亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        MmpL蛋白功能及其抑制劑研究進(jìn)展

        2024-01-01 00:00:00崔嘉偉豆梁丁趙西林王岱
        中國抗生素雜志 2024年6期

        摘要:MmpL(Mycobacterial membrane protein large,MmpL)蛋白是結(jié)核分枝桿菌的一類重要外排泵轉(zhuǎn)運(yùn)蛋白,主要參與底物轉(zhuǎn)運(yùn),也能介導(dǎo)耐藥發(fā)生,是潛在的抗結(jié)核靶點(diǎn)。本文從MmpL蛋白的結(jié)構(gòu)與功能、耐藥機(jī)制、蛋白抑制劑等方面進(jìn)行綜述,旨在為MmpL蛋白的功能研究及分枝桿菌的新藥研發(fā)提供參考建議。

        關(guān)鍵詞:分枝桿菌;MmpL蛋白;耐藥機(jī)制;蛋白抑制劑

        中圖分類號(hào):Q932,R978.1 文獻(xiàn)標(biāo)志碼:A

        Review on function and inhibitor of mycobacterial MmpL proteins

        Cui Jiawei, Dou Liangding, Zhao Xilin, and Wang Dai

        (Department of Experimental Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics,

        Xiamen University, Xiamen 361102)

        Abstract Mycobacterial membrane protein large (MmpL) is an important type of efflux pump transporter in Mycobacterium tuberculosis that involves substrate transport and antibiotic resistance, thus being a potential target for anti-tuberculosis. The structure, function, antibiotic resistance and inhibitors of the MmpL proteins were reviewed with the purpose of providing suggestions for exploration of MmpL function and the development of new anti-mycobacteria agents.

        Key words Mycobacterium tuberculosis; MmpL protein; Antibiotic resistance; Protein inhibitor

        結(jié)核病是由結(jié)核分枝桿菌(Mycobacterium tuberculosis, Mtb)引起的一種慢性呼吸道傳染性疾病[1]。結(jié)核桿菌主要通過感染肺部致病[2],也能夠侵入身體其他部位,如肝、脾、淋巴結(jié)、骨骼等,導(dǎo)致多器官感染[3-4]。結(jié)核病的臨床主要癥狀為長期發(fā)熱、咳嗽(咳痰甚至咳血)、胸痛、乏力、消瘦等[5-6]。針對(duì)結(jié)核桿菌的抗菌藥物治療是目前治療結(jié)核病的主要手段[7],但由于結(jié)核桿菌日益嚴(yán)峻的耐藥問題,治療效果越來越不理想[8]。

        結(jié)核桿菌是一種革蘭陽性菌,具有高度的耐酸性和耐藥性,能夠在人體內(nèi)長期存活與繁殖[9-11]。目前針對(duì)結(jié)核桿菌的常規(guī)治療藥物包括異煙肼(isoniazid)、利福平(rifampicin)、吡嗪酰胺(pyrazinamide)和乙胺丁醇(ethambutol)等[12-13]。治療期間藥物中斷引起的結(jié)核病復(fù)發(fā)和抗菌藥物長時(shí)間治療會(huì)導(dǎo)致細(xì)菌產(chǎn)生耐藥性[14]。

        近幾十年來,隨著耐多藥結(jié)核?。╩ultidrug-resistant tuberculosis,MDR-TB)、廣泛耐藥結(jié)核病(extensively drug-resistant tuberculosis,XDR-TB)和泛耐藥結(jié)核?。╬olydrug-resistant tuberculosis,PDR-TB)菌株的出現(xiàn)[15],臨床可選擇藥物越來越少和嚴(yán)重耐藥問題已成為結(jié)核病抗感染治療的難點(diǎn)與挑戰(zhàn)。根據(jù)世界衛(wèi)生組織《2022年全球結(jié)核病報(bào)告》,2021年估計(jì)有1060萬人患結(jié)核病,患病人數(shù)比2020年增加4.5%,共有160萬人死于結(jié)核病(包括18.7萬艾滋病毒陽性者);2020—2021年,耐藥結(jié)核病負(fù)擔(dān)增加了3%[16]。

        結(jié)核桿菌的耐藥機(jī)制主要包括細(xì)胞壁和細(xì)胞膜結(jié)構(gòu)異常、生物被膜、藥物代謝酶失活、作用靶點(diǎn)改變、細(xì)胞外排泵(efflux pumps, EPs)過度表達(dá)[17-18]。近年發(fā)現(xiàn),同一菌群內(nèi)部存在異質(zhì)性耐藥現(xiàn)象,促使人們研究耐藥結(jié)核桿菌的產(chǎn)生和發(fā)展過程。例如,2023年Desikan等[19]用GenoType MTBDRplus, VER 2.0技術(shù)在印度中部的11,788份結(jié)核桿菌樣本中,檢測(cè)到637(5.4%)個(gè)樣本存在異質(zhì)性抗藥性,其中針對(duì)rpoB、katG和inhA基因,分別檢測(cè)到了413(64.8%)、163(25.5%)和61(9.5%)個(gè)樣本存在結(jié)核桿菌異質(zhì)性抗藥性。

        本文將對(duì)結(jié)核桿菌細(xì)胞膜上外排泵蛋白MmpL的結(jié)構(gòu)、功能、介導(dǎo)的耐藥機(jī)制以及外排泵抑制劑的研究進(jìn)展進(jìn)行綜述。

        1 分枝桿菌外排泵蛋白

        外排泵是主動(dòng)跨細(xì)菌包膜轉(zhuǎn)運(yùn)各種化合物的膜蛋白[20-21],根據(jù)其能量和結(jié)構(gòu)特點(diǎn),被分為不同的超家族:ATP結(jié)合盒式轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette,ABC)、主要易化子超家族(major facilitator superfamily)、小多重耐藥家族(small multidrug resistance)、多藥和有毒物質(zhì)外排家族(multidrug and toxic compound extrusion family)以及耐結(jié)節(jié)細(xì)胞分裂家族(resistance nodulation cell division,RND)[22]。目前研究結(jié)果表明,ABC超家族是主要轉(zhuǎn)運(yùn)蛋白,利用ATP水解的能量發(fā)揮轉(zhuǎn)運(yùn)功能[23],而其他轉(zhuǎn)運(yùn)蛋白則利用跨膜質(zhì)子動(dòng)力發(fā)揮作用[24]。雖然外排泵排出藥物或毒素的重要功能已廣為人知,但外排泵的底物還包括糖、脂質(zhì)、蛋白質(zhì)、宿主防御分子和細(xì)菌毒力因子等[25-26]。這種底物異質(zhì)性使細(xì)菌的不同外排泵蛋白在耐藥性、毒力和細(xì)菌細(xì)胞生理學(xué)等方面發(fā)揮著不同的作用[27]。

        ABC轉(zhuǎn)運(yùn)蛋白基因大量存在于結(jié)核桿菌基因組中(占基因組總量的2.5%)。這些轉(zhuǎn)運(yùn)蛋白能夠通過復(fù)雜的分枝桿菌細(xì)胞壁參與營養(yǎng)物質(zhì)、肽、脂質(zhì)、離子和有害物質(zhì)(其中一些是抗生素)的攝取和分泌[28-29]。迄今為止,ABC轉(zhuǎn)運(yùn)蛋白被證明參與結(jié)核桿菌的多種藥物轉(zhuǎn)運(yùn),如Rv0194、Rv1218c、DrrAB、Rv2688c、PstB、Rv1218c、Rv2686c-Rv2687c-Rv2688c Rv1456c-Rv1457c-Rv1458c和Rv1473[30-35]。

        一些編碼主要易化子超家族轉(zhuǎn)運(yùn)蛋白的基因與耐藥相關(guān):恥垢分枝桿菌的LfrA外排泵是分枝桿菌中第一個(gè)被描述的外排泵,與喹諾酮類藥物、溴乙啶和吖啶黃素的耐藥性相關(guān)。Rv1258c外排泵與大觀霉素耐藥性相關(guān),Rv1410c基因與鏈霉素和四環(huán)素耐藥性相關(guān),Rv0191基因與氯霉素耐藥性相關(guān),Rv0842、Rv0876c、Rv2209等與RIF的耐藥性相關(guān)[36-43]。

        小多重耐藥家族中只有一種蛋白質(zhì),即Rv3065,與異煙肼耐藥性有關(guān),其同源蛋白也存在于其他分枝桿菌,例如MAV_3949(鳥分枝桿菌)和ML_1756(麻風(fēng)分枝桿菌)[44-46]。

        恥垢分枝桿菌MSMEG_2631編碼的多藥和有毒物質(zhì)外排家族蛋白與多種抗生素的耐藥有關(guān),包括氨基糖苷類、磷霉素、磺胺類和西吡氯銨。MSMEG_2631與結(jié)核桿菌dinF(Rv2836c)的同源性為74%[47]。

        耐結(jié)節(jié)細(xì)胞分裂RND家族蛋白參與細(xì)菌的多種抗菌藥物耐藥,在大腸埃希菌和銅綠假單胞菌中已被廣泛研究[49-50]。AcrB蛋白作為RND蛋白家族中最典型的一個(gè)轉(zhuǎn)運(yùn)蛋白,是構(gòu)成大腸埃希菌外排系統(tǒng)AcrAB-TolC的主要活性成分[51-52]。分枝桿菌基因組編碼有多種MmpL(Mycobacterial membrane protein large)蛋白泵[53],屬于RND家族轉(zhuǎn)運(yùn)蛋白,其轉(zhuǎn)運(yùn)需要質(zhì)子動(dòng)力[54-55]。

        2 MmpL家族蛋白結(jié)構(gòu)

        RND功能蛋白由同源三聚體或異源三聚體組成(圖1)[56],每個(gè)單體包含12個(gè)跨膜結(jié)構(gòu)域(transmembrane domain, TMD)和兩個(gè)可溶性胞質(zhì)外環(huán),其N端和C端胞質(zhì)周圍結(jié)構(gòu)域分別插入TMD1和TMD2之間以及TMD7和TMD8之間[57]。每個(gè)胞質(zhì)周圍結(jié)構(gòu)域包含兩個(gè)結(jié)構(gòu)相似的轉(zhuǎn)運(yùn)子結(jié)構(gòu)域(N端轉(zhuǎn)運(yùn)子結(jié)構(gòu)域PN1、PN2,C端轉(zhuǎn)運(yùn)子結(jié)構(gòu)域PC1、PC2)和一個(gè)對(duì)接子結(jié)構(gòu)域(DN或DC)[58]。在所有5個(gè)結(jié)構(gòu)中,TMD6和TMD7之間還有一個(gè)幾乎與細(xì)胞質(zhì)膜表面平行的α螺旋[59]。此外,RND轉(zhuǎn)運(yùn)蛋白被分為重金屬外排和親水性-兩親性外排亞家族,轉(zhuǎn)運(yùn)多種底物,包括金屬、抗菌藥物、洗滌劑和染料[60]。在質(zhì)子動(dòng)力的驅(qū)動(dòng)下,底物的穿梭通過旋轉(zhuǎn)機(jī)制發(fā)生,RND同源三聚體中的每個(gè)單體采用獨(dú)特的構(gòu)象來進(jìn)行底物的識(shí)別、結(jié)合和釋放[58-59]。

        結(jié)核桿菌H37Rv含有14個(gè)MmpL及與其調(diào)控相關(guān)的5個(gè)MmpS(表1)[62]。不同MmpL的跨膜區(qū)數(shù)目不同,例如,MmpL1、MmpL2、MmpL3、MmpL4、MmpL5、MmpL7、MmpL8、MmpL9、MmpL10、MmpL11和MmpL12有11或12個(gè)跨膜結(jié)構(gòu)域,而MmpL6、MmpL13a和MmpL13b有4到7個(gè)跨膜結(jié)構(gòu)域[63]。具有12個(gè)跨膜結(jié)構(gòu)域的MmpL蛋白中,前6個(gè)螺旋構(gòu)成第一個(gè)N端結(jié)構(gòu)域,后6個(gè)螺旋構(gòu)成C端結(jié)構(gòu)域[64],這兩個(gè)結(jié)構(gòu)域被一個(gè)位于TMD6和TMD7之間的細(xì)胞質(zhì)螺旋分離,該螺旋與其他RND蛋白結(jié)構(gòu)一致,與細(xì)胞質(zhì)膜平行[65]。另外,TMD1和TMD2之間以及TMD7和TMD8之間有兩個(gè)周質(zhì)結(jié)構(gòu)域[26]。研究表明,結(jié)核桿菌MmpLs細(xì)分為兩個(gè)簇:其中一簇由MmpL3/11/13組成,該MmpL3/11/13具有額外的胞質(zhì)D3結(jié)構(gòu)域(圖2)。MmpL11的D2結(jié)構(gòu)域與RND轉(zhuǎn)運(yùn)體結(jié)構(gòu)域的結(jié)構(gòu)相似,D1和D2可能參與底物結(jié)合。另一簇為大多數(shù)MmpL成員,僅由D1/PN(PN代表N端轉(zhuǎn)運(yùn)蛋白結(jié)構(gòu)域)和PC1/DC/PC2(PC代表C端轉(zhuǎn)運(yùn)蛋白結(jié)構(gòu)域)組成[66-67](圖3)。

        3 MmpL的功能

        3.1 MmpL參與脂質(zhì)運(yùn)輸

        結(jié)核桿菌基因組分析顯示,許多含有已知或推測(cè)在脂質(zhì)生物合成中起作用的聚酮合酶基因簇也含有mmpL,提示MmpL可能參與脂肪酸轉(zhuǎn)運(yùn)[68-69]。突變分析表明,MmpL3、MmpL7參與了海藻糖單霉酸酯、海藻糖二霉酸酯、硫辛醇二霉酸酯、二?;T逄恰⑽艴;T逄堑戎|(zhì)的轉(zhuǎn)運(yùn)[67,70],MmpL8將硫脂-1轉(zhuǎn)移到細(xì)胞包膜[71]。MmpL11與MmpL3位于同一簇,協(xié)調(diào)單甘露醇二酰甘油的轉(zhuǎn)運(yùn),促進(jìn)細(xì)胞壁的生物合成[72],也參與恥垢分枝桿菌和結(jié)核桿菌的生物膜形成[73];MmpL10也參與?;T逄堑霓D(zhuǎn)運(yùn)[26](圖4)。MmpL4a和MmpL4b在膿腫分枝桿菌(Mycobacterium abscessus)轉(zhuǎn)運(yùn)糖肽脂質(zhì)到細(xì)菌表面[74]。這些MmpL蛋白轉(zhuǎn)運(yùn)的脂質(zhì)被分布在細(xì)胞膜的各處,有助于細(xì)胞膜的完整性,調(diào)節(jié)膜通透性[75],并發(fā)揮重要的生理功能,如維持分枝桿菌的形狀,通過提供機(jī)械和滲透保護(hù),從而參與分枝桿菌的致病機(jī)制[64]。因此,這些脂質(zhì)在膜中的正確定位,對(duì)致病分枝桿菌的毒力充分表達(dá)至關(guān)重要。

        3.2 MmpL發(fā)揮毒力作用

        在小鼠感染模型中,MmpL4、MmpL5、MmpL7、MmpL8、MmpL10和MmpL11參與結(jié)核桿菌的毒力調(diào)節(jié)[62,76-77]。mmpL4或mmpL7敲除突變體毒力下降,在小鼠中生長緩慢[78-79];感染mmpL8或mmpL11敲除突變株的小鼠存活時(shí)間顯著長于感染野生型結(jié)核桿菌的小鼠[68]。還有研究表明,MmpL5和MmpL10是結(jié)核分桿菌在小鼠肺內(nèi)存活所必需的蛋白[80]。

        3.3 MmpL參與鐵元素?cái)z取

        鐵是病原菌的必需元素,MmpL參與鐵的獲取[81]。MmpL3和MmpL11參與了血紅素輸入(圖4)[83],MmpL4和MmpL5參與鐵載體(siderophores)輸出,并且對(duì)鐵載體介導(dǎo)的鐵獲取至關(guān)重要[84]。

        3.4 MmpL外排抗菌藥物

        第一個(gè)被證明參與抗菌藥物外排的MmpL蛋白是MmpL7。結(jié)核桿菌mmpL7在恥垢分枝桿菌中過表達(dá),導(dǎo)致細(xì)菌對(duì)異煙肼的耐藥性增加[85]。當(dāng)加入外排泵抑制劑利血平或羰基氰化物間氯苯腙(CCCP)時(shí),結(jié)核桿菌對(duì)異煙肼的耐藥性水平降低,且檢測(cè)到異煙肼在細(xì)胞內(nèi)大量蓄積[86]。其他MmpL蛋白(如MmpL5)也被證明參與抗結(jié)核藥物的主動(dòng)外排[87]。

        4 MmpL介導(dǎo)的耐藥機(jī)制

        除了脂質(zhì)轉(zhuǎn)運(yùn)相關(guān)的基因外,分枝桿菌的全基因組測(cè)序揭示還存在多種編碼特定藥物轉(zhuǎn)運(yùn)蛋白的基因[88]。目前已被證實(shí)參與耐藥機(jī)制的有MmpL3、MmpL5、MmpL7和MmpL8[89],其中MmpL3已被作為靶點(diǎn)用于抗結(jié)核藥物設(shè)計(jì)[90]。

        氯法齊明和貝達(dá)喹啉是首先被批準(zhǔn)用于治療耐多藥結(jié)核病的藥物[91]。先前已經(jīng)證明唑類藥物/氮雜環(huán)化合物具有抗分枝桿菌活性,益康唑(econazole)被用于治療小鼠結(jié)核病模型[92]。研究表明,MmpL5蛋白可能有助于增加對(duì)抗分枝桿菌化合物的耐藥性,在對(duì)唑類藥物/氮雜環(huán)化合物和用于治療麻風(fēng)病的藥物氯法齊明耐藥的突變體中,觀察到與MmpL5相關(guān)的轉(zhuǎn)錄調(diào)節(jié)因子Rv0678發(fā)生突變,該蛋白是MmpL5的轉(zhuǎn)錄抑制因子[93-94]。研究還發(fā)現(xiàn)Rv0678的突變導(dǎo)致MmpL5操縱子解除抑制,隨后MmpL5的轉(zhuǎn)錄基因上調(diào)[87],從而通過MmpL5主動(dòng)外排這些化合物導(dǎo)致細(xì)菌產(chǎn)生耐藥性[62]。加入外排抑制劑CCCP后,標(biāo)記的益康唑可通過降低跨膜電位而在Rv0678突變菌株中積累[79],因此,益康唑可能是MmpL5轉(zhuǎn)運(yùn)體利用質(zhì)子動(dòng)力作為能量進(jìn)行轉(zhuǎn)運(yùn)的底物[61]。還有研究表明,外排抑制劑維拉帕米和利血平可增強(qiáng)貝達(dá)喹啉對(duì)結(jié)核桿菌的活性[95]。麻風(fēng)分枝桿菌不存在MmpL5轉(zhuǎn)錄調(diào)節(jié)因子,這就解釋了為什么氯法齊明可有效治療麻風(fēng),而麻風(fēng)分枝桿菌未對(duì)氯法齊明產(chǎn)生耐藥性[96]。

        TetR和MarR蛋白在快生長和慢生長型分枝桿菌中,能夠根據(jù)菌種環(huán)境分別調(diào)節(jié)MmpL5同源蛋白的表達(dá)[97]。金色分枝桿菌和恥垢分枝桿菌MmpS5/MmpL5操縱子下游的TetR調(diào)節(jié)子突變,海洋分枝桿菌MmpL5操縱子下游的MarR蛋白突變[89],均導(dǎo)致自發(fā)耐藥突變體生成。位于MmpLS5/MmpL5操縱子前、mmpT5編碼的TetR抑制因子發(fā)生突變,引起細(xì)菌對(duì)貝達(dá)喹啉和氯法齊明的中等水平耐藥[98],這些TetR突變同時(shí)導(dǎo)致MmpL5轉(zhuǎn)錄本的高水平表達(dá)[99]。膿腫分枝桿菌菌株對(duì)噻唑酮衍生物的耐藥性也是由于MmpL5外排裝置的過度表達(dá),增加了對(duì)噻唑酮類似物的最低抑菌濃度,該過度表達(dá)是由于TetR抑制蛋白MAB_4384的突變?cè)斐蒣100],表明MmpL5在噻唑酮衍生物D6、D15和D17外排中的作用。MmpLS5/ MmpL5介導(dǎo)的外排在非結(jié)核桿菌中也起到抗菌藥物耐藥作用[99]。

        MmpL7在恥垢分枝桿菌中過表達(dá)時(shí),會(huì)導(dǎo)致異煙肼耐藥性[85](圖4)。使用利血平、CCCP等外排泵抑制劑后,異煙肼耐藥水平下降[86]。表達(dá)MmpL7的恥垢分枝桿菌由胞內(nèi)向胞外流出異煙肼,是一個(gè)能量依賴的過程[101]。外排抑制劑如維拉帕米會(huì)導(dǎo)致MmpL7等多種外排泵的基因表達(dá)下調(diào)[64],進(jìn)而增加了異煙肼耐藥株對(duì)異煙肼的敏感性。

        5 MmpL3蛋白抑制劑

        分枝桿菌酸是結(jié)核桿菌細(xì)胞壁的重要組分,MmpL通過質(zhì)子動(dòng)力轉(zhuǎn)運(yùn)的方式參與分枝菌酸前體海藻糖單霉酸酯的跨膜轉(zhuǎn)運(yùn),在分枝菌酸的生物合成過程中發(fā)揮重要作用[68-69]。

        過去幾年發(fā)現(xiàn),一些抑制劑具有阻斷MmpL3蛋白的活性[102]。MmpL3在結(jié)核桿菌的毒力和正常生長中起著重要的作用,其缺失對(duì)細(xì)胞壁生物合成產(chǎn)生不利影響[103],敲除mmpL3后分枝桿菌迅速喪失活力[104],這使MmpL3成為關(guān)鍵的藥物靶點(diǎn),而且是目前最有希望的抗分枝桿菌藥理學(xué)靶點(diǎn)之一。高通量全細(xì)胞篩選發(fā)現(xiàn)了幾種有效靶向MmpL3的潛在化合物[67,105],多個(gè)化合物最近被證明在結(jié)核桿菌和非結(jié)核桿菌中均能抑制MmpL3活性[104],它們有望開發(fā)成為抗分枝桿菌的新型藥物。

        5.1 抑制劑的分類

        直接或間接靶向MmpL3抑制劑目前已有許多,包括SQ109、NITD-304、NITD-349、BM212、AU1235、THPP1、HC2032、HC2060、HC2091、HC2099、HC2134、HC2138、HC2149、HC2169、HC2178、HC2184、C215、SIMBL-1和SIMBL-2[106-108]。這些抑制劑被分為7類,包括二胺/乙酰胺、脲/胍、吡咯/吡唑、苯-酰胺/吲哚/咪唑/噻唑、酰胺、胺,以及第七類不具有共同核心結(jié)構(gòu)的支架[109]。

        5.2 抑制劑作用方式

        乙胺丁醇衍生物SQ109可以抑制MmpL3蛋白,這種化合物是一種廣譜抗結(jié)核藥[110]。SQ109處理的結(jié)核桿菌表現(xiàn)出細(xì)胞內(nèi)海藻糖單霉酸酯濃度的增加和細(xì)胞壁生成的改變,這是由于MmpL3功能被破壞、導(dǎo)致無法獲得分枝桿菌酸成分[110];SQ109導(dǎo)致結(jié)核桿菌中質(zhì)子動(dòng)力解偶聯(lián),從而破壞了MmpL3的功能,無法將海藻糖單霉酸酯運(yùn)送至細(xì)胞壁[111]。這種解偶聯(lián)效應(yīng)最近已被用于幾種靶向MmpL3的抗結(jié)核藥物[67,112],其中SQ109當(dāng)前正處于II期臨床試驗(yàn)階段[113]。

        II期臨床試驗(yàn)中, SQ109與利福平聯(lián)合使用14 d,

        可導(dǎo)致痰樣本中存活的結(jié)核桿菌減少[114];雖然SQ109對(duì)患者有抗MDR-TB的活性,但由于宿主藥物代謝的原因,SQ109的半衰期較短,與利福平聯(lián)用會(huì)延長半衰期[115]。

        MmpL3抑制劑與其他抗結(jié)核藥物協(xié)同使用可以縮短治療結(jié)核病的時(shí)間[116],而MmpL3可能不是這些抑制劑的直接靶點(diǎn)[112]。在最近的一項(xiàng)研究中,四氫吡唑嘧啶-3-甲酰胺(THPP)通過靶向烯酰輔酶A(CoA)水合酶來抑制分枝桿菌酸的生物合成[104]。

        基于哌啶醇的化合物PIPD1,它對(duì)膿腫分枝桿菌臨床菌株具有較強(qiáng)的殺菌活性[117]。使用PIPD1治療膿腫分枝桿菌感染的斑馬魚,能提高斑馬魚胚胎的存活率,并降低細(xì)菌載量[117]。通過耐藥突變體篩選發(fā)現(xiàn),PIPD1處理不影響分枝桿菌酸合成,但抑制海藻糖單霉酸酯的轉(zhuǎn)運(yùn),從而導(dǎo)致海藻糖二霉酸酯的合成受到抑制,并隨后轉(zhuǎn)移到阿拉伯半乳聚糖上[118]。此外,通過在MAB_4508/MmpL3三維同源模型上對(duì)大量PIPD1耐藥突變株的不同突變位點(diǎn)進(jìn)行定位[119],PIPD1的結(jié)合可能會(huì)破壞質(zhì)子驅(qū)動(dòng)所需的關(guān)鍵結(jié)構(gòu)元件[90],從而可能會(huì)破壞質(zhì)子動(dòng)力和海藻糖單霉酸酯的跨膜轉(zhuǎn)運(yùn),進(jìn)而導(dǎo)致分枝桿菌的死亡[104]。

        6 總結(jié)與展望

        本文介紹了MmpL蛋白的結(jié)構(gòu)、功能、耐藥機(jī)制及抑制劑的研究。通過生物信息學(xué)和電子顯微鏡研究,揭示了MmpL蛋白的多樣性結(jié)構(gòu)和其在維持分枝桿菌形狀和毒力中的重要作用。MmpL蛋白在結(jié)核桿菌中扮演多種關(guān)鍵角色,包括不同脂質(zhì)的轉(zhuǎn)運(yùn)、細(xì)胞膜完整性的維護(hù)、參與鐵的獲取以及有害物質(zhì)的外排,部分MmpL蛋白在小鼠感染模型中被認(rèn)為是發(fā)揮毒力作用的主要蛋白。

        MmpL3抑制劑的研究取得了進(jìn)展,但MmpL3作為抗結(jié)核藥物的靶點(diǎn)存在一些局限性,如快速發(fā)展的耐藥性、潛在的不良反應(yīng)和多藥耐藥結(jié)核桿菌株的挑戰(zhàn)。克服這些局限性的策略包括藥物組合治療(如SQ109與RIF聯(lián)用)、建立有效的耐藥性監(jiān)測(cè)體系、新型抑制劑的研發(fā)和化學(xué)修飾、免疫治療策略等。

        未來治療方向應(yīng)更加精確和創(chuàng)新。個(gè)性化醫(yī)療,結(jié)合患者遺傳背景和耐藥株基因型,定制治療方案,提高療效、降低耐藥性風(fēng)險(xiǎn)。新型治療方法,如基因編輯或RNA干擾,有望靶向調(diào)控結(jié)核桿菌中MmpL3蛋白基因,實(shí)現(xiàn)更有效治療。納米技術(shù)的藥物遞送系統(tǒng)可精準(zhǔn)傳遞藥物到感染部位,增加藥物濃度,減少不良反應(yīng)。免疫治療創(chuàng)新,強(qiáng)化患者免疫應(yīng)答,有望減輕藥物治療負(fù)擔(dān)。藥物再定位,通過基因組學(xué)和結(jié)構(gòu)生物學(xué)重新評(píng)估藥物庫,加速新藥開發(fā)??珙I(lǐng)域合作是關(guān)鍵,推動(dòng)計(jì)算機(jī)科學(xué)、工程學(xué)和生物醫(yī)學(xué)等領(lǐng)域合作,創(chuàng)新解決結(jié)核病挑戰(zhàn),共同促進(jìn)療法研發(fā)。這些前瞻性方向可為結(jié)核病治療提供更多希望和可能性。

        參 考 文 獻(xiàn)

        Hoagland D T, Liu J, Lee R B, et al. New agents for the treatment of drug-resistant Mycobacterium tuberculosis[J]. Adv Drug Delivery Rev, 2016, 102: 55-72.

        Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence[J]. Clin Microbiol Rev, 2003, 16(3): 463-496.

        Nice Jr C M. The pathogenesis of tuberculosis[J]. Dis Chest, 1950, 17(5): 550-560.

        Getahun H, Matteelli A, Chaisson R E, et al. Latent Mycobacterium tuberculosis infection[J]. N Engl J Med, 2015, 372(22): 2127-2135.

        Loddenkemper R, Lipman M, Zumla A. Clinical aspects of adult tuberculosis[J]. CSH Perspect Med, 2016, 6(1): a017848.

        Bass Jr J B, Farer L S, Hopewell P C, et al. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention[J]. Am J Respir Med, 1994, 149(5): 1359-1374.

        Kroesen V M, Gr?schel M I, Martinson N, et al. Non-steroidal anti-inflammatory drugs as host-directed therapy for tuberculosis: A systematic review[J]. Front Immunol, 2017, 8: 772.

        Witney A A, Cosgrove C A, Arnold A, et al. Clinical use of whole genome sequencing for Mycobacterium tuberculosis[J]. BMC Med, 2016, 14(1): 1-7.

        Brown L, Wolf J M, Prados-Rosales R, et al. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi[J]. Nat Rev Microbiol, 2015, 13(10): 620-630.

        Vandal O H, Nathan C F, Ehrt S. Acid resistance in Mycobacterium tuberculosis[J]. J Bacteriol, 2009, 191(15): 4714-4721.

        Palomino J C, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis[J]. J Antibiot, 2014, 3(3): 317-340.

        Campbell P J, Morlock G P, Sikes R D, et al. Molecular detection of mutations associated with first-and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2011, 55(5): 2032-2041.

        Ramaswamy S, Musser J M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update[J]. Tuberc Lung Dis, 1998, 79(1): 3-29.

        Littmann J, Viens A M. The ethical significance of antimicrobial resistance[J]. Public Health Eth, 2015, 8(3): 209-224.

        Chowdhury K, Ahmad R, Sinha S, et al. Multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) among children: Where we stand now[J]. Cureus, 2023, 15(2): e35154.

        World Health Organization Global Tuberculosis Report 2022[R/OL]. https://www.who.int/publications-detail-redirect/9789240061729 (accessed on 17 November 2022).

        Nash A A. Characterisation of the Mycobacterium tuberculosis DRRABC ATP-binding cassette transporter[M]. Glasgow: University of Glasgow, 2003.

        Zhang Y, Vilchèze C, Jacobs Jr W R. Mechanisms of drug resistance in Mycobacterium tuberculosis[J]. Tuberc Tubercle Bacillus, 2004, 13(11): 115-140.

        Desikan P, Panwalkar N, Punde R P, et al. Heteroresistance to rifampicin amp; isoniazid in clinical samples of patients with presumptive drug-resistant tuberculosis in Central India[J]. Indian J Med Res, 2023, 157(2amp;3): 174-182.

        Kumawat M, Nabi B, Daswani M, et al. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species[J]. Microb Pathog, 2023, 118: 106182.

        Song L, Wu X. Development of efflux pump inhibitors in antituberculosis therapy[J]. Int J Antimicrob Agents, 2016, 47(6): 421-429.

        Mufty M M. Multidrug-resistant Pseudomonas aeruginosa-aproblem in hot tubs and whirlpools in Canada[D]. University of Alberta, 2022.

        Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily[J]. J Lipid Res, 2001, 42(7): 1007-1017.

        Paparoditis P, V?stermark ?, Le A J, et al. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica[J]. Biochim Biophys Acta Biomembr, 2014, 1838(1): 193-215.

        Marquez B. Bacterial efflux systems and efflux pumps inhibitors[J]. Biochim, 2005, 87(12): 1137-1147.

        Bailo R, Bhatt A, Aínsa J A. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development[J]. Biochem Pharmacol, 2015, 96(3): 159-167.

        Ramón-García S, Mick V, Dainese E, et al. Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG[J]. Antimicrob Agents Chemother, 2012, 56(4): 2074-2083.

        Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis[J]. FEMS Microbiol Rev, 2000, 24(4): 449-467.

        Balganesh M, Dinesh N, Sharma S, et al. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates[J]. Antimicrob Agents Chemother, 2012, 56(5): 2643-2651.

        Danilchanka O, Mailaender C, Niederweis M. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2008, 52(7): 2503-2511.

        Balganesh M, Kuruppath S, Marcel N, et al. Rv1218c, an ABC transporter of Mycobacterium tuberculosis with implications in drug discovery[J]. Antimicrob Agents Chemother, 2010, 54(12): 5167-5172.

        Choudhuri B S, Bhakta S, Barik R, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis[J]. Biochim, 2002, 367(1): 279-285.

        Sun Z, Xu Y, Sun Y, et al. Ofloxacin resistance in Mycobacterium tuberculosis is associated with efflux pump activity independent of resistance pattern and genotype[J]. Microb Drug Resis, 2014, 20(6): 525-532.

        Oh T S, Kim Y J, Kang H Y, et al. RNA expression analysis of efflux pump genes in clinical isolates of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in South Korea[J]. Infect Genet Evol, 2017, 49: 111-115.

        Duan W, Li X, Ge Y, et al. Mycobacterium tuberculosis Rv1473 is a novel macrolides ABC efflux pump regulated by WhiB7[J]. Future Microbiol, 2019, 14(1): 47-59.

        Takiff H E, Cimino M, Musso M C, et al. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis[J]. PNAS, 1996, 93(1): 362-366.

        Sander P, De Rossi E, B?ddinghaus B, et al. Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance[J]. FEMS Microbiol Lett, 2000, 193(1): 19-23.

        Li X Z, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis[J]. Antimicrob Agents Chemother, 2004, 48(7): 2415-2423.

        Yan N. Structural advances for the major facilitator superfamily (MFS) transporters[J]. Trends Biochem Sci, 2013, 38(3): 151-159.

        Kanji A, Hasan R, Hasan Z. Efflux pump as alternate mechanism for drug resistance in Mycobacterium tuberculosis[J]. Indian J Tuberc, 2019, 66(1): 20-25.

        Li X, Li P, Ruan C, et al. Mycobacterium tuberculosis Rv0191 is an efflux pump of major facilitator superfamily transporter regulated by Rv1353c[J]. Arch Biochem Biophys, 2019, 667: 59-66.

        Zhang Y, Zhang J, Cui P, et al. Identification of novel efflux proteins Rv0191, Rv3756c, Rv3008, and Rv1667c involved in pyrazinamide resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2017, 61(8): 00940-17.

        Li G, Zhang J, Guo Q, et al. Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates[J]. J Antibiot, 2015, 68(7): 431-435.

        Paulsen I T, Skurray R A, Tam R, et al. The SMR family: A novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs[J]. Mol Microbiol, 1996, 19(6): 1167-1175.

        Rodrigues L, Villellas C, Bailo R, et al. Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2013, 57(2): 751-757.

        De Rossi E, Branzoni M, Cantoni R, et al. mmr, a Mycobacterium tuberculosis gene conferring resistance to small cationic dyes and inhibitors[J]. J Bacteriol, 1998, 180(22): 6068-6071.

        Mishra M N, Daniels L. Characterization of the MSMEG_2631 gene (mmp) encoding a multidrug and toxic compound extrusion (MATE) family protein in Mycobacterium smegmatis and exploration of its polyspecific nature using biolog phenotype microarray[J]. J Bacteriol, 2013, 195(7): 1610-1621.

        Kanji A, Hasan R, Hasan Z. Efflux pump as alternate mechanism for drug resistance in Mycobacterium tuberculosis[J]. Indian J Tuberc, 2019, 66(1): 20-25.

        Stover C K, Pham X Q, Erwin A L, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen[J]. Nature, 2000, 406(6799): 959-964.

        Sennhauser G, Bukowska M A, Briand C, et al. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa[J]. J Mol Biol, 2009, 389(1): 134-145.

        Blair J M A, Piddock L J V. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: An update[J]. Curr Opin Microbiol, 2009, 12(5): 512-519.

        Pos K M. Drug transport mechanism of the AcrB efflux pump[J]. Biochim Biophys Acta Proteins Proteomics, 2009, 1794(5): 782-793.

        Tekaia F, Gordon S V, Garnier T, et al. Analysis of the proteome of Mycobacterium tuberculosis in silico[J]. Int J Tuberc, 1999, 79(6): 329-342.

        Paulsen I T, Brown M H, Skurray R A. Proton-dependent multidrug efflux systems[J]. Microbiol Rev, 1996, 60(4): 575-608.

        Rossi E D, Aínsa J A, Riccardi G. Role of mycobacterial efflux transporters in drug resistance: An unresolved question[J]. FEMS Microbiol Rev, 2006, 30(1): 36-52.

        Kim H S, Nikaido H. Different functions of MdtB and MdtC subunits in the heterotrimeric efflux transporter MdtB2C complex of Escherichia coli[J]. Biochem, 2012, 51(20): 4188-4197.

        Elkins C A, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops[J]. J Bacteriol, 2002, 184(23): 6490-6498.

        Ruggerone P, Murakami S, M Pos K, et al. RND efflux pumps: Structural information translated into function and inhibition mechanisms[J]. Curr Top Med Chem, 2013, 13(24): 3079-3100.

        Delmar J A, Su C C, Yu E W. Bacterial multidrug efflux transporters[J]. Annu Rev Biophys, 2014, 43: 93-117.

        Conroy O, Kim E H, McEvoy M M, et al. Differing ability to transport nonmetal substrates by two RND-type metal exporters[J]. FEMS Microbiol Lett, 2010, 308(2): 115-122.

        Sandhu P, Akhter Y. Evolution of structural fitness and multifunctional aspects of mycobacterial RND family transporters[J]. Arch Microbiol, 2018, 200(1): 19-31.

        Briffotaux J, Huang W, Wang X, et al. MmpS5/MmpL5 as an efflux pump in Mycobacterium species[J]. J Tuberc, 2017, 107: 13-19.

        Sandhu P, Akhter Y. The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective[J]. Int J Med Microbiol, 2015, 305(3): 413-423.

        Viljoen A, Dubois V, Girard-Misguich F, et al. The diverse family of Mmp L transporters in mycobacteria: From regulation to antimicrobial developments[J]. Mol Microbiol, 2017, 104(6): 889-904.

        Chim N, Torres R, Liu Y, et al. The structure and interactions of periplasmic domains of crucial MmpL membrane proteins from Mycobacterium tuberculosis[J]. Chem Biol, 2015, 22(8): 1098-1107.

        Larkin M A, Blackshields G, Brown N P, et al. Clustal W and clustal X version 2.0[J]. Bioinf, 2007, 23(21): 2947-2948.

        Zhang B, Li J, Yang X, et al. Crystal structures of membrane transporter MmpL3, an anti-TB drug target[J]. Cell, 2019, 176(3): 636-648.

        Domenech P, Reed M B, Barry III C E. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance[J]. Infect Immun, 2005, 73(6): 3492-3501.

        Chalut C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria[J]. J Tuberc, 2016, 100: 32-45.

        Tahlan K, Wilson R, Kastrinsky D B, et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis[J]. Antimicrob Agents Chemother, 2012, 56(4): 1797-1809.

        Domenech P, Reed M B, Dowd C S, et al. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis[J]. J Biol Chem, 2004, 279(20): 21257-21265.

        Pacheco S A, Hsu F F, Powers K M, et al. MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis[J]. J Biol Chem, 2013, 288(33): 24213-24222.

        Wright C C, Hsu F F, Arnett E, et al. The Mycobacterium tuberculosis MmpL11 cell wall lipid transporter is important for biofilm formation, intracellular growth, and nonreplicating persistence[J]. Infect Immun, 2017, 85(8): 00131-17.

        Parmar S, Tocheva E I. The cell envelope of Mycobacterium abscessus and its role in pathogenesis[J]. PLoS Pathog, 2023, 19(5): e1011318.

        Thouvenel L, Rech J, Guilhot C, et al. In vivo imaging of MmpL transporters reveals distinct subcellular locations for export of mycolic acids and non-essential trehalose polyphleates in the mycobacterial outer membrane[J]. Sci Rep, 2023, 13(1): 7045.

        Dubois V, Viljoen A, Laencina L, et al. MmpL8MAB controls Mycobacterium abscessus virulence and production of a previously unknown glycolipid family[J]. PNAS, 2018, 115(43): E10147-E10156.

        Converse S E, Mougous J D, Leavell M D, et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence[J]. PNAS, 2003, 100(10): 6121-6126.

        Wells R M, Jones C M, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis[J]. PLoS Pathog, 2013, 9(1): e1003120.

        Remm S, Earp J C, Dick T, et al. Critical discussion on drug efflux in Mycobacterium tuberculosis[J]. FEMS Microbiol Rev, 2022, 46(1): fuab050.

        Lamichhane G, Tyagi S, Bishai W R. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs[J]. Infect Immun, 2005, 73(4): 2533-2540.

        Chao A, Sieminski P J, Owens C P, et al. Iron acquisition in Mycobacterium tuberculosis[J]. Chem Rev, 2018, 119(2): 1193-1220.

        Ratledge C, Dover L G. Iron metabolism in pathogenic bacteria[J]. Annu Rev Microbiol, 2000, 54(1): 881-941.

        Chen X, Sassetti C M. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis[J]. Nat Microbiol, 2017, 2(17072): 1-11.

        Jones C M, Wells R M, Madduri A V R, et al. Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling[J]. Proc Natl Acad Sci, 2014, 111(5): 1945-1950.

        Pasca M R, Guglierame P, De Rossi E, et al. MmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis[J]. Antimicrob Agents Chemother, 2005, 49(11): 4775-4777.

        Ramón-García S, Martín C, Aínsa J A, et al. Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum[J]. J Antimicrob Chemother, 2006, 57(2): 252-259.

        Milano A, Pasca M R, Provvedi R, et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system[J]. J Tuberc, 2009, 89(1): 84-90.

        Morisseau C, Hammock B D. Epoxide hydrolases: Mechanisms, inhibitor designs, and biological roles[J]. Annu Rev Pharmacol Toxicol, 2005, 45: 311-333.

        Rodriguez R, Campbell-Kruger N, Gonzalez Camba J, et al. MarR-dependent transcriptional regulation of mmpsl5 induces ethionamide resistance in Mycobacterium abscessus[J]. Antimicrob Agents Chemother, 2023, 67(4): e01350-22.

        Bolla J R. Targeting MmpL3 for anti-tuberculosis drug development[J]. Biochem Soc Trans, 2020, 48(4): 1463-1472.

        Somoskovi A, Bruderer V, H?mke R, et al. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment[J]. Eur Respir J, 2015, 45(2): 554-557.

        Ahmad Z, Pandey R, Sharma S, et al. Novel chemotherapy for tuberculosis: Chemotherapeutic potential of econazole-and moxifloxacin-loaded PLG nanoparticles[J]. Int J Antimicrob Agents, 2008, 31(2): 142-146.

        Ioerger T R, O'Malley T, Liao R, et al. Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis[J]. PLoS One, 2013, 8(9): e75245.

        Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline[J]. PLoS one, 2014, 9(7): e102135.

        Martin A, Bouyakoub Y, Soumillion K, et al. Targeting bedaquiline mycobacterial efflux pump to potentially enhance therapy in Mycobacterium abscessus[J]. Int J Mycobact, 2020, 9(1): 71-75.

        Machado D, Lecorche E, Mougari F, et al. Insights on Mycobacterium leprae efflux pumps and their implications in drug resistance and virulence[J]. Front Microbiol, 2018, 9: 03072.

        Sachdeva P, Misra R, Tyagi A K, et al. The sigma factors of Mycobacterium tuberculosis: Regulation of the regulators[J]. FEBS, 2010, 277(3): 605-626.

        Richard M, Gutiérrez A V, Viljoen A, et al. Mutations in the MAB_2299c TetR regulator confer cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus[J]. Antimicrob Agents Chemother, 2019, 63(1): 01316-18.

        Richard M, Gutiérrez A V, Viljoen A J, et al. Mechanistic and structural insights into the unique TetR-dependent regulation of a drug efflux pump in Mycobacterium abscessus[J]. Front Microbiol, 2018, 9: 00649.

        Halloum I, Viljoen A, Khanna V, et al. Resistance to thiacetazone derivatives active against Mycobacterium abscessus involves mutations in the MmpL5 transcriptional repressor MAB_4384[J]. Antimicrob Agents Chemother, 2017, 61(4): 02509-16.

        Moolla N. Molecular mechanisms of cell wall lipid transport in Mycobacterium tuberculosis[D]. Birmingham: University of Birmingham, 2020.

        Yang X, Hu T, Yang X, et al. Structural basis for the inhibition of mycobacterial MmpL3 by NITD-349 and SPIRO[J]. J Mol Biol, 2020, 432(16): 4426-4434.

        Hu T, Yang X, Liu F, et al. Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3[J]. Struction, 2022, 30(10): 1395-1402.

        Williams J T, Abramovitch R B. Molecular mechanisms of MmpL3 function and inhibition[J]. Microb Drug Resist, 2023, 29(5): 190-212.

        Shao M, McNeil M, Cook G M, et al. MmpL3 inhibitors as antituberculosis drugs[J]. Eur J Med Chem, 2020, 200: 112390.

        Williams J T, Haiderer E R, Coulson G B, et al. Identification of new MmpL3 inhibitors by untargeted and targeted mutant screens defines MmpL3 domains with differential resistance[J]. Antimicrob Agents Chemother, 2019, 63(10): 00547-19.

        Li M, Phua Z Y, Xi Y, et al. Potency increase of spiroketal analogs of membrane inserting indolyl mannich base antimycobacterials is due to acquisition of MmpL3 inhibition[J]. ACS Infect Dis, 2020, 6(7): 1882-1893.

        Li W, Stevens C M, Pandya A N, et al. Direct inhibition of MmpL3 by novel antitubercular compounds[J]. ACS Infect Dis, 2019, 5(6): 1001-1012.

        Guardia A, Baiget J, Cacho M, et al. Easy-to-synthesize spirocyclic compounds possess remarkable in vivo activity against Mycobacterium tuberculosis[J]. J Med Chem, 2018, 61(24): 11327-11340.

        Kumar G, Kapoor S. Targeting mycobacterial membranes and membrane proteins: Progress and limitations[J]. Bioorg Med Chem, 2023: 117212.

        Zabolotna N. MmpL3 membrane transporter as a potential therapeutic target in the development of tuberculosis treatment drugs[D]. Lisbon: Universidade de Lisboa, 2022.

        North E J, Schwartz C P, Zgurskaya H I, et al. Recent advances in mycobacterial membrane protein Large 3 inhibitor drug design for mycobacterial infections[J]. Expert Opin Drug Discov, 2023, 8(7): 707-724.

        Alom S, Ali F, Choudhury D, et al. Tuberculosis and drug delivery system: Clinical trials in TB[J]. Adv Infect Dis, 2023: 289-305.

        Cross G B, Sari I P, Kityo C, et al. Rosuvastatin adjunctive therapy for rifampicin-susceptible pulmonary tuberculosis: A phase 2b, randomised, open-label, multicentre trial[J]. Lancet Infect Dis, 2023, 23(7): 847-855.

        Prates J L B, dos Santos Fernandes G F, Rodríguez-Silva C N, et al. The challenges of antitubercular drug discovery[M]. Berlin: J Tuberc, 2023, 11: 483-498.

        Imran M, Arora M K, Chaudhary A, et al. MmpL3 inhibition as a promising approach to develop novel therapies against tuberculosis: A spotlight on SQ109, clinical studies, and patents literature[J]. Biomedicines, 2022, 10(11): 10112793.

        Alcaraz M, Edwards T E, Kremer L. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases-Untapping the mycolic acid pathway[J]. Expert Rev Anti-Infect Ther, 2023, 21(8): 813-829.

        Dupont C, Viljoen A, Dubar F, et al. A new piperidinol derivative targeting mycolic acid transport in Mycobacterium abscessus[J]. Mol Microbiol, 2016, 101(3): 515-529.

        Mi J, Gong W, Wu X. Advances in key drug target identification and new drug development for tuberculosis[J]. Biomed Res Int, 2022, 2022: 5099312.

        亚洲男人天堂黄色av| 亚洲色偷偷偷综合网另类小说| 911国产精品| 亚洲嫩模一区二区三区视频| 精品视频一区二区在线观看| 自拍偷区亚洲综合第一页| 亚洲小说区图片区色综合网| 9lporm自拍视频区| 亚洲国产中文在线二区三区免| 综合色天天久久| 日本一区二区三区在线| 日本不卡视频一区二区| 人妻少妇精品视频专区| 大香伊蕉国产av| 波多野结衣视频网址| 色综合色综合久久综合频道| 亚洲国产天堂av成人在线播放| 手机久草视频福利在线观看 | 国产亚洲精品久久情侣| 天天做天天爱夜夜爽毛片毛片| 青青青爽在线视频观看| 国产成人无码aⅴ片在线观看| 免费国产在线精品三区| 精品国产三区在线观看| 精品国产一区二区三区三级| 先锋中文字幕在线资源| 猫咪www免费人成网最新网站 | 亚洲最新国产av网站| 久久无码av中文出轨人妻| 极品 在线 视频 大陆 国产| 国产精品丝袜美女久久| 亚洲av国产av综合av卡| 欧美猛男军警gay自慰| 国产美女裸身网站免费观看视频| 亚洲一区二区女优视频| 人人妻人人澡人人爽人人精品浪潮| 性色av无码一区二区三区人妻| 亚洲加勒比无码一区二区在线播放| 亚洲一区二区三区视频免费看| 巨茎中出肉欲人妻在线视频| 四虎成人精品无码永久在线 |