摘要:目的 分析1株多黏菌素和替加環(huán)素均耐藥的肺炎克雷伯菌基因組特征。方法 肺炎克雷伯菌KP2016分離自我院臨床痰液標(biāo)本。采用微量肉湯稀釋法測(cè)定KP2016對(duì)亞胺培南、美羅培南、多黏菌素和替加環(huán)素的最低抑菌濃度。對(duì)菌株進(jìn)行第二代Illumina和第三代Oxford Nanopore全基因組測(cè)序。通過(guò)Unicycler對(duì)第二代和第三代序列進(jìn)行混合拼接。通過(guò)ABRicate v0.8.13調(diào)用Resfinder數(shù)據(jù)庫(kù)分析耐藥基因。通過(guò)ISFinder分析移動(dòng)元件。利用CGE(Center for Genomic Epidemiology)網(wǎng)站分析菌株的ST型和質(zhì)粒復(fù)制子類(lèi)型。利用Proksee對(duì)質(zhì)粒結(jié)構(gòu)進(jìn)行可視化。結(jié)果 KP2016菌株對(duì)多黏菌素和替加環(huán)素均耐藥,MIC分別為512和16 mg/L。MLST分析顯示KP2016屬于ST656,攜帶多黏菌素耐藥相關(guān)mcr-1和mcr-8基因和替加環(huán)素耐藥相關(guān)tmexCD1-toprJ1基因簇。KP2016攜帶1個(gè)染色體和5個(gè)環(huán)形質(zhì)粒,質(zhì)粒大小3,991~275,345 bp,GC含量44.35%~52.20%。mcr-1基因位于約44 kb的質(zhì)粒p1上,上下游環(huán)境為ISKpn26-mcr-1-pap2-ISApl1;mcr-8基因位于IncR/IncN型質(zhì)粒p2上,遺傳結(jié)構(gòu)為ISEcl1-mcr-8-orf-ISKpn26;tmexCD1-toprJ1基因簇結(jié)構(gòu)為IS26-tnfxB1-tmexC1-tmexcD1-toprJ1。此外,菌株還攜帶多黏菌素耐藥相關(guān)的染色體介導(dǎo)的CrrB突變(L204V、V237I)。結(jié)論 肺炎克雷伯菌KP2016多黏菌素耐藥由mcr-1、mcr-8和crrB突變介導(dǎo),替加環(huán)素耐藥由tmexCD1-toprJ1基因簇介導(dǎo)。應(yīng)加強(qiáng)合理監(jiān)測(cè),防止其在醫(yī)療機(jī)構(gòu)中進(jìn)一步傳播。
關(guān)鍵詞:肺炎克雷伯菌;全基因組測(cè)序;多黏菌素;替加環(huán)素;質(zhì)粒結(jié)構(gòu)
中圖分類(lèi)號(hào):R978.1 文獻(xiàn)標(biāo)志碼:A
Investigation of the characterization of polymyxin- and tigecycline-resistant Klebsiella pneumoniae based on whole genome sequencing
Zhou Yanxia1 and Guo Hui1
(1 Department of Clinical Laboratory, Jinhua People’s Hospital, Jinhua 321000)
Abstract Objective This study aimed to investigate the genomic feature of one Klebsiella pneumoniae strain that was resistant to polymyxin and tigecycline. Methods K. pneumoniae KP2016 was isolated from clinical sputum samples from our hospital. The minimum inhibitory concentrations of KP2016 against imipenem, meropenem, polymyxin and tigecycline were determined by the broth microdilution method. The second generation of Illumina and the third generation of Oxford Nanopore whole-genome sequencing were performed. Hybrid assembly of second- and third-generation sequences was performed by Unicycler. ABRicate v0.8.13 was used to analyze drug resistance genes with the Resfinder database. Mobile elements were analyzed via ISFinder. The ST type and plasmid replicon type of the strain were analyzed using the CGE (Center for Genomic Epidemiology) website. Plasmid structures were visualized using Proksee. Results The KP2016 strain was resistant to polymyxin and tigecycline, with MICs of 512 and 16 mg/L, respectively. MLST analysis showed KP2016 belonged to ST656, carrying the polymyxin resistance-related mcr-1 and mcr-8 genes and the tigecycline resistance-related tmexCD1-toprJ1 gene cluster. KP2016 carried one chromosome and five circular plasmids; the size of the plasmid was 3,991~275,345 bp, and the GC content was 44.35%~52.20%. The mcr-1 gene was located on the plasmid p1 of about 44 kb size, and the upstream and downstream environment was ISKpn26-mcr-1-pap2-ISApl1; the mcr-8 gene was located on the IncR/IncN type plasmid p2, and the genetic structure was ISEcl1-mcr-8-orf-ISKpn26; the structure of the tmexCD1-toprJ1 gene cluster was IS26-tnfxB1-tmexC1-tmexcD1-toprJ1. In addition, the strain also carried chromosomal-mediated CrrB mutations (L204V, V237I) related to polymyxin resistance. Conclusion The polymyxin resistance of KP2016 was mediated by mcr-1, mcr-8 and crrB mutations, and the tigecycline resistance was mediated by the tmexCD1-toprJ1 gene cluster. Reasonable surveillance should be strengthened to prevent its further spread in healthcare settings.
Key words Klebsiella pneumoniae; Whole-genome sequencing; Polymyxin; Tigecycline; Plasmid structure
肺炎克雷伯菌(Klebsiella pneumoniae)是最常見(jiàn)的機(jī)會(huì)致病菌之一。它通常會(huì)引起各種醫(yī)院獲得性感染,包括呼吸道感染、尿路感染和血流感染,這對(duì)全球臨床環(huán)境構(gòu)成了新的挑戰(zhàn)[1]。重要的是,廣泛耐藥肺炎克雷伯菌的出現(xiàn)和傳播嚴(yán)重限制了抗菌藥物的有效使用,導(dǎo)致治療選擇受限,它的臨床治療主要依賴于最后一線抗感染藥物,如多黏菌素和替加環(huán)素[2]。然而,肺炎克雷伯菌可能會(huì)產(chǎn)生一系列導(dǎo)致對(duì)多黏菌素和替加環(huán)素耐藥的因素,包括染色體耐藥相關(guān)基因突變或獲得質(zhì)粒介導(dǎo)的耐藥基因[3]。因此,研究對(duì)多黏菌素和替加環(huán)素耐藥的菌株基因組特征和結(jié)構(gòu)具有重要意義。
1 材料與方法
1.1 菌株來(lái)源
肺炎克雷伯菌KP2016分離自我院臨床痰液標(biāo)本。大腸埃希菌ATCC25922購(gòu)自美國(guó)菌種保藏中心。
1.2 儀器和試劑
儀器:二代Illumina測(cè)序儀(深圳華大基因科技有限公司);三代Oxford測(cè)序儀(深圳華大基因科技有限公司);-80 ℃低溫冰箱(美國(guó)Thermo Scientific);NanoDrop 2000分光光度計(jì)(美國(guó)Nano Drop "Technologies);基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜MALDI-TOF質(zhì)譜儀(法國(guó)Bio Mérieux)。
試劑:美羅培南(0.5 g,國(guó)藥準(zhǔn)字H20093466,上海上藥新亞藥業(yè)有限公司);亞胺培南(1.0 g,國(guó)藥準(zhǔn)字H20084019,大連美侖生物技術(shù)有限公司);多黏菌素(1.0 g,美國(guó)Sigma公司);替加環(huán)素(1.0 g,美國(guó)Sigma公司);E-test藥敏試條(法國(guó)BioMérieux公司);MH肉湯(英國(guó)Oxoid公司);比濁儀(法國(guó)BioMérieux公司);Brain Heart Infusion(BHI)肉湯粉(英國(guó)Oxoid公司);氯化鈉(上海生工生物工程有限公司);QIAamp DNA提取試劑盒(德國(guó)Qiagen公司);Gentra? Puregene? Yeast/Bact. Kit(德國(guó)Qiagen公司);蛋白酶K(德國(guó)Qiagen公司);SQU-LSK109 Ligation Sequencing kit(英國(guó)Oxford Nanopore Technologies公司);EXP-NBD104免擴(kuò)增條形碼擴(kuò)展包(英國(guó)Oxford Nanopore Technologies公司)。
分析軟件:測(cè)序原始數(shù)據(jù)拼接和相關(guān)分析在華大公司進(jìn)行。
1.3 菌株分離、鑒定和藥敏
KP2016分離自檢驗(yàn)科常規(guī)臨床診斷。利用MALDI-TOF質(zhì)譜儀對(duì)菌種進(jìn)行鑒定,利用MALDI-TOF質(zhì)譜儀對(duì)菌種進(jìn)行鑒定。
1.4 微量肉湯稀釋法測(cè)定藥物敏感性
采用微量肉湯稀釋法測(cè)定KP2016對(duì)亞胺培南、美羅培南、多黏菌素和替加環(huán)素的最低抑菌濃度。將細(xì)菌接種于MH平板上過(guò)夜培養(yǎng),用0.85%的生理鹽水調(diào)至1.5×108 CFU/mL左右并將菌液稀釋20倍;在無(wú)菌環(huán)境下打開(kāi)96孔板,在縱向第一孔內(nèi)加入200 μL含藥陽(yáng)離子調(diào)節(jié)MH肉湯(CAMHB),其余孔內(nèi)分別加入100 μL CAMHB,倍比稀釋至最后一孔,棄去最后孔內(nèi)的100 μL液體;吸取10 μL稀釋后菌液于96孔板中,37 ℃培養(yǎng)箱中過(guò)夜培養(yǎng)。藥敏結(jié)果根據(jù)美國(guó)臨床和實(shí)驗(yàn)室標(biāo)準(zhǔn)化協(xié)會(huì)CLSI 2021標(biāo)準(zhǔn)判讀。質(zhì)控菌株為大腸埃希菌ATCC25922。注意:CLSI推薦微量肉湯稀釋法為檢測(cè)多黏菌素敏感性的金標(biāo)準(zhǔn),檢測(cè)時(shí)需要配置鈣調(diào)陽(yáng)離子肉湯;進(jìn)行替加環(huán)素藥敏時(shí)需在避光條件下進(jìn)行。
1.5 第二代Illumina和第三代Oxford Nanopore測(cè)序
利用Qiagen二代基因組提取試劑盒提取KP2016菌株基因組DNA,NanoDrop 2000測(cè)定DNA濃度,A260/A280應(yīng)大于1.8。質(zhì)檢合格的DNA在Illumina HiSeq X Ten平臺(tái)進(jìn)行2×150 bp讀長(zhǎng)測(cè)序。進(jìn)一步使用Gentra?Puregene?Yeast/Bact. Kit對(duì)DNA進(jìn)行提取,DNA質(zhì)量用NanoDrop 2000和Qubit 4.0熒光定量?jī)x進(jìn)行質(zhì)檢,用SQU-LSK109連接測(cè)序試劑盒和EXP-NBD104免擴(kuò)增條形碼擴(kuò)展包進(jìn)行文庫(kù)構(gòu)建,質(zhì)檢合格后,通過(guò)GridION X5進(jìn)行測(cè)序。
1.6 生物信息學(xué)分析
通過(guò)Unicycler對(duì)二代和三代序列進(jìn)行混合拼接。通過(guò)ABRicate v0.8.13調(diào)用Resfinder數(shù)據(jù)庫(kù)分析耐藥基因[4],通過(guò)ISFinder分析移動(dòng)元件[5]。利用CGE(Center for Genomic Epidemiology)網(wǎng)站分析菌株的ST型和質(zhì)粒復(fù)制子類(lèi)型。利用Proksee(https://proksee.ca/projects)對(duì)質(zhì)粒結(jié)構(gòu)進(jìn)行可視化。
2 結(jié)果
2.1 藥敏結(jié)果
KP2016菌株對(duì)多黏菌素和替加環(huán)素均耐藥,MIC分別為512和16 mg/L,而對(duì)亞胺培南和美羅培南敏感,MIC分別為1和2 mg/L。
2.2 ST型、耐藥基因和耐藥基因相關(guān)突變分析
MLST分析顯示KP2016屬于ST656(gapA-infB-mdh-pgi-phoE-rpoB-tonB:4-4-1-1-7-4-4)。耐藥基因分析顯示KP2016攜帶β-內(nèi)酰胺類(lèi)(blaSHV-187、blaTEM-1B和blaDHA-1)、氨基糖苷類(lèi)[strAB、aph(3’ )-Ia、aph(4)-Ia、aac(3)-IV、aadA1、aadA2和armA]、大環(huán)內(nèi)酯[mph(A)、msr(E)和mph(E)]、磺胺類(lèi)藥物(sul1和sul3),喹諾酮類(lèi)(qnrB4)、苯酚(cmlA1)、多黏菌素(mcr-1和mcr-8)和四環(huán)素或替加環(huán)素[tet(A)、tet(M)和tmexCD1-toprJ1]。此外,檢測(cè)到賦予對(duì)氟喹諾酮類(lèi)藥物耐藥性的GyrA(S83I)和ParC(S80I)突變和多黏菌素耐藥相關(guān)的CrrB突變(L204V、V237I)。
2.3 染色體和質(zhì)粒攜帶情況
KP2016攜帶一個(gè)染色體和5個(gè)環(huán)形質(zhì)粒,質(zhì)粒大小3,991~275,345 bp,GC含量44.35%~52.20%。p1-p4攜帶不同的耐藥基因。其中,替加環(huán)素耐藥相關(guān)外排泵編碼基因tmexCD1-toprJ1位于p4質(zhì)粒上,mcr-8位于p2質(zhì)粒上,mcr-1位于p1質(zhì)粒上(表1)。
2.4 mcr-1質(zhì)粒特征
mcr-1基因位于約44 kb的質(zhì)粒p1上,GC含量為44.57%,屬于IncX1型質(zhì)粒。在結(jié)構(gòu)上,發(fā)現(xiàn)mcr-1基因的上下游環(huán)境為ISKpn26-mcr-1-pap2-ISApl1(圖1A)。除了mcr-1之外,在質(zhì)粒p1上還發(fā)現(xiàn)了四環(huán)素耐藥基因tet(M)。此外,由于存在完整的vir操縱子,質(zhì)粒p1攜帶IV型分泌系統(tǒng)相關(guān)基因。
2.5 mcr-8質(zhì)粒特征
mcr-8基因位于具有IncR/IncN型復(fù)制子的多復(fù)制子質(zhì)粒p2上。mcr-8周?chē)鷧^(qū)域的遺傳結(jié)構(gòu)為ISEcl1-mcr-8-orf-ISKpn26(圖2),與數(shù)據(jù)庫(kù)中pMCR8_095845(CP031883)、pD120-1(CP034679)和pMCR8_020135(CP037964)的mcr-8區(qū)域結(jié)構(gòu)相同。此外,質(zhì)粒p2上攜帶3個(gè)拷貝的同方向的IS903B,分別位于ISEcl1-mcr-8-orf-ISKpn26遺傳結(jié)構(gòu)較遠(yuǎn)的上游和下游。
2.6 替加環(huán)素耐藥相關(guān)機(jī)制
研究發(fā)現(xiàn),p4質(zhì)粒上攜帶一個(gè)與替加環(huán)素耐藥相關(guān)的基因簇-tmexCD1-toprJ1。基因簇上游存在一個(gè)拷貝IS26,結(jié)構(gòu)為IS26-tnfxB1-tmexC1-tmexcD1-toprJ1(圖3),其中tnfxB1-tmexCD1-toprJ1基因簇的負(fù)調(diào)控因子。IS26-tnfxB1-tmexC1-tmexcD1-toprJ1結(jié)構(gòu)與其他文獻(xiàn)中報(bào)道的tmexCD1-toprJ1上下游結(jié)構(gòu)相同,且上游的插入序列IS26可以介導(dǎo)tmexCD1-toprJ1基因簇的轉(zhuǎn)移。
3 討論
多黏菌素和替加環(huán)素通常在體外和體內(nèi)對(duì)重癥患者具有很好的活性,尤其是產(chǎn)碳青霉烯酶的肺炎克雷伯菌[6-7]。然而,臨床上逐漸出現(xiàn)了對(duì)多黏菌素和替加環(huán)素耐藥的菌株,導(dǎo)致治療選擇受到限制。本研究中的菌株雖然對(duì)碳青霉烯類(lèi)藥物敏感,若進(jìn)一步通過(guò)接合獲得攜帶碳青霉烯耐藥基因(如blaKPC-2或blaNDM-1)的質(zhì)粒,將導(dǎo)致此菌株變?yōu)閷?duì)臨床上多種重要抗菌藥物耐藥的“超級(jí)細(xì)菌”,具有巨大的潛在危害。
多黏菌素耐藥性的潛在機(jī)制通常由染色體突變(mgrB、phoP/phoQ、pmrA/pmrB和crrAB)以及質(zhì)粒相關(guān)的mcr-1及其變體(mcr-2至mcr-10)介導(dǎo)[8]。本研究存在染色體突變相關(guān)的crrAB " " " " " " " " " " " " " " " " " " " 和質(zhì)粒介導(dǎo)的mcr-1及mcr-8共存?;跀y帶mcr-8的質(zhì)粒的遺傳背景,筆者認(rèn)為IS903B可能在ISEcl1-mcr-8-orf-ISKpn26區(qū)域的移動(dòng)中發(fā)揮重要作用,因?yàn)?個(gè)拷貝的IS903B也位于pD120-1(Genbank號(hào):CP034679,分離自四川豬糞便標(biāo)本的Klebsiella quasipneumoniae)和pMCR8_020135(Genbank號(hào):CP037964,分離自四川患者標(biāo)本的肺炎克雷伯菌)上的mcr-8側(cè)翼區(qū)域。此外,替加環(huán)素也被認(rèn)為是治療多重耐藥肺炎克雷伯菌感染的少數(shù)藥物之一。然而,隨著這種抗生素在臨床上的廣泛使用,替加環(huán)素耐藥腸桿菌目細(xì)菌越來(lái)越多。替加環(huán)素耐藥機(jī)制與核糖體(rpsJ基因)和質(zhì)粒介導(dǎo)的移動(dòng)耐藥基因[tet(X)變體、tet(A)和tet(M)基因]突變有關(guān)[9]。近年來(lái)報(bào)道了外排泵tmexCD1-toprJ1基因簇,其可導(dǎo)致臨床菌株對(duì)一些藥物(如:替加環(huán)素)的耐藥,與對(duì)照相比,獲得含有tmexCD1-toprJ1的質(zhì)??蓪?dǎo)致替加環(huán)素的敏感性大大降低[10-11]。鑒于此,本研究中的菌株替加環(huán)素耐藥機(jī)制主要為攜帶tmexCD1-toprJ1基因簇。鑒于其上游存在一個(gè)拷貝的IS26,猜測(cè)此替加環(huán)素耐藥相關(guān)基因簇可能是由IS26介導(dǎo)插入的[10,12]。重要的是,許多研究只報(bào)道了肺炎克雷伯菌中mcr-8和tmexCD1-toprJ1的共存[13-14],而本研究中除了攜帶上述兩種耐藥基因外,還攜帶質(zhì)粒介導(dǎo)的mcr-1。
總之,本文報(bào)告了1株對(duì)多黏菌素和替加環(huán)素同時(shí)耐藥的菌株。多黏菌素耐藥由mcr-1、mcr-8和crrB突變介導(dǎo),替加環(huán)素耐藥由tmexCD1-toprJ1基因簇介導(dǎo)。此類(lèi)菌株的出現(xiàn)將導(dǎo)致臨床治療選擇更加受限。因此,應(yīng)加強(qiáng)合理監(jiān)測(cè),防止此類(lèi)多黏菌素和替加環(huán)素耐藥的肺炎克雷伯菌在醫(yī)療機(jī)構(gòu)中進(jìn)一步傳播。
參 考 文 獻(xiàn)
Gorrie C L, Mirceta M, Wick R R, et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen[J]. Nat Commun, 2022, 13(1): 3017.
Zhou Y F, "Liu P, "Dai S H, et al. Activity of tigecycline or colistin in combination with zidovudine against Escherichia coli harboring tet(X) and mcr-1[J]. Antimicrob Agents Chemother, 2020, 65(1): e01172-20.
Cai X, Yang Z, Dai J, et al. Pharmacodynamics of tigecycline alone and in combination with colistin against clinical isolates of multidrug-resistant Acinetobacter baumannii in an in vitro pharmacodynamic model[J]. Int J Antimicrob Agents, 2017, 49(5): 609-616.
Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes[J]. J Antimicrob Chemother. 2012, 67(11): 2640-2644.
Siguier P, Perochon J, Lestrade L, et al. ISfinder: the reference centre for bacterial insertion sequences[J]. Nucleic Acids Res, 2006, 34(1): D32-6.
Mmatli M, Mbelle N M, Maningi N E, et al. Emerging transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in Enterobacteriaceae: A systematic review of current reports[J]. mSystems, 2020, 5(6): e00783-20.
Sun J, Chen C, Cui C Y, et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli[J]. Nat Microbiol, 2019, 4(9): 1457-1464.
Quan J, Li X, Chen Y, et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: A multicentre longitudinal study[J]. Lancet Infect Dis, 2017, 17(4): 400-410.
Xu J, Zhu Z, Chen Y, et al. The plasmid-borne tet(A) gene is an important factor causing tigecycline resistance in ST11 carbapenem-resistant Klebsiella pneumoniae under selective pressure[J]. Front Microbiol, 2021, 12(24): 644949.
Wan M, Gao X, Lv L, et al. IS26 Mediates the acquisition of tigecycline resistance gene cluster tmexCD1-toprJ1 by IncHI1B-FIB plasmids in Klebsiella pneumoniae and Klebsiella quasipneumoniae from food market sewage[J]. Antimicrob Agents Chemother, 2021, 65(3): e02178-20.
Lv L, Wan M, Wang C, et al. Emergence of a plasmid-encoded resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae[J]. mBio, 2020, 11(2): e02930-19.
Harmer C J, Hall R M. IS26-mediated formation of transposons carrying antibiotic resistance genes[J]. mSphere, 2016, 1(2): e00038-16.
Sun S, Gao H, Liu Y, et al. Co-existence of a novel plasmid-mediated efflux pump with colistin resistance gene mcr in one plasmid confers transferable multidrug resistance in Klebsiella pneumoniae[J]. Emerg Microbes Infect, 2020, 9(1): 1102-1113.
Wang X, Wang Y, Jiang X, et al. Co-transfer of mcr-8 with blaNDM-1 or tmexCD1-toprJ1 by plasmid hybridisation[J]. Int J Antimicrob Agents, 2022, 60(2): 106619.