經(jīng)濟、可持續(xù)的特點,廣泛應(yīng)用于污水處理廠、水體凈化等領(lǐng)域。不同污染物治理方法具有各自的優(yōu)缺點,雖然在環(huán)境保護方面均得到了廣泛應(yīng)用,但單一治理方法的應(yīng)用仍存在ECs 去除效率低、成本高等問題。因此,亟待更高效率的復(fù)合技術(shù)應(yīng)用于ECs治理。
生物炭(biochar,BC)是一種具有廣泛應(yīng)用前景的材料,具有較大的比表面積[7]、特殊的孔隙結(jié)構(gòu)[8]、優(yōu)良的氧化還原特性[9]以及較多的表面活性位點[10]。生物炭材料既是一種理想的吸附劑,又是一種理想的高級氧化催化劑,能有效激活高級氧化劑。同時,生物炭還可為微生物提供理想的生長場所和庇護所,有助于微生物的聚集與繁殖,利用生物炭固定化微生物能夠減少生物量失活并提升生物活性。生物炭具有固碳減排效益,其綠色應(yīng)用將成為21 世紀實現(xiàn)可持續(xù)發(fā)展“碳中和”理念的重要路徑[11]。
鑒于當(dāng)前缺少對生物炭去除水環(huán)境新污染物的系統(tǒng)總結(jié),本文以近年來生物炭在水環(huán)境中去除新污染物的研究成果為基礎(chǔ),系統(tǒng)梳理了生物炭在水環(huán)境中去除新污染物的應(yīng)用研究進展。首先,通過分析當(dāng)前新污染物的污染現(xiàn)狀,揭示其對水環(huán)境的潛在危害。接著,對生物炭的性質(zhì)和特點進行了深入探討。在此基礎(chǔ)上總結(jié)了生物炭在水環(huán)境中去除新污染物方面的研究進展,包括其作為吸附劑、高級氧化催化劑和微生物固定化載體的特點及優(yōu)勢。最后,對未來相關(guān)研究提出展望,以期為水環(huán)境中新污染物的防治提供參考和指導(dǎo),促進生物炭在環(huán)境治理領(lǐng)域的應(yīng)用和發(fā)展。
1 新污染物在水環(huán)境中賦存現(xiàn)狀
近些年,不同種類ECs 已先后在世界各地范圍內(nèi)地表水、飲用水和地下水中檢出,涉及的ECs 包括藥品和個人護理產(chǎn)品(PPCPs)、內(nèi)分泌干擾物(EDCs)、微塑料、殺蟲劑、工業(yè)化學(xué)品等。污、廢水的直接與間接排放是水環(huán)境ECs 污染的主要來源。Kasprzyk-Hordern 等[12]在英國南威爾士南部的2 條河流中檢出多種源自個人護理品、內(nèi)分泌干擾物、非法藥品的新污染物,污水處理廠尾水是這些ECs 的主要來源。Yamazaki 等[13]對日本、中國、韓國和印度的地表水進行檢測分析,證明雙酚A(bisphenol A,BPA)等雙酚類似物在自然水體中的暴露與污水處理廠尾水密切相關(guān)。Ma 等[14]發(fā)現(xiàn)華北地區(qū)的4 個河岸地下水和鄰近河流地區(qū)的PPCPs 的污染情況受到當(dāng)?shù)匚鬯幚韽S尾水的嚴重影響。由此可見,污水處理廠尾水是目前ECs 進入自然水體的重要途徑。
ECs 污染種類及污染量與含ECs 制品的消費量密切相關(guān)。王慧等[15]對南京市污水處理廠及其受納水體19 種目標PPCPs 進行檢測,發(fā)現(xiàn)在冬季的檢出頻率與濃度顯著高于夏季,可能原因是冬季疾病多發(fā)導(dǎo)致抗生素以及其他藥品使用量增加。BPA 是一種制造聚碳酸酯和環(huán)氧樹脂的中間體[16],隨著人們對塑料制品的需求量越來越大,已經(jīng)被廣泛應(yīng)用于食品包裝、運動器材、牙科密封劑等日常消費品。BPA 不可避免地暴露于各種環(huán)境介質(zhì)中,在國內(nèi)外多地區(qū)水環(huán)境中都有著極高的檢出率(表1)。
2 生物炭的理化性質(zhì)及特點
生物炭是一種由生物質(zhì)在缺氧或低氧條件下進行干法碳化、熱解或氣化形成的多孔碳質(zhì)固體[24]。其來源主要是農(nóng)業(yè)廢棄物[25]和固體廢物[26],如秸稈、木屑、花生殼、甘蔗渣、污泥和畜禽糞便等。在當(dāng)今全球固體廢棄物日益增長的背景下,將生物炭應(yīng)用于環(huán)境保護與生態(tài)治理等領(lǐng)域能夠達到減污降碳的目的,還能推進農(nóng)業(yè)經(jīng)濟發(fā)展,是一種綠色經(jīng)濟的“以廢治廢”方式。
雖然不同種類生物質(zhì)在不同熱解方法或不同熱解溫度條件下所生成的生物炭在結(jié)構(gòu)與性質(zhì)上具有一定差異,但仍然存在著許多共同特性:第一,生物炭主要由碳、氫、氧等元素組成,其中碳的占比高達50%~90%[27-28],且多為惰性碳,烷基和芳香結(jié)構(gòu)是最主要的成分[29]。因而生物炭常被作為一種具有高穩(wěn)定性的富碳物質(zhì),用于儲存生物質(zhì)中的碳素,從而減少CO2、CH4 等溫室氣體排入大氣的比例[30]。將生物炭還田可抑制或減少N2O 的排放[31],達到固碳減排的積極作用。第二,生物炭一般呈堿性,pH 變化范圍在8.2~13.0,且隨熱解溫度的升高,pH 呈上升趨勢。生物炭中的堿性物質(zhì)大部分以碳酸鹽的形式存在,也有一部分以-COOH 和-OH 等含氧官能團存在于生物炭表面[7]。這些性質(zhì)使生物炭擁有良好的吸附能力以及對酸堿的緩沖能力,與微生物體系耦合能緩解細菌的酸抑制,常作為微生物載體應(yīng)用于生物處理技術(shù)中[32-33]。第三,生物炭具有巨大的比表面積[7]、豐富的孔隙結(jié)構(gòu)[8]和含氧官能團[34],較強的離子交換能力和持水性可固定多種無機和有機污染物,在污染水體與沉積物的原位修復(fù)均具有很好的應(yīng)用前景[35]。此外,表面存在活性位點與持久性自由基(persistent free radicals,PFRs)是生物炭的另一重要特征。Fang 等[36]利用生物炭活化H2O2 降解2-氯聯(lián)苯(2-CB),發(fā)現(xiàn)PFRs 濃度與H2O2產(chǎn)生的羥基自由基(·OH)呈正相關(guān)。近年來硫酸鹽基高級氧化工藝(sulfate radicals based-advanced oxidationprocesses, SR-AOP)不斷發(fā)展,生物炭也展示出對硫酸鹽基氧化劑較好的活化性能,表明生物炭能夠作為高級氧化工藝中的理想催化劑應(yīng)用于環(huán)境治理中[10,36]。生物炭具有良好導(dǎo)電性能,已作為能源電池、電極材料等廣泛應(yīng)用于能源領(lǐng)域[37],是21 世紀實現(xiàn)固廢資源化、可持續(xù)發(fā)展的重要技術(shù)。
3 生物炭在水環(huán)境ECs 去除過程中的應(yīng)用
將廢棄生物質(zhì)轉(zhuǎn)化為生物炭應(yīng)用于環(huán)境污染治理符合可持續(xù)發(fā)展的理念?;仡櫧鼛资陙砝蒙锾咳コ鼸Cs 的相關(guān)研究,我們發(fā)現(xiàn)通??蓪⑸锾坑米魑絼?、高級氧化催化劑、微生物固定化載體等應(yīng)用于水環(huán)境中ECs 去除??偨Y(jié)生物炭作為吸附劑、高級氧化催化劑與微生物固定化載體對ECs 的去除研究進展如表2 所示,并以BPA 作為代表性污染物,總結(jié)生物炭對其去除的幾種主要機制(圖2)。
3.1 生物炭作為吸附劑去除水環(huán)境ECs
物理化學(xué)吸附去除ECs 是一種操作性高、低成本和高效率的方法。例如,BPA 等污染物在污水處理中主要是通過活性污泥的吸附作用而實現(xiàn),其去除率可達到50%~75%[38-39]。吸附劑是吸附法去除污染物的核心,常用的吸附劑有黏土、活性氧化鋁、硅膠、殼聚糖、活性炭、石墨烯、碳納米管和生物炭等。利用生物炭作吸附劑去除水環(huán)境中的ECs 已成為研究熱點[34]。
生物炭可通過靜電相互作用、疏水效應(yīng)、氫鍵和孔隙填充等途徑吸附ECs,通過固液分離技術(shù)可將已吸附ECs 的生物炭與水體分離,再進行解吸附作用即可實現(xiàn)生物炭的再生[35]。Shimabuku 等[45]研究發(fā)現(xiàn)生物炭可作為優(yōu)良吸附劑有效去除地表水、雨水和廢水中的磺胺甲惡唑,且吸附能力隨比表面積的增加而增加。Choudhary 等[46]發(fā)現(xiàn)生物炭對甲基對苯二甲酸、卡馬西平、布洛芬、三氯生的最大吸附量分別為60.2、51.7、38.8、35.4 mg/g,與商用活性炭相比具有更高的生命周期成本效益。含有芳香π 電子的BPA 可通過化學(xué)吸附作用(π-π 電子供體-受體)強烈吸附在生物炭材料表面[47]。Zhou 等[48]研究表明生物炭經(jīng)過臭氧老化和UV-硝酸鹽老化后,對BPA的吸附能力基本不變。
生物炭對ECs 吸附效果主要受水質(zhì)條件[49-50](pH、腐殖酸、離子強度等)和生物炭本身性質(zhì)[51](比表面積、官能團以及孔徑分布等)的影響。通過表面改性或耦合其他材料制備可獲得具有新穎結(jié)構(gòu)和表面性能的改性生物炭,能顯著提高生物炭對水環(huán)境ECs 的吸附性能。Sun 等[52]制備了氮雜化生物炭,利用原位sp2C 優(yōu)勢促進了π-π 電子給體-受體之間的相互吸附作用,改善生物炭與BPA 之間的疏水作用,提升BPA 吸附去除性能。宋澤峰等[53]采用KOH 活化方法處理蘆葦生物炭后,生物炭對BPA 的吸附容量提高了10 倍以上。Shin 等[54]研究表明經(jīng)NaOH 活化后的生物炭對BPA 的平衡吸附能力(61~192μmol/g)遠高于原始生物炭(14~21 μmol/g)。Shi等[55]發(fā)現(xiàn)改性后的具有分級多孔結(jié)構(gòu)的生物炭對BPA 的吸附能力遠高于普通介孔生物炭,而改性后生物炭的穩(wěn)定pH 范圍更大。楊墨[56]對生物炭進行磷酸鉀改性后生物炭對BPA 的吸附去除率達97%,且吸附過程符合準二級動力學(xué)方程。
3.2 生物炭作為高級氧化催化劑去除水環(huán)境中ECs
與傳統(tǒng)水處理技術(shù)相比,高級氧化法(advancedoxidation process,AOPs)因具有適用范圍廣、反應(yīng)速率快、氧化能力強的優(yōu)點,在處理含有難降解有機物的廢水方面具有巨大潛力[40]。高級氧化法通過產(chǎn)生·SO4-、·OH等中間體參與自由基氧化過程,不可逆地改變反應(yīng)分子,將污染物分解為低毒或無毒物質(zhì),甚至直接轉(zhuǎn)化為二氧化碳和水。從2014 年起,F(xiàn)ang等[36]和Veksha等[57]相繼將生物炭應(yīng)用于羥基自由基高級氧化過程(HR-AOP),發(fā)現(xiàn)生物炭能有效活化H2O2產(chǎn)生羥基自由基(·OH)促進有機物降解。
近些年新興的硫酸鹽基高級氧化工藝(SRAOP)主要通過活化過硫酸鹽(persulfate,PS)或過氧單硫酸鹽(peroxymonosulfate,PMS)產(chǎn)生·SO4-和·OH 自由基氧化有機污染物。該方法受pH 和水質(zhì)的影響較小,在去除水體ECs 方面優(yōu)勢突出[5]?!O4-與有機污染物的反應(yīng)機制可以分為以下3 種,其中第3 種反應(yīng)機制作用較強,有利于去除BPA 等含有苯環(huán)的芳香族類ECs 污染物[58]。
(1)·SO4-與有機物發(fā)生氫原子提取反應(yīng):
·SO4- + RH → ·HSO42-+ R·
(2)·SO4- 與有機物中的不飽和鍵發(fā)生加成反應(yīng):·SO4- + H2C=CHR → ·OSO2OCH2-CHR
(3)發(fā)生單電子轉(zhuǎn)移反應(yīng):
高級氧化劑PMS 與PS 的活化過程是影響SRAOP去除污染物效果的決定性因素,主要方法包括能量活化(如熱活化、紫外線輻射、超聲波)[59]、過渡金屬活化(如Co、Fe、Cu、Mn)[60]和非金屬碳活化(如碳納米管、石墨烯、納米金剛石、生物炭)[61]。其中能量活化過程能量損失大,過渡金屬活化容易導(dǎo)致有毒金屬滲出并造成二次污染[59],而非金屬碳催化劑具有污染少、熱穩(wěn)定性好的優(yōu)點。但碳納米管、石墨烯等非金屬碳催化劑制備過程復(fù)雜,大大限制了高級氧化技術(shù)的應(yīng)用[61]。生物炭性質(zhì)穩(wěn)定、成本低,因此生物炭基催化劑備受關(guān)注。
生物炭表面存在的活性位點與持久性自由基,可以激活高級氧化劑反應(yīng)產(chǎn)生強氧化性的自由基,也能通過單線態(tài)氧(1O2)、電子轉(zhuǎn)移、非光生空穴氧化等非自由基生物炭表面存在的活性位點與PFRs,從而催化高級氧化降解ECs[62]。此過程受環(huán)境溫度、pH 值、無機離子濃度以及生物炭性質(zhì)等影響,匯總生物炭活化高級氧化劑的具體作用機制,如圖3所示。
Li 等[63]利用生物炭活化PMS 降解抗生素環(huán)丙沙星,證明生物炭表面的活性位點促進PMS 產(chǎn)生自由基。Liu 等[64]利用生物炭激活PS 有效降解BPA,降解效果與生物炭濃度呈正相關(guān),在8 mmol/L 高濃度PS 的條件下,隨著生物炭劑量從0.25 g/L 增加到2.00 g/L,120 min 內(nèi)BPA 的去除率從37.04% 提高至完全去除。Diao 等[65]研究發(fā)現(xiàn)生物炭激活PMS生成的·SO4-在BPA 降解中占主導(dǎo)地位。Annamalai等[66]發(fā)現(xiàn)生物炭可活化PS 降解甲氧芐啶,去除率最高達97%。Wang 等[67]證明生物炭能夠通過活化PMS 促進磺胺甲惡唑、BPA、硝基苯和阿特拉津等ECs 降解,在30 min 內(nèi)0.1 g/L 生物炭可有效活化0.04 mmmol/L PMS,完全去除所有目標污染物。
為提高材料表面PFRs 含量并改善多孔結(jié)構(gòu),研究者對生物炭進行摻雜或改性處理,提高了生物炭對氧化劑的催化作用。Xu 等[68]用氮摻雜方法處理生物炭,使生物炭對苯酚、對乙酰氨基酚和磺胺甲惡唑等難降解有機污染物具有較強的氧化能力和非選擇性。研究發(fā)現(xiàn)BPA 降解去除還涉及吸附、電子轉(zhuǎn)移和非自由基化合物的作用,比如碳復(fù)合材料的活化與吸附過程[69]。Rong等[70]制備了磁性生物炭(γ-Fe2O3@BC),不僅便于材料分離,同時還強化了活化PS 的催化能力,可在20 min 內(nèi)完全去除BPA,且降解速率(0.185 min-1)接近原始生物炭(0.095min-1)的2 倍。
通過耦合高級氧化與生物降解過程,能夠顯著提升有機污染物的去除效果。高級氧化產(chǎn)生強氧化自由基,能夠氧化難以生物降解的污染物。隨后,微生物能夠迅速利用并礦化可生物降解的中間體,從而更有效地完成有機污染物的去除[71-72]。研究發(fā)現(xiàn)若將微生物負載于一定載體中,可避免氧化自由基的攻擊,從而保證菌群的穩(wěn)定性和活性。早在2008年就有研究人員提出光催化氧化-生物降解直接耦合技術(shù)并證明了其可行性[73],近年來研究也已證明高級氧化-生物降解耦合技術(shù)具有協(xié)同增效作用,能有效降解并礦化氯酚、抗生素、多環(huán)芳烴等[74]。
3.3 生物炭作為微生物載體促進生物降解ECs
ECs 的生物降解法指利用從自然界中篩選分離或經(jīng)過人工培養(yǎng)得到的微生物菌群降解水環(huán)境中的ECs 的處理方法[75]。該方法主要分為生長代謝與共代謝2 種方式。生長代謝過程中,微生物直接以有機污染物作為增殖底物(碳源)和能源分解代謝獲取能量,進行生長繁殖。一些微生物還能將有機污染物作為唯一碳源利用。Hou 等[76]以BPA 作為唯一的碳源篩選降解菌,分離到1 株具有BPA 降解能力的奇異變形桿菌SQ-2,該菌株可在不依賴額外碳源的情況下有效降解BPA,在BPA 質(zhì)量濃度范圍在1~20 mg/L 內(nèi)降解效率可達66.8%~98.2%。共代謝指微生物在利用其增殖底物的同時氧化降解非增殖底物,當(dāng)某有機污染物不能直接作為微生物的生長碳源或能源時,共代謝作用便是其主要的生物降解機制[77]。Delgadillo-Mirquez 等[78]證明多環(huán)芳烴的生物降解率與共代謝作用呈正相關(guān),且與污泥厭氧消化過程中可溶性底物的吸收有關(guān)。鄭小會[79]選取了雌酮、雌醇、炔雌醇這3 種作為代表性EDCs,發(fā)現(xiàn)有NH4Cl 存在情況下3 種EDCs 的降解速率常數(shù)均大于單獨存在的情況,說明通過共代謝作用可以提高這3 種的EDCs 生物降解效果,且去除速率與硝化細菌的活性正相關(guān)。
保證微生物的數(shù)量與活性是生物降解高效去除ECs 的關(guān)鍵,而當(dāng)微生物單獨存在于污染水體時,受環(huán)境影響大導(dǎo)致易損失、易失活,進而降低微生物對ECs 的去除效果。研究發(fā)現(xiàn)使用微生物固定化技術(shù),將游離細胞附著于載體上,有利于提高微生物活性、耐毒性且固定化微生物具有更好的可重復(fù)使用性,是解決上述問題的有效途徑。1967 年,Parkhurst等[80]首次證明了炭基材料固定微生物促進有機物去除。生物炭材料作為新型載體固定化微生物去除新污染物的研究受到廣泛關(guān)注,主要可分為吸附固定法與包埋法。
1)吸附固定法。生物炭能使微生物吸附于表面或嵌入其多孔內(nèi)部結(jié)構(gòu),為微生物生長繁殖提供優(yōu)良場所。而且生物炭也能吸附ECs,有助于其表面附著的細菌捕獲溶液中的ECs、促進營養(yǎng)物質(zhì)傳輸和釋放微量元素,提高生物降解ECs 效率[81]。生物炭能通過“吸附-解吸”作用調(diào)節(jié)ECs 吸附量從而有效緩解ECs 對微生物的毒性抑制作用,以及調(diào)節(jié)酸堿度緩解細菌的酸抑制[33]。Li 等[81]發(fā)現(xiàn)生物炭可通過參與細菌生長、改變脂肪酸組成、增加基因表達量等途徑強化抗生素的生物降解效果。Zhang 等[82]發(fā)現(xiàn)在硝酸鹽降解過程中生物炭能夠通過促進反硝化功能基因(napA、nirK)和參與反硝化的電子轉(zhuǎn)移基因(napB、napC)的表達來促進硝酸鹽的去除,生物炭固定化后細菌對硝酸鹽的去除效果優(yōu)于游離細菌細胞,硝酸鹽去除過程符合零級動力學(xué)模型。Liang等[83]利用生物炭吸附固定微生物顯著促進對菲的降解,去除率[(58.15±4.90)%]遠高于游離菌處理[(38.73±3.98)%]。
由生物炭的吸附-解吸平衡可知,吸附作用一方面緩解了ECs 對微生物的毒性作用,促進生物降解;另一方面微生物降解吸附在生物炭中的ECs,生物炭解吸得到再生,恢復(fù)對ECs 吸附能力[84]。在“吸附-生物降解耦合”過程中,生物炭吸附與生物降解交替作用,可持續(xù)促進微生物對有機物的降解。Liu 等[85]和Rossi 等[86-87]研究表明生物炭與微生物的協(xié)同體系有助于形成高效的共代謝污染物降解系統(tǒng),去除三氯乙烯的效率顯著高于生物炭吸附或生物降解獨立去除三氯乙烯的效率。
將生物炭改性或與納米材料相結(jié)合能促進微生物代謝作用。Qin 等[88]以剩余污泥為生物質(zhì)制備改性生物炭作為生物覆蓋層,通過吸附和生物降解的協(xié)同作用,吸收的污染物被作為碳源消耗而去除,既提高了微生物的繁殖率,污染物的去除效果也優(yōu)于原始生物炭。Liu 等[89]將納米零價鐵(nZVI)負載于生物炭上,發(fā)現(xiàn)nZVI、生物炭、微生物之間存在相互協(xié)同作用,生物炭可作為微生物的庇護所對nZVI 產(chǎn)生的細胞毒性起到緩解作用,提高了生物降解效率。
2)包埋固定法。生物炭包埋固定法指利用高分子凝膠物質(zhì)將生物炭與生長繁殖于生物炭載體內(nèi)部的微生物包埋在內(nèi)部進行固定化。在實際應(yīng)用中,由于水環(huán)境中水流速度的不確定性與水質(zhì)的復(fù)雜性,與生物炭對微生物的松散吸附固定相比,包埋固定能進一步降低微生物損失與失活量,在提高生物降解率的同時增加材料的重復(fù)利用率[42]。
近年來,越來越多研究人員應(yīng)用生物炭-天然高分子凝膠包埋微生物。由于藻酸鹽、殼聚糖能夠聚合形成聚電解質(zhì)膜,可增強固定化菌球的穩(wěn)定性和延長使用壽命,所以利用藻酸鹽、殼聚糖與生物炭復(fù)合包埋微生物備受關(guān)注。藻酸鹽凝膠可以通過凝膠微網(wǎng)格能夠很好地嵌入生物炭中,生物炭在凝膠材料中又提高了孔隙率,降低了擴散阻力。Wang 等[42]發(fā)現(xiàn)將海藻酸鈉凝膠加入“生物炭-微生物”體系中能提高菌群的豐富度和活度,污染物降解速率提高175%。Liu 等[89]引入PVA/SA 材料,包埋固定體系在不同條件下對硝酸鹽的去除率(當(dāng)NO3-質(zhì)量濃度為100 mg/L 時,60 h 內(nèi)去除率達到98.89%)和耐受性均高于吸附固定體系(97.61%)。與吸附固定法相比,應(yīng)用包埋固定法固定化微生物更適用于原位修復(fù)[43],能更好固定附著物并緩解污染物對微生物的直接毒性作用。凝膠包埋材料也是一種良好的吸附劑,Da 等[44]研究發(fā)現(xiàn)殼聚糖材料對帶負電荷的微生物細胞壁具有很高的親和力,磁性殼聚糖對河流中BPA 的去除率可達95.9%。
4 結(jié)語與展望
“十四五”是我國實現(xiàn)“雙碳”目標的關(guān)鍵時期,也是促進綠色低碳高質(zhì)量發(fā)展的深刻變革期。隨著工業(yè)化進程不斷推進,大量ECs 不可避免地釋放入水環(huán)境。生物炭能夠通過物理化學(xué)吸附、催化高級氧化、增強生物降解等作用促進水環(huán)境中ECs 去除,將生物炭應(yīng)用于環(huán)境治理中還可以起到固碳效益,是“打好污染防治攻堅戰(zhàn),實現(xiàn)減污降碳協(xié)同效應(yīng)”的關(guān)鍵環(huán)節(jié),具有廣闊的應(yīng)用前景。
生物炭技術(shù)可以通過物理化學(xué)、氧化還原、偶聯(lián)生物法去除水環(huán)境ECs,活性位點數(shù)量有限、孔隙度結(jié)構(gòu)低是限制原始生物炭實際應(yīng)用的重要因素。對生物炭改性優(yōu)化有助于提升生物炭氧化還原能力、促進電子轉(zhuǎn)移、提高孔隙率、增加自由基,從而強化ECs 去除,是解決生物炭高效應(yīng)用的重要途徑。
同時,單一的去除方法作用效果有限,利用生物炭與其他技術(shù)的協(xié)同增效作用,探究不同方法聯(lián)用的效價與機制,將是提高ECs 去除效率的一條有效途徑。如耦合納米材料提高ECs 吸附性能、利用生物炭構(gòu)建“高級氧化-生物降解耦合技術(shù)”解決難降解ECs 去除瓶頸、改善生物炭-天然高分子凝膠包埋微生物提高體系環(huán)境適應(yīng)性等,對實現(xiàn)開發(fā)ECs 高效去除技術(shù)具有重要的理論和實踐意義,將是值得今后持續(xù)關(guān)注的重要研究方向。
參考文獻References
[1] SEMBLANTE G U,HAI F I,HUANG X,et al.Trace organic
contaminants in biosolids:impact of conventional wastewater
and sludge processing technologies and emerging alternatives
[J].Journal of hazardous materials,2015,300:1-17.
[2] LOOS R,LOCORO G,COMERO S,et al.Pan-European survey
on the occurrence of selected polar organic persistent pollutants
in ground water[J]. Water research,2010,44(14):
4115-4126.
[3] LUO Y,XU L,RYSZ M,et al. Occurrence and transport of
tetracycline,sulfonamide,quinolone,and macrolide antibiotics
in the Haihe River Basin,China[J].Environmental science amp;
technology,2011,45(5):1827-1833.
[4] ZHANG M,SHEN J L,ZHONG Y C,et al.Sorption of pharmaceuticals
and personal care products (PPCPs) from water
and wastewater by carbonaceous materials:a review[J].Critical
reviews in environmental science and technology,2022,52
(5):727-766.
[5] CHOI J,CUI M C,LEE Y,et al. Hydrodynamic cavitation
and activated persulfate oxidation for degradation of bisphenol
A:kinetics and mechanism[J]. Chemical engineering journal,
2018,338:323-332.
[6] CHENG Y X,CHEN J,WU D,et al.Highly enhanced biodegradation
of pharmaceutical and personal care products in a novel
tidal flow constructed wetland with baffle and plants[J/OL].
Water research, 2021, 193:116870[2023-08-07]. https://
doi.org/10.1016/j.watres.2021.116870.
[7] LENG L J,XIONG Q,YANG L H,et al.An overview on engineering
the surface area and porosity of biochar[J/OL].Science
of the total environment, 2021, 763:144204[2023-08-
07].https://doi.org/10.1016/j.scitotenv.2020.144204.
[8] SROCKE F,HAN L W,DUTILLEUL P,et al.Synchrotron
X-ray microtomography and multifractal analysis for the characterization
of pore structure and distribution in softwood pellet
biochar[J].Biochar,2021,3(4):671-686.
[9] KLüPFEL L,KEILUWEIT M,KLEBER M,et al. Redox
properties of plant biomass-derived black carbon( biochar)[J].
Environmental science amp; technology,2014,48(10):5601-
5611.
[10] WANG Z J,LIN Y Q,ZHOU H J,et al.Boosting persulfate
activation via paper mill sludge-based biochar for efficient degradation
of bisphenol A:inherent multiple active sites[J/OL].
Chemical engineering journal,2023,455:140795[2023-08-
07].https://doi.org/10.1016/j.cej.2022.140795.
[11] 李曉娜,張睿含,張倩影,等. 生物質(zhì)炭服務(wù)農(nóng)田生態(tài)系統(tǒng)
“碳中和” 的機制和潛力研究進展[J]. 環(huán)境科學(xué)研究,2023,
36(2):381-392.LI X N,ZHANG R H,ZHANG Q Y,et al.
Mechanisms and potential of biochar to serve‘carbon neutrality’in
agroecosystem:a review[J]. Research of environmental
sciences,2023,36(2):381-392 (in Chinese with English abstract).
[12] KASPRZYK-HORDERN B,DINSDALE R M,GUWY A J.
The occurrence of pharmaceuticals,personal care products,endocrine
disruptors and illicit drugs in surface water in South
Wales,UK[J].Water research,2008,42(13):3498-3518.
[13] YAMAZAKI E,YAMASHITA N,TANIYASU S,et al.Bisphenol
A and other bisphenol analogues including BPS and
BPF in surface water samples from Japan,China,Korea and
India[J].Ecotoxicology and environmental safety,2015,122:
565-572.
[14] MA L,LIU Y F,YANG Q,et al.Occurrence and distribution
of pharmaceuticals and personal care products (PPCPs) in
wastewater related riverbank groundwater[J/OL]. Science of
the total environment,2022,821:153372 [2023-08-07].
https://doi.org/10.1016/j.scitotenv.2022.153372.
[15] 王慧,王晨,田業(yè)超,等. 城市污水處理廠及其受納水體中典
型PPCPs 的分布特征及其生態(tài)風(fēng)險評價[J]. 環(huán)境科學(xué)學(xué)報,
2023,43(4):339-349.WANG H,WANG C,TIAN Y C,et
al.Distribution characters and ecological risk assessment of typical
PPCPs in sewage treatment plant and its receiving water
[J]. Acta scientiae circumstantiae,2023,43(4):339-349 (in
Chinese with English abstract).
[16] 楊晨,唐曉東,李晶晶,等. 雙酚A 型環(huán)氧樹脂合成技術(shù)進展
[J]. 中國塑料,2023,37(2):106-112.YANG C,TANG X D,
LI J J,et al. Research progress in synthetic technology of bisphenol-
A epoxy resin[J]. China plastics,2023,37(2):106-
112( in Chinese with English abstract).
[17] VANDENBERG L N,CHAHOUD I,HEINDEL J J,et al.
Urinary,circulating,and tissue biomonitoring studies indicate
widespread exposure to bisphenol A[J].Environmental health
perspectives,2010,118(8):1055-1070.
[18] 龔劍,黃文,楊娟,等. 珠江河流膠體中的典型內(nèi)分泌干擾物
[J]. 中國環(huán)境科學(xué),2015,35(2):617-623. GONG J,
HUANG W,YANG J,et al.Occurrence of colloid-bound endocrine-
disrupting chemicals in the Pearl River,China[J].China
environmental science,2015,35(2):617-623 (in Chinese
with English abstract).
[19] 王凌云,張錫輝,陶益. 城市污水處理廠內(nèi)分泌干擾物濃度分
布和去除規(guī)律[J]. 環(huán)境科學(xué)學(xué)報,2012,32(11):2741-2747.
WANG L Y,ZHANG X H,TAO Y.Occurrence and removal
of typical endocrine disrupting chemicals in sewage treatment
plants[J].Acta scientiae circumstantiae,2012,32(11):2741-
2747( in Chinese with English abstract).
[20] PETEFFI G P,F(xiàn)LECK J D,KAEL I M,et al.Ecotoxicological
risk assessment due to the presence of bisphenol A and caffeine
in surface waters in the Sinos River Basin - Rio Grande
do Sul - Brazil[J/OL]. Brazilian journal of biology,2019,79
(4) :712 [2023-08-07]. https://doi. org/10.1590/1519-
6984.189752.
[21] JIN H B,ZHU L Y.Occurrence and partitioning of bisphenol
analogues in water and sediment from Liaohe River Basin and
Taihu Lake,China[J].Water research,2016,103:343-351.
[22] 黃文平,鮑軼凡,胡霞林,等. 黃浦江上游水源地中31 種內(nèi)分
泌干擾物的分布特征以及生態(tài)風(fēng)險評價[J]. 環(huán)境化學(xué),
2020,39(6):1488-1495.HUANG W P,BAO Y F,HU X L,
et al. Occurrence and ecological risk assessment of 31 endocrine
disrupting chemicals in the water source of upstream
Huangpu River[J]. Environmental chemistry,2020,39(6):
1488-1495( in Chinese with English abstract).
[23] CHAKRABORTY P,SHAPPELL N W,MUKHOPADHYAY
M,et al.Surveillance of plasticizers,bisphenol A,steroids
and caffeine in surface water of River Ganga and Sundarban
wetland along the Bay of Bengal:occurrence,sources,estrogenicity
screening and ecotoxicological risk assessment[J/OL].
Water research,2021,190:116668[2023-08-07].https://doi.
org/10.1016/j.watres.2020.116668.
[24] LIBRA J A,RO K S,KAMMANN C,et al.Hydrothermal carbonization
of biomass residuals:a comparative review of the
chemistry,processes and applications of wet and dry pyrolysis
[J/OL].Biofuels,2011,2(1):71-106[2023-08-07].https://
doi.org/10.4155/bfs.10.81.
[25] ZUO W G,WANG S J,ZHOU Y X,et al.Conditional remediation
performance of wheat straw biochar on three typical Cdcontaminated
soils[J/OL]. Science of the total environment,
2023,863:160998[2023-08-07]. https://doi. org/10.1016/J.
scitotenv.2022.160998.
[26] LIANG C,SUN H W,LING C C,et al. Pyrolysis temperature-
switchable Fe-N sites in pharmaceutical sludge biochar
toward peroxymonosulfate activation for efficient pollutants
degradation[J/OL].Water research,2023,228:119328[2023-
08-07].https://doi.org/10.1016/J.watres.2022.119328.
[27] ALHELAL A,JEELANI S,RANGARI V.Elemental analysis
of spent coffee ground derived biochar using SEM/EDS
[J].Microscopy and microanalysis,2022,28(S1):648-649.
[28] ALI A H A,NI L X,SHAGHALEH H,et al.Effect of carbon
content in wheat straw biochar on N2O and CO2 emissions and
pakchoi productivity under different soil moisture conditions[J/
OL].Sustainability,2023,15(6):5100[2023-08-07].https://
doi.org/10.3390/SU15065100.
[29] KIM H B,KIM J G,KIM T,et al.Interaction of biochar stability
and abiotic aging:influences of pyrolysis reaction medium
and temperature[J/OL].Chemical engineering journal,2021,
411: 128441 [2023-08-07]. https://doi. org/10.1016/j.
cej.2021.128441.
[30] YANG X C,LIU D P,F(xiàn)U Q,et al.Characteristics of greenhouse
gas emissions from farmland soils based on a structural
equation model:regulation mechanism of biochar[J/OL].Environmental
research,2022,206:112303[2023-08-07].https://
doi.org/10.1016/J.envres.2021.112303.
[31] WANG J Y,ZHANG M,XIONG Z Q,et al. Effects of biochar
addition on N2O and CO2 emissions from two paddy soils
[J].Biology and fertility of soils,2011,47(8):887-896.
[32] 杜勇. 生物炭固定化微生物去除水中苯酚的研究[D]. 重慶:
重慶大學(xué),2012.DU Y.Study of biochar immobilized bacteria
and its phenol removal[D]. Chongqing: Chongqing University,
2012(in Chinese with English abstract).
[33] ZHAO L,XIAO D L,LIU Y,et al. Biochar as simultaneous
shelter,adsorbent,pH buffer,and substrate of Pseudomonas
citronellolis to promote biodegradation of high concentrations
of phenol in wastewater[J/OL]. Water research,2020,172:
115494 [2023-08-07]. https://doi. org/10.1016/j. watres.
2020.115494.
[34] WU J W,WANG T,WANG J W,et al. A novel modified
method for the efficient removal of Pb and Cd from wastewater
by biochar:enhanced the ion exchange and precipitation capacity
[J/OL]. Science of the total environment,2021,754:
142150 [2023-08-07]. https://doi. org/10.1016/j. scitotenv.
2020.142150.
[35] TAN X F,LIU Y G,ZENG G M,et al.Application of biochar
for the removal of pollutants from aqueous solutions[J].Chemosphere,
2015,125:70-85.
[36] FANG G D,GAO J,LIU C,et al.Key role of persistent free
radicals in hydrogen peroxide activation by biochar:implications
to organic contaminant degradation[J]. Environmental
science amp; technology,2014,48(3):1902-1910.
[37] SENTHIL C,LEE C W. Biomass-derived biochar materials
as sustainable energy sources for electrochemical energy storage
devices[J/OL]. Renewable and sustainable energy reviews,
2021,137:110464[2023-08-07]. https://doi. org/
10.1016/j.rser.2020.110464.
[38] BRAGA O,SMYTHE G A,SCHAFER A I,et al.Steroid estrogens
in primary and tertiary wastewater treatment plants[J].
Water science and technology,2005,52(8):273-278.
[39] REN Y X,NAKANO K,NOMURA M,et al. A thermodynamic
analysis on adsorption of estrogens in activated sludge
process[J].Water research,2007,41(11):2341-2348.
[40] 楊鶴云,鄭興. 高級氧化法降解有機污染物的應(yīng)用及研究進
展[J]. 水處理技術(shù),2021,47(12):13-18. YANG H Y,
ZHENG X.Application and research progress of advanced oxidation
process for degradation of organic pollutants[J].Technology
of water treatment,2021,47(12):13-18 (in Chinese
with English abstract).
[41] CAI Y F,ZHU M M,MENG X Y,et al.The role of biochar
on alleviating ammonia toxicity in anaerobic digestion of nitrogen-
rich wastes:a review[J/OL]. Bioresource technology,
2022,351:126924[2023-08-07]. https://doi. org/10.1016/J.
biortech.2022.126924.
[42] WANG W B,GONG T T,LI H,et al.The multi-process reaction
model and underlying mechanisms of 2,4,6-trichlorophenol
removal in lab-scale biochar-microorganism augmented
ZVI PRBs and field-scale PRBs performance[J/OL]. Water
research,2022,217:118422[2023-08-07]. https://doi. org/
10.1016/J.watres.2022.118422.
[43] LI R,WANG B,NIU A P,et al.Application of biochar immobilized
microorganisms for pollutants removal from wastewater:
a review[J/OL].Science of the total environment,2022,
837:155563[2023-08-07]. https://doi. org/10.1016/j. scitotenv.
2022.155563.
[44] DA S V D A A,DE F T,DA S M G C,et al.Synthesis of a
novel magnetic composite based on graphene oxide,chitosan
and organoclay and its application in the removal of bisphenol
A,17α -ethinylestradiol and triclosan[J/OL]. Journal of environmental
chemical engineering,2022,10(1):107071[2023-
08-07].https://doi.org/10.1016/j.jece.2021.10707.
[45] SHIMABUKU K K,KEARNS J P,MARTINEZ J E,et al.
Biochar sorbents for sulfamethoxazole removal from surface
water,stormwater,and wastewater effluent[J]. Water research,
2016,96:236-245.
[46] CHOUDHARY V,PHILIP L.Sustainability assessment of acid-
modified biochar as adsorbent for the removal of pharmaceuticals
and personal care products from secondary treated wastewater
[J/OL].Journal of environmental chemical engineering,
2022,10(3):107592[2023-08-07].https://doi.org/10.1016/
J.JECE.2022.107592.
[47] LUO Z R,YAO B,YANG X,et al.Novel insights into the adsorption
of organic contaminants by biochar:a review[J/OL].
Chemosphere,2022,287:132113[2023-08-07]. https://doi.
org/10.1016/J.chemosphere.2021.132113.
[48] ZHOU L,RICHARD C,F(xiàn)ERRONATO C,et al.Investigating
the performance of biomass-derived biochars for the removal of
gaseous ozone,adsorbed nitrate and aqueous bisphenol A[J/
OL]. Chemical engineering journal,2018,334:2098-2104
[2023-08-07].https://doi.org/10.1016/j.cej.2017.11.145.
[49] 張恒峰,MAWULI D,王曉昌,等. 竹基生物炭濕地基質(zhì)對雙
酚A 和磺胺甲惡唑的吸附特性研究[J]. 水處理技術(shù),2023,
49(4):67-72.ZHANG H F, MAWULI D,WANG X C,et al.
The adsorption characteristics of bisphenol A and aulfamethoxazole
onto bamboo-based biochar wetland substrates[J].Technology
of water treatment,2023,49(4): 67-72(in Chinese
with English abstract).
[50] WANG Y,WANG L,F(xiàn)ANG G D,et al. Enhanced PCBs
sorption on biochars as affected by environmental factors:humic
acid and metal cations[J/OL]. Environmental pollution,
2013,172:86-93[2023-08-07]. https://doi. org/10.1016/j.
envpol.2012.08.007.
[51] AI T,JIANG X J,LIU Q Y,et al.Daptomycin adsorption on
magnetic ultra-fine wood-based biochars from water:kinetics,
isotherms,and mechanism studies[J].Bioresource technology,
2019,273:8-15.
[52] SUN Z Q,ZHAO L,LIU C H,et al.Fast adsorption of BPA
with high capacity based on π - π electron donor-acceptor and
hydrophobicity mechanism using an in-situ sp2 C dominant Ndoped
carbon[J/OL]. Chemical engineering journal,2020,
381: 122510 [2023-08-07]. https://doi. org/10.1016/j.
cej.2019.122510.
[53] 宋澤峰,石曉倩,劉卓,等. 蘆葦生物炭的制備、表征及其吸附
銅離子與雙酚A 的性能[J]. 環(huán)境化學(xué),2020,39(8):2196-
2205.SONG Z F,SHI X Q,LIU Z,et al.Synthesis and characterization
of reed-based biochar and its adsorption properties
for Cu2+ and bisphenol A (BPA)[J]. Environmental chemistry,
2020,39(8):2196-2205 (in Chinese with English abstract).
[54] SHIN J,KWAK J,LEE Y G,et al.Competitive adsorption of
pharmaceuticals in lake water and wastewater effluent by pristine
and NaOH-activated biochars from spent coffee wastes:
contribution of hydrophobic and π-π interactions[J/OL].Environmental
pollution,2021,270:116244[2023-08-07].https://
doi.org/10.1016/J.envpol.2020.116244.
[55] SHI W,WANG H,YAN J L,et al.Wheat straw derived biochar
with hierarchically porous structure for bisphenol A removal:
preparation,characterization,and adsorption properties
[J/OL]. Separation and purification technology,2022,289:
120796 [2023-08-07]. https://doi. org/10.1016/J. SEPPUR.
2022.120796.
[56] 楊墨. 改性生物炭的制備及其對水中雙酚A 吸附研究[D]. 沈
陽:沈陽師范大學(xué),2022.YANG M.Preparation of modified
biochar and its adsorption of BPA in aqueous solution[D].
Shenyang:Shenyang Normal University,2022(in Chinese
with English abstract).
[57] VEKSHA A,PANDYA P,HILL J M.The removal of methyl
orange from aqueous solution by biochar and activated carbon
under microwave irradiation and in the presence of hydrogen
peroxide[J]. Journal of environmental chemical engineering,
2015,3(3):1452-1458.
[58] 徐祥健. 基于羥基和硫酸根自由基的高級氧化技術(shù)降解有機
污染物的研究[D]. 武漢:武漢大學(xué),2019.XU X J.Hydroxyl
radical-and sulfate radical-based advanced oxidation processes
for the removal of organic pollutants[D].Wuhan:Wuhan University,
2019( in Chinese with English abstract).
[59] SONG T H,LI G Q,HU R H,et al.Degradation of antibiotics
via UV-activated peroxodisulfate or peroxymonosulfate:a review
[J/OL]. Catalysts,2022,12(9):1025[2023-08-07].
https://doi.org/10.3390/catal12091025.
[60] GAO F,LI Y J,XIANG B. Degradation of bisphenol A
through transition metals activating persulfate process[J].Ecotoxicology
and environmental safety,2018,158:239-247.
[61] PHAM V L,KIM D G,KO S O.Advanced oxidative degradation
of acetaminophen by carbon catalysts:radical vs non-radical
pathways[J/OL]. Environmental research,2020,188:
109767 [2023-08-07]. https://doi. org/10.1016/j. envres.
2020.109767.
[62] 吳飛,任偉,程成,等. 基于生物炭的高級氧化技術(shù)降解水中
有機污染物[J]. 化學(xué)進展,2022,34(4):992-1010.WU F,
REN W,CHENG C,et al.Biochar-based advanced oxidation
processes for the degradation of organic contaminants in water
[J].Progress in chemistry,2022,34(4):992-1010( in Chinese
with English abstract).
[63] LI R,LU X K,YAN B B,et al.Sludge-derived biochar toward
sustainable peroxymonosulfate activation:regulation of active
sites and synergistic production of reaction oxygen species[J/
OL].Chemical engineering journal,2022,440:135897[2023-
08-07].https://doi.org/10.1016/J.cej.2022.135897.
[64] LIU J G,JIANG S J,CHEN D D,et al.Activation of persulfate
with biochar for degradation of bisphenol A in soil[J/OL].
Chemical engineering journal,2020,381:122637[2023-08-
07].https://doi.org/ 10.1016/j.cej.2019.122637.
[65] DIAO Z H,DONG F X,YAN L,et al.Synergistic oxidation
of bisphenol A in a heterogeneous ultrasound-enhanced sludge
biochar catalyst/persulfate process:reactivity and mechanism
[J/OL].Journal of hazardous materials,2020,384:121385[2023-
08-07].https://doi.org/10.1016/j.jhazmat.2019.121385.
[66] ANNAMALAI S,SHIN W S.Efficient degradation of trimethoprim
with ball-milled nitrogen-doped biochar catalyst via
persulfate activation[J/OL]. Chemical engineering journal,
2022,440:135815[2023-08-07]. https://doi. org/10.1016/j.
cej.2022.135815.
[67] WANG S Z,WANG J L. Bimetallic and nitrogen Co-doped
biochar for peroxymonosulfate (PMS) activation to degrade
emerging contaminants[J/OL]. Separation and purification
technology,2023,307:122807[2023-08-07].https://doi.org/
10.1016/j.seppur.2022.122807.
[68] XU L,WU C X,LIU P H,et al.Peroxymonosulfate activation
by nitrogen-doped biochar from sawdust for the efficient degradation
of organic pollutants[J/OL].Chemical engineering journal,
2020,387:124065 [2023-08-07]. https://doi. org/
10.1016/j.cej.2020.124065.
[69] JIANG S F,LING L L,CHEN W J,et al.High efficient removal
of bisphenol A in a peroxymonosulfate/iron functionalized
biochar system:mechanistic elucidation and quantification
of the contributors[J]. Chemical engineering journal,2019,
359:572-583.
[70] RONG X,XIE M,KONG L S,et al.The magnetic biochar derived
from banana peels as a persulfate activator for organic
contaminants degradation[J]. Chemical engineering journal,
2019,372:294-300.
[71] SATHISHKUMAR K,LI Y,SANGANYADO E. Electrochemical
behavior of biochar and its effects on microbial nitrate
reduction:role of extracellular polymeric substances in extracellular
electron transfer[J/OL].Chemical engineering journal,
2020,395:125077[2023-08-07]. https://doi. org/10.1016/j.
cej.2020.124065.
[72] XIONG Y,ZHANG Q,WANDELL R,et al.Synergistic 1,4-
dioxane removal by non-thermal plasma followed by biodegradation
[J].Chemical engineering journal,2019,361:519-527.
[73] MARSOLEK M D,TORRES C I,HAUSNER M,et al.Intimate
coupling of photocatalysis and biodegradation in a photocatalytic
circulating-bed biofilm reactor[J].Biotechnology and
bioengineering,2008,101(1):83-92.
[74] 于博洋,崔曉春,曹野,等. 高級氧化-生物降解近場耦合技術(shù)
研究現(xiàn)狀與展望[J]. 土木與環(huán)境工程學(xué)報(中英文),2021,
43(4):108-117.YU B Y,CUI X C,CAO Y,et al.Research
status and prospects of intimately coupled advanced oxidization
and biodegradation[J].Journal of civil and environmental
engineering,2021,43(4):108-117 (in Chinese with English
abstract).
[75] 郭楚玲,鄭天凌,洪華生. 多環(huán)芳烴的微生物降解與生物修
復(fù)[J]. 海洋環(huán)境科學(xué),2000,19(3):24-29. GUO C L,
ZHENG T L,HONG H S. Biodegradattion and bioremediation
of polycyclic aromatic hydrocarbons[J]. Marine environmental
science,2000,19(3):24-29 (in Chinese with English
abstract).
[76] HOU S Y,YANG P. BPA biodegradation driven by isolated
strain SQ-2 and its metabolism mechanism elucidation[J/OL].
Biochemical engineering journal,2022,185:108540[2023-08-
07].https://doi.org/10.1016/j.bej.2022.108540.
[77] LEADBETTER E R,F(xiàn)OSTER J W. Oxidation products
formed from gaseous alkanes by the bacterium Pseudomonas
methanica[J].Archives of biochemistry and biophysics,1959,
82(2):491-492.
[78] DELGADILLO-MIRQUEZ L,LARDON L,STEYER J P,
et al. A new dynamic model for bioavailability and cometabolism
of micropollutants during anaerobic digestion[J]. Water
research,2011,45(15):4511-4521.
[79] 鄭小會. 硝化污泥共代謝內(nèi)分泌干擾物試驗研究[D]. 西安:
西安建筑科技大學(xué),2011.ZHENG X H.A study on cometabolism
of selected endocrine disrupting compounds in nitrifying
activated sludge[D].Xi’an:Xi’an University of Architecture
and Technology,2011( in Chinese with English abstract).
[80] PARKHURST J D,DRYDEN F D,MCDERMOTT G N,et
al.Pomona activated carbon pilot plant[J].Journal - water pollution
control federation,1967,39(10):70-81.
[81] LI M,YIN H,ZHU M H,et al.Co-metabolic and biochar-promoted
biodegradation of mixed PAHs by highly efficient microbial
consortium QY1[J].Journal of environmental sciences,
2021,107:65-76.
[82] ZHANG W,SHEN J N,ZHANG H F,et al.Efficient nitrate
removal by Pseudomonas mendocina GL6 immobilized on biochar
[J/OL].Bioresource technology,2021,320:124324[2023-
08-07].https://doi.org/10.1016/j.biortech.2020.124324.
[83] LIANG J D,WU Z J,TENG T T.Biochar prepared from Ferich
sludge as suitable microbial carriers for facilitating biodegradation
of phenanthrene in soi[l J].Journal of chemical technology
amp; biotechnology,2021,96(7):2014-2021.
[84] SAIDULU D,GUPTA B,GUPTA A K,et al.A review on
occurrences,eco-toxic effects,and remediation of emerging
contaminants from wastewater:special emphasis on biological
treatment based hybrid systems[J/OL]. Journal of environmental
chemical engineering,2021,9(4):105282[2023-08-
07].https://doi.org/10.1016/j.jece.2021.105282.
[85] LIU Y,CHEN H,ZHAO L,et al.Enhanced trichloroethylene
biodegradation:roles of biochar-microbial collaboration beyond
adsorption[J/OL]. Science of the total environment,
2021,792:148451[2023-08-07].https://doi.org/https://doi.
org/10.1016/j.scitotenv.2021.148451.
[86] ROSSI M M,MATTURRO B,AMANAT N,et al.Coupled
adsorption and biodegradation of trichloroethylene on biochar
from pine wood wastes:a combined approach for a sustainable
bioremediation strategy[J/OL].Microorganisms,2022,10(1):
101 [2023-08-07]. https://doi. org/10.3390/microorganisms10010101.
[87] ROSSI M M,ALFANO S,AMANAT N,et al.A polyhydroxybutyrate
(PHB)-biochar reactor for the adsorption and biodegradation
of trichloroethylene:design and startup phase[J/OL].
Bioengineering,2022,9(5):192[2023-08-07].https://doi.org/
10.3390/bioengineering9050192.
[88] QIN L B,HUANG X M,XUE Q,et al.In-situ biodegradation
of harmful pollutants in landfill by sludge modified biochar used
as biocover[J/OL].Environmental pollution,2020,258:113710
[2023-08-07].https://doi.org/10.1016/j.envpol.2019.113710.
[89] LIU X H,WEI J,WU Y D,et al. Performances and mechanisms
of microbial nitrate removal coupling sediment-based
biochar and nanoscale zero-valent iron[J/OL]. Bioresource
technology,2022,345:126523[2023-08-07].https://doi.org/
10.1016/j.biortech.2021.126523.
(責(zé)任編輯:邊書京)