【摘 要】免疫檢查點阻斷(immune checkpoint blockade,ICB)的單藥治療在胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC)中未見成效,采取合理的聯(lián)合療法是克服PDAC ICB抵抗的有效策略。目前為克服PDAC ICB耐藥的聯(lián)合手段主要包括增強PDAC表面的程序性死亡受體-配體1(programmed cell death-ligand 1,PD-L1)或組織相容性復(fù)合體Ⅰ(histocompatibil?ity complex Ⅰ,MHC-Ⅰ);靶向免疫細(xì)胞中發(fā)揮抑制功能的關(guān)鍵效應(yīng)因子,改善PDAC的免疫抑制微環(huán)境;聯(lián)合能量消融、光動力療法、納米材料包裹等手段促進腫瘤相關(guān)抗原的釋放,刺激免疫激活。本綜述旨在對近年P(guān)DAC中發(fā)現(xiàn)的ICB耐藥靶標(biāo)和新興手段進行梳理,為克服PDAC ICB耐藥提供新思路。
【關(guān)鍵詞】胰腺導(dǎo)管腺癌;免疫檢查點阻斷;耐藥;生物標(biāo)志物
【中圖分類號】R453.9 【文獻標(biāo)志碼】A 【收稿日期】2023-10-18
胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC)是最具侵襲性的實體瘤之一,發(fā)病率接近死亡率[1],5年總體生存率僅為6%[2],這主要與PDAC的診斷發(fā)現(xiàn)晚和放、化療耐藥相關(guān),超過2%的胰腺癌患者就診時已無法行外科切除并發(fā)生轉(zhuǎn)移[3]。針對程序性死亡受體1(programmed celldeath-1,PD-1)、細(xì)胞毒性T 淋巴細(xì)胞相關(guān)蛋白4(cytotoxicT-lymphocyte-associated protein 4,CTLA-4)等免疫檢查點阻斷(immune checkpoint blockade,ICB)的療法在黑色素瘤、非小細(xì)胞肺癌和頭頸部鱗狀細(xì)胞癌等實體瘤中展現(xiàn)出了強大的治療潛力,延長了患者的生存期[4-6]。然而,由于PDAC的低免疫原性、免疫抑制細(xì)胞浸潤和致密纖維組織增生導(dǎo)致的缺氧、藥物輸送困難等,ICB的單藥療法并未改善PDAC預(yù)后[7]。發(fā)現(xiàn)PDAC中克服ICB耐藥的分子標(biāo)志物,采取合理的聯(lián)合療法是治療PDAC的有效策略。
1 增強PDAC表面組織相容性復(fù)合體Ⅰ(histocom?patibility complex Ⅰ,MHC-Ⅰ)和PD-L1的表達
ICB通過阻斷表達在T淋巴細(xì)胞表面的PD-1與腫瘤細(xì)胞或抑制性抗原呈遞細(xì)胞表面的程序性死亡受體-配體1(programmed cell death-ligand 1,PD-L1)的結(jié)合,消減腫瘤細(xì)胞對T細(xì)胞的抑制作用,從而提高機體免疫系統(tǒng)對腫瘤細(xì)胞的攻擊性。ICB療法要實現(xiàn)腫瘤免疫,不僅需要腫瘤細(xì)胞表達充足的腫瘤相關(guān)抗原、完整的抗原呈遞過程、適當(dāng)?shù)墓泊碳ば盘柡图?xì)胞因子表達,而且需要充足的CD8+T淋巴細(xì)胞浸潤。
靶向PDAC 中上調(diào)組織相MHC-Ⅰ和PD-L1表達的癌蛋白可以募集CD8+T細(xì)胞,提高PDAC對ICB的敏感性。其中,功能性激酶是強有力的候選靶點之一。保羅樣激酶1(polo-like kinase1,PLK1)、絲裂原活化蛋白激酶(mitogen ac?tivated protein kinase,MAPK)和細(xì)胞周期蛋白依賴性激酶4/6(cyclin-dependent kinase 4/6,CDK4/6)、白細(xì)胞介素-1受體相關(guān)激酶4(interleukin-1 receptor associated kinase 4,IRAK4)等激酶不僅與PDAC患者的不良預(yù)后呈正相關(guān),而且能夠通過抑制PD-L1的表達、減弱PDAC內(nèi)血管浸潤和內(nèi)皮細(xì)胞活化、抑制活化T細(xì)胞募集等方式引起ICB耐藥[8-10]。因此,抑制PLK1、MAPK、CDK4/6、IRAK4等激酶,可以增強促血管生成因子的分泌,提高CD8+T細(xì)胞的脫顆粒能力,提高PDAC模型的抗腫瘤反應(yīng)和存活率。除了功能性激酶,糖皮質(zhì)激素受體(glucocorticoid receptor,GR)和熱休克蛋白90(heat shock protein 90,HSP90)亦是克服ICB 耐藥的候選靶點。PDAC中抑制GR會下調(diào)PD-L1同時上調(diào)MHC-Ⅰ,促進CD8+T細(xì)胞的浸潤和活性[11],HSP90通過促進γ-干擾素誘導(dǎo)PD-L1表達,增加PDAC對PD-1治療的敏感度[12]。此外,靶向自噬溶酶體途徑可以改善PDAC對ICB的反應(yīng)性。自噬是調(diào)節(jié)PDAC細(xì)胞免疫原性的關(guān)鍵因素,PDAC突變蛋白會被蛋白酶體降解為肽段,繼而被抗原處理相關(guān)轉(zhuǎn)運體(transporter associated with antigen processing,TAP)轉(zhuǎn)運進入內(nèi)質(zhì)網(wǎng)腔與新合成的主要MHC-Ⅰ結(jié)合,最終通過高爾基體轉(zhuǎn)運至細(xì)胞膜被CD8+T細(xì)胞識別。當(dāng)特異性抑制自噬后,PDAC細(xì)胞表面MHC-I表達增加,腫瘤相關(guān)抗原呈遞增強,從而提高CD8+T細(xì)胞對PDAC的殺傷作用[13]。表觀遺傳途徑在不改變核苷酸序列的情況下,調(diào)控PD-L1的穩(wěn)定性和膜表達。組蛋白去乙?;?/5(histone deacetylase,HDAC3/5)是重要的表觀遺傳調(diào)節(jié)因子,與PD-L1表達呈正相關(guān)。當(dāng)特異性抑制HDAC3/5后,PDAC對PD-1抑制劑的反應(yīng)性下調(diào)[14-15]。棕櫚?;D(zhuǎn)移酶9(zinc finger DHHC-type contain?ing 9,ZDHHC9)能夠穩(wěn)定PDAC細(xì)胞的PD-L1蛋白質(zhì)水平,抑制ZDHHC9可以將PDAC中的免疫抑制性微環(huán)境修飾為促炎微環(huán)境,抑制PDAC小鼠的腫瘤進展,并延長PDAC小鼠的存活時間[16]。
綜上,靶向PDAC細(xì)胞中調(diào)控PD-L1和MHC-Ⅰ表達或穩(wěn)定性的激酶、受體蛋白、自噬溶酶體和表觀遺傳調(diào)節(jié)因子等,是提高CD8+T細(xì)胞抗腫瘤免疫的有力措施。
2 阻滯免疫抑制細(xì)胞浸潤,改善免疫抑制微環(huán)境
克服ICB耐藥的靶點不僅局限于PDAC細(xì)胞中,免疫系統(tǒng)中的共刺激受體、趨化因子等也可作為候選靶點。血管活性腸肽(vasoactive intestinal polypeptide,VIP)不僅在PDAC中過表達促進PDAC的生長和轉(zhuǎn)移,而且在活化的T細(xì)胞中表達上調(diào),抑制T 細(xì)胞的活化和增殖,促進調(diào)節(jié)性T 細(xì)胞(regulatory T cells,Treg)和輔助性T 細(xì)胞2(T helper 2 cell,Th2)浸潤,聯(lián)合VIP 拮抗劑與PD-1 抗體可消除40% 的PDAC 腫瘤[17]。4-1BB 是表達在活化的CD4+T 細(xì)胞、CD8+T細(xì)胞、自然殺傷細(xì)胞(natural killer cell,NK)細(xì)胞、樹突狀細(xì)胞(dendritic cells,DC)、巨噬細(xì)胞以及Tregs 上的共刺激受體,淋巴細(xì)胞活化基因3(lymphocyte-activation gene 3,LAG-3)是抗原刺激下CD4+和CD8+T細(xì)胞上誘導(dǎo)表達的Ⅰ型跨膜蛋白,用來限制T細(xì)胞激活。在激活41BB的同時拮抗LAG-3可以增加T細(xì)胞亞群和T細(xì)胞克隆多樣化,減少抑制性髓系細(xì)胞生成并降低骨髓細(xì)胞的免疫抑制能力,將免疫抑制性腫瘤微環(huán)境(tumor micro-environment,TME)重新編程為免疫激活性TME,這種組合療法在KRAS驅(qū)動的小鼠PDAC模型中可以使腫瘤完全消退[18]。
靶向包括骨髓來源的抑制性細(xì)胞(myeloid-derived sup?pressor cells,MDSC)、腫瘤相關(guān)成纖維細(xì)胞(cancer associ?ated fibroblasts,CAFs)、腫瘤相關(guān)巨噬細(xì)胞(tumor-associatedMacrophages,TAMs)、和Tregs等免疫抑制細(xì)胞,同時聯(lián)合免疫檢查點抑制劑已被證明在PDAC的臨床前模型中具有協(xié)同抗腫瘤作用[19]。激活MDSC 的Ⅲ型補體受體(type Ⅲcomplement receptor)、干擾素刺激因子(stimulator of inter?feron genes,STING)通路,不僅可以減少MDSC在PDAC中的浸潤,而且能夠增強NK反應(yīng)性,逆轉(zhuǎn)BM-MDSC對T細(xì)胞的抑制,使ICB 在無反應(yīng)PDAC 模型中生效[20-21];抑制介導(dǎo)MDSC向PDAC組織遷移的CC基序趨化因子受體2/5(C-Cmotif chemokine receptor 2/5,CCR2/5),可以增強效應(yīng)T細(xì)胞和記憶T細(xì)胞浸潤,抑制Treg細(xì)胞,實現(xiàn)更好的生存效應(yīng)和腫瘤控制[22];集落刺激因子1 受體(colony-stimulating factor1 receptor,CSF-1R)會增強巨噬細(xì)胞對抗原的呈遞能力,同時上調(diào)T細(xì)胞表面的PD-L1和細(xì)胞毒性T細(xì)胞相關(guān)蛋白-4(cytotoxic T lymphocyte associate protein-4,CTLA4)等T細(xì)胞檢查點分子,從而改善PDAC小鼠模型對T細(xì)胞檢查點免疫治療的反應(yīng)[19]。CAF是TME中的主要基質(zhì)群之一,在ICB耐藥中發(fā)揮關(guān)鍵作用。CAF通過旁分泌缺氧誘導(dǎo)因子1(hy?poxia inducible factor-1,HIF-1),使TAM 向M2 型極化并募集Tregs[23];過表達脯氨酸順反異構(gòu)酶1(protein interactingwith never in mitosis A1,PIN1)的CAF會驅(qū)動結(jié)締組織增生,促進免疫抑制相關(guān)細(xì)胞因子分泌,抑制CAF中的HIF-1或PIN1通過阻礙CAF細(xì)胞增殖、抑制PDAC細(xì)胞對PD-L1的內(nèi)吞作用和溶酶體降解增強ICB的療效[24];富含亮氨酸重復(fù)序列15(leucine-rich repeat-containing protein 15,LRRC15)的CAF不存在于在正常胰腺組織,但是浸潤于PDAC中且與PDAC 對ICB 的不良反應(yīng)有關(guān),靶向LRRC15+CAF 為促進PDAC患者對ICB的治療反應(yīng)具有重要意義[25]。除了致密細(xì)胞外基質(zhì)和CAFs的免疫抑制行為外,TAM的高豐度和強活性是PDAC免疫應(yīng)答的主要障礙之一[9],TAM不僅介導(dǎo)免疫抑制,還促進PDAC的轉(zhuǎn)移性播散,增強PDAC對細(xì)胞毒性治療的抵抗性,TAM 抑制與ICB 結(jié)合已經(jīng)在PDAC 臨床前模型中顯示出一定療效[26]。阻斷TAM 分泌腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α),從而減弱PDAC細(xì)胞中白細(xì)胞介素33(interleukin 33,IL-33)的表達,能夠減輕PDAC荷瘤小鼠的轉(zhuǎn)移負(fù)擔(dān)并增加生存率,提高PDAC ICB治療的有效性[27]。事實上,巨噬細(xì)胞通過分泌顆粒蛋白,同樣誘導(dǎo)PDAC TME中纖維化基質(zhì)的形成,抑制巨噬細(xì)胞顆粒蛋白產(chǎn)生并重編髓源性巨噬細(xì)胞為M1樣免疫原性表型可以降低轉(zhuǎn)移性腫瘤負(fù)荷,協(xié)同PD-1發(fā)揮抗腫瘤效果[28-29]。此外,靶向中性粒細(xì)胞也是克服ICB 耐藥的候選。白細(xì)胞介素17(interleukin 17,IL17)是PDAC 發(fā)生過程中由CD4+T 細(xì)胞和γδT細(xì)胞分泌的細(xì)胞因子,通過募集中性粒細(xì)胞,減少CD8+T細(xì)胞浸潤和活化來維持PDAC TME的免疫抑制[30],阻斷IL17可增加PDAC對ICB的敏感性。
PDAC通常以酸性TME為特征,酸度可以鈍化先天性和適應(yīng)性免疫的抗腫瘤反應(yīng),當(dāng)暴露于高水平的乳酸或低pH環(huán)境時,T細(xì)胞和NK功能失調(diào),有利于免疫抑制性骨髓細(xì)胞和Treg。此外,TME的酸度也會直接影響ICB的治療效果。因此酸性環(huán)境有利于癌癥進展、ICB耐藥和免疫逃避。溶質(zhì)載體家族成員4(solute carrier family 4,SLC4)是PDAC 中表達最豐富的碳酸氫鹽轉(zhuǎn)運蛋白,抑制SLC4通過減輕細(xì)胞外碳酸氫鹽的積累,弱化糖酵解生成的乳酸,從而減輕TME的酸化,增加CD8+T細(xì)胞浸潤,提高ICB療效[31]。因此,參與免疫抑制性TME形成的共刺激受體、趨化因子、酸度調(diào)節(jié)分子等是克服ICB耐藥的有力候選靶點。
3 腫瘤疫苗、能量消融、光動力療法等聯(lián)合手段
腫瘤疫苗與ICB聯(lián)合是克服ICB耐藥的策略之一,因為腫瘤疫苗增加TME中抗原特異性T細(xì)胞的浸潤,可以更好地識別可作用的腫瘤底物。研究表明,接種胃泌素疫苗后CD8+T細(xì)胞活化并流入PDAC瘤體,改善PDAC對ICB的反應(yīng)[32]。溶瘤病毒是疫苗局部接種的一種形式,不僅通過感染、裂解PDAC細(xì)胞,導(dǎo)致局部炎癥、免疫系統(tǒng)刺激和腫瘤相關(guān)抗原釋放,而且可以通過基因工程表達各種功能蛋白。CF33-hNIS-anti PD-L1是一種攜帶人碘化鈉同體轉(zhuǎn)運蛋白(hNIS)和抗PD-L1抗體的基因工程嵌合牛痘病毒(CF33),注射CF33-hNIS-anti PDL1后牛痘病毒會特異性感染PDAC細(xì)胞,使得PDAC不僅上調(diào)PD-L1的表達,而且產(chǎn)生特異性抗PD-L1抗體誘導(dǎo)CD8+T細(xì)胞的活化。在PDAC的臨床前模型中,CF33-hNIS-anti PD-L1的早期腹腔給藥降低了小鼠的腫瘤負(fù)荷,延遲PDAC進展時間,延長PDAC小鼠的生存期[33]。同樣,借助基因工程的方法,細(xì)胞因子嵌合體PD-1-IL2v 通過PD-1 的定位將IL2v 精確地遞送到TME 中表達PD-L1的T細(xì)胞表面,誘導(dǎo)干細(xì)胞樣CD8+T細(xì)胞大量浸潤,導(dǎo)致小鼠PDAC消退并提高存活率[34]。
內(nèi)窺鏡超聲引導(dǎo)射頻消融術(shù)可以增加腫瘤抗原脫落,重塑PDAC TME,提高腫瘤中的DC數(shù)量,將腫瘤浸潤性中性粒細(xì)胞極化為抗腫瘤表型,同時促進遠(yuǎn)隔反應(yīng),抑制腫瘤生長[35]。輻射可以增強PDAC免疫原性和PD-L1表達,是ICB的候選聯(lián)合策略,共濟失調(diào)毛細(xì)血管擴張突變蛋白(ataxiatelangiectasiamutated protein,ATM)是輻射誘導(dǎo)的DNA損傷反應(yīng)中的激酶,抑制ATM 通過TANK 結(jié)合激酶1(TANKbinding kinase 1,TBK1)依賴性地增加PDAC中I型干擾素信號的表達,通過ATM 抑制結(jié)合ICB 和放療可以增強ICB 在PDAC中的療效[36]。不可逆電穿孔誘導(dǎo)PDAC細(xì)胞免疫原性死亡,激活DC,減輕基質(zhì)誘導(dǎo)的免疫抑制,與PD-1抗體組合促進了CD8+T細(xì)胞的選擇性浸潤,顯著延長原位PDAC小鼠模型的存活期[37]。光動力療法(photodynamic therapy,PDT)是指在特定的光照射下,光敏劑可以產(chǎn)生大量的活性氧自由基驅(qū)動腫瘤細(xì)胞的免疫原性細(xì)胞死亡,同時釋放鈣網(wǎng)蛋白、高遷移率族蛋白B1、三磷酸腺苷等信號,以吸引和激活抗原呈遞細(xì)胞,導(dǎo)致適應(yīng)性免疫的激活,增強抗腫瘤免疫。但是,PDT驅(qū)動的耗氧和微血管損傷會進一步加重缺氧,導(dǎo)致乳酸蓄積和免疫抑制TME,損害細(xì)胞因子的產(chǎn)生和腫瘤免疫監(jiān)測,促進腫瘤存活。因此,PDT聯(lián)合糖酵解抑制劑的策略是ICB療法的補充策略,溴結(jié)構(gòu)域蛋白4(bromodomain-containing protein 4,BRD4)抑制劑聯(lián)合超分子納米顆粒,在啟動腫瘤細(xì)胞的免疫原性細(xì)胞死亡、促進DC成熟、激活CD8+T清除腫瘤的同時,阻斷c-Myc和c-Myc通路下游基因(己糖激酶2和乳酸脫氫酶)的轉(zhuǎn)錄,緩解PDT引起的糖酵解和免疫抑制TME,特異性下調(diào)PDAC細(xì)胞表面的γ PD-L1表達,對抗PDT誘導(dǎo)的適應(yīng)性免疫逃避[38]。
近年來,利用納米技術(shù)遞送化療藥物與生物大分子藥物(如多肽、抗體、核酸等),為克服腫瘤耐藥提供了新途徑,因為納米粒子介導(dǎo)的免疫檢查點抑制劑遞送不僅可以保護抑制劑不被體內(nèi)復(fù)雜的因素降解,而且可以控制抑制劑的定位和釋放?;诳缮锝到獾木酆衔锬z束的納米制劑有基質(zhì)調(diào)節(jié)的功能,用納米聚合物膠束包裹音猬蛋白抑制劑和紫杉醇聯(lián)合PD-1抗體的組合延長了原位PDAC小鼠模型以及基因工程PDAC小鼠模型的存活期,其中抑制音猬蛋白會阻止CAF產(chǎn)生纖維化基質(zhì),增加腫瘤內(nèi)脈管系統(tǒng)密度從而促進CD8+T細(xì)胞的腫瘤浸潤,同時不會消耗基質(zhì)中抑制腫瘤的α-平滑肌陽性肌成纖維細(xì)胞和I型膠原蛋白,提示基質(zhì)調(diào)節(jié)納米制劑是增強PDAC ICB耐藥的又一選擇[39]。
4 結(jié)語
由于PDAC的低免疫原性和免疫抑制微環(huán)境,免疫檢查點抑制劑在PDAC中無反應(yīng)的治療現(xiàn)狀令人沮喪,研究者們致力于開發(fā)新的聯(lián)合治療措施改良免疫檢查點抑制劑在PDAC 中的應(yīng)用。一方面,靶向PDAC 細(xì)胞中調(diào)控PD-L1、MHC-Ⅰ的癌基因,比如細(xì)胞周期相關(guān)激酶、自噬受體、表觀遺傳調(diào)控酶等,增加腫瘤相關(guān)抗原的呈遞和CD8+T細(xì)胞浸潤,可以提高PDAC 對PD-1 抗體的敏感性,在ICB 耐藥的PDAC 臨床前模型中已初見成效。另一方面,靶向MDSC、TAMs、CAFs等發(fā)揮免疫抑制功能的關(guān)鍵效應(yīng)因子,比如補體受體、趨化因子受體、干擾素等,通過改良PDAC中的免疫抑制微環(huán)境,抑制成纖維細(xì)胞增生、阻滯巨噬細(xì)胞浸潤和M2型極化,增加CD8+細(xì)胞浸潤,是增強ICB治療療效的又一解決方案。此外,借助能量消融、PDT、納米材料包裹等聯(lián)合策略為克服ICB耐藥提供了更多的治療選擇。然而,以上研究結(jié)論仍停留在一定的臨床前模型上,還需要更多的臨床前和臨床研究來確定PDAC ICB療法的合理組合。
參考文獻
[1] Siegel RL,Miller KD,F(xiàn)uchs HE,et al. Cancer statistics,2021[J].
CA a Cancer J Clin,2021,71(1):7-33.
[2] McGuigan A,Kelly P,Turkington RC,et al. Pancreatic cancer:a
review of clinical diagnosis,epidemiology,treatment and outcomes[J].
World J Gastroenterol,2018,24(43):4846-4861.
[3] von Hoff DD,Ervin T,Arena FP,et al. Increased survival in pan?
creatic cancer with nab-paclitaxel plus gemcitabine[J]. N Engl J Med,
2013,369(18):1691-1703.
[4] Harrington KJ,F(xiàn)erris RL,Blumenschein G Jr,et al. Nivolumab
versus standard,single-agent therapy of investigator’s choice in recur?
rent or metastatic squamous cell carcinoma of the head and neck
(CheckMate 141):health-related quality-of-life results from a ran?
domised,phase 3 trial[J]. Lancet Oncol,2017,18(8):1104-1115.
[5] Reck M,Rodríguez-Abreu D,Robinson AG,et al. Pembrolizumab
versus chemotherapy for PD-L1-positive non-small-cell lung cancer
[J]. N Engl J Med,2016,375(19):1823-1833.
[6] Robert C,Schachter J,Long GV,et al. Pembrolizumab versus ipili?
mumab in advanced melanoma[J]. N Engl J Med,2015,372(26):2521-
2532.
[7] Riquelme E,Maitra A,McAllister F. Immunotherapy for pancre?
atic cancer:more than just a gut feeling[J]. Cancer Discov,2018,8(4):
386-388.
[8] Zhang ZZ,Cheng LJ,Li J,et al. Targeting Plk1 sensitizes pancreatic
cancer to immune checkpoint therapy[J]. Cancer Res,2022,82(19):
3532-3548.
[9] Zhang YQ,Velez-Delgado A,Mathew E,et al. Myeloid cells are re?
quired for PD-1/PD-L1 checkpoint activation and the establishment of
an immunosuppressive environment in pancreatic cancer[J]. Gut,2017,
66(1):124-136.
[10] Somani VK,Zhang DX,Dodhiawala PB,et al. IRAK4 signaling
drives resistance to checkpoint immunotherapy in pancreatic ductal ad?
enocarcinoma[J]. Gastroenterology,2022,162(7):2047-2062.
[11] Deng YL,Xia XH,Zhao Y,et al. Glucocorticoid receptor regu?
lates PD-L1 and MHC-I in pancreatic cancer cells to promote immune
evasion and immunotherapy resistance[J]. Nat Commun,2021,12(1):
7041.
[12] Liu J,Kang R,Kroemer G,et al. Targeting HSP90 sensitizes pan?
creas carcinoma to PD-1 blockade[J]. Oncoimmunology,2022,11(1):
2068488.
[13] Yamamoto K,Venida A,Perera RM,et al. Selective autophagy of
MHC-I promotes immune evasion of pancreatic cancer[J]. Autophagy,
2020,16(8):1524-1525.
[14] Hu GF,He N,Cai CQ,et al. HDAC3 modulates cancer immunity
via increasing PD-L1 expression in pancreatic cancer[J]. Pancreatology,
2019,19(2):383-389.
[15] Zhou YK,Jin X,Yu HX,et al. HDAC5 modulates PD-L1 expres?
sion and cancer immunity via p65 deacetylation in pancreatic cancer[J].
Theranostics,2022,12(5):2080-2094.
[16] Lin ZQ,Huang KK,Guo H,et al. Targeting ZDHHC9 potentiates
anti-programmed death-ligand 1 immunotherapy of pancreatic cancer
by modifying the tumor microenvironment[J]. Biomedecine Pharmaco?
ther,2023,161:114567.
[17] Ravindranathan S,Passang T,Li JM,et al. Targeting vasoactive
intestinal peptide-mediated signaling enhances response to immune
checkpoint therapy in pancreatic ductal adenocarcinoma[J]. Nat Com?
mun,2022,13(1):6418.
[18] Gulhati P,Schalck A,Jiang S,et al. Targeting T cell checkpoints
41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor
immunity and durable response in pancreatic cancer[J]. Nat Cancer,
2023,4(1):62-80.
[19] Zhu Y,Knolhoff BL,Meyer MA,et al. CSF1/CSF1R blockade re?
programs tumor-infiltrating macrophages and improves response to Tcell
checkpoint immunotherapy in pancreatic cancer models[J]. Cancer
Res,2014,74(18):5057-5069.
[20] Panni RZ,Herndon JM,Zuo C,et al. Agonism of CD11b repro?
grams innate immunity to sensitize pancreatic cancer to immunothera?
pies[J]. Sci Transl Med,2019,11(499):eaau9240.
[21] Ager CR,Boda A,Rajapakshe K,et al. High potency STING ago?
nists engage unique myeloid pathways to reverse pancreatic cancer im?
mune privilege[J]. J Immunother Cancer,2021,9(8):e003246.
[22] Wang JX,Saung MT,Li KY,et al. CCR2/CCR5 inhibitor permits
the radiation-induced effector T cell infiltration in pancreatic adenocar?
cinoma[J]. J Exp Med,2022,219(5):e20211631.
[23] Garcia Garcia CJ,Huang YQ,F(xiàn)uentes NR,et al. Stromal HIF2
regulates immune suppression in the pancreatic cancer microenviron?
ment[J]. Gastroenterology,2022,162(7):2018-2031.
[24] Koikawa K,Kibe S,Suizu F,et al. Targeting Pin1 renders pancre?
atic cancer eradicable by synergizing with immunochemotherapy[J].
Cell,2021,184(18):4753-4771.
[25] Dominguez CX,Müller S,Keerthivasan S,et al. Single-cell RNA
sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a
determinant of patient response to cancer immunotherapy[J]. Cancer Dis?
cov,2020,10(2):232-253.
[26] Lopez-Yrigoyen M,Cassetta L,Pollard JW. Macrophage targeting
in cancer[J]. Ann N Y Acad Sci,2021,1499(1):18-41.
[27] Dixit A,Sarver A,Zettervall J,et al. Targeting TNF-α-producing
macrophages activates antitumor immunity in pancreatic cancer via IL-
33 signaling[J]. JCI Insight,2022,7(22):e153242.
[28] Quaranta V,Rainer C,Nielsen SR,et al. Macrophage-derived
granulin drives resistance to immune checkpoint inhibition in metastatic
pancreatic cancer[J]. Cancer Res,2018,78(15):4253-4269.
[29] Wang W,Marinis JM,Beal AM,et al. RIP1 kinase drives
macrophage-mediated adaptive immune tolerance in pancreatic cancer
[J]. Cancer Cell,2020,38(4):585-590.
[30] Zhang Y,Chandra V,Riquelme Sanchez E,et al. Interleukin-17-
induced neutrophil extracellular traps mediate resistance to checkpoint
blockade in pancreatic cancer[J]. J Exp Med,2020,217(12):e20190354.
[31] Cappellesso F,Orban MP,Shirgaonkar N,et al. Targeting the
bicarbonate transporter SLC4A4 overcomes immunosuppression and
immunotherapy resistance in pancreatic cancer[J]. Nat Cancer,2022,3
(12):1464-1483.
[32] Osborne N,Sundseth R,Burks J,et al. Gastrin vaccine improves
response to immune checkpoint antibody in murine pancreatic cancer
by altering the tumor microenvironment[J]. Cancer Immunol Immuno?
ther,2019,68(10):1635-1648.
[33] Zhang ZF,Yang AN,Chaurasiya S,et al. CF33-hNIS-antiPDL1
virus primes pancreatic ductal adenocarcinoma for enhanced anti-PDL1
therapy[J]. Cancer Gene Ther,2022,29(6):722-733.
[34] Tichet M,Wullschleger S,Chryplewicz A,et al. Bispecific PD1-
IL2v and anti-PD-L1 break tumor immunity resistance by enhancing
stem-like tumor-reactive CD8+ Tcells and reprogramming macrophages
[J]. Immunity,2023,56(1):162-179.
[35] Faraoni EY,O’Brien BJ,Strickland LN,et al. Radiofrequency ab?
lation remodels the tumor microenvironment and promotes neutrophilmediated
abscopal immunomodulation in pancreatic cancer[J]. Cancer
Immunol Res,2023,11(1):4-12.
[36] Zhang Q,Green MD,Lang XT,et al. Inhibition of ATM increases
interferon signaling and sensitizes pancreatic cancer to immune check?
point blockade therapy[J]. Cancer Res,2019,79(15):3940-3951.
[37] Zhao J,Wen XF,Tian L,et al. Irreversible electroporation re?
verses resistance to immune checkpoint blockade in pancreatic cancer
[J]. Nat Commun,2019,10(1):899.
[38] Sun F,Zhu QR,Li TL,et al. Regulating glucose metabolism with
prodrug nanoparticles for promoting photoimmunotherapy of pancreatic
cancer[J]. Adv Sci,2021,8(4):2002746.
[39] Zhao J,Xiao ZL,Li TT,et al. Stromal modulation reverses pri?
mary resistance to immune checkpoint blockade in pancreatic cancer[J].
ACS Nano,2018,12(10):9881-9893.
(責(zé)任編輯:曾 玲)