摘要:腺苷三磷酸(adenosine triphosphate,ATP)是生物體內(nèi)最普遍存在的供能物質(zhì),亦是一種重要的信號(hào)分子,腫瘤微環(huán)境中ATP的表達(dá)水平顯著上調(diào)。嘌呤能受體離子通道P2X廣泛分布多種組織內(nèi),微環(huán)境中ATP特異性激活P2X受體,調(diào)控門控離子通道開(kāi)放,進(jìn)而影響下游信號(hào)傳導(dǎo)參與機(jī)體生理活動(dòng)。而異常嘌呤能信號(hào)在腫瘤惡性進(jìn)展中也發(fā)揮著重要作用。本文就P2X受體蛋白家族的結(jié)構(gòu)、表達(dá)與功能特點(diǎn),以及P2X受體家族參與多種實(shí)體瘤進(jìn)展的機(jī)制和靶向P2X家族治療腫瘤的研究進(jìn)行了綜述,以期豐富嘌呤能信號(hào)相關(guān)基礎(chǔ)研究資料,為腫瘤臨床治療靶點(diǎn)的開(kāi)發(fā)提供新思路和策略。
關(guān)鍵詞:P2X嘌呤能受體蛋白;腫瘤微環(huán)境;ATP;實(shí)體瘤;靶向治療
中圖分類號(hào):R730""" 文獻(xiàn)標(biāo)志碼:A
DOI:10.7652/jdyxb202404025
收稿日期:2024-04-22" 修回日期:2024-05-13
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 82072806, No. 82173265); 上海市衛(wèi)生健康委員會(huì)衛(wèi)生健康領(lǐng)軍人才(No. 2022LJ002)
Supported by the National Natural Science Foundation of China (No. 82072806, No. 82173265) and Leading Health Talents of Shanghai Municipal Health Commission (No. 2022LJ002)
通信作者:崔心剛,博士后、主任醫(yī)師、教授、博士生導(dǎo)師. E-mail:cuixingang@xinhuamed.com.cn
網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/61.1399.R.20240603.1613.002.html (2024-06-04)
Research on the role of P2X receptor channel protein in the progression of solid tumors
QIN Yuxuan, CUI Xingang
(Department of Urology, Xinhua Hospital, School of Medicine,
Shanghai Jiaotong University, Shanghai 200092, China)
ABSTRACT: Adenosine triphosphate (ATP) is the most common energy supplier in living organisms and also an important signaling molecule. The expression level of ATP is significantly upregulated in the tumor microenvironment. The purinergic receptor ion channel P2X is widely distributed in various tissues. ATP can specifically activate the P2X receptor to induce the opening of gated ion channels in the microenvironment, thereby affecting the downstream signal transduction in regulating the physiological activities. Notably, abnormal purinergic signal plays an important role in tumor progression. This review focuses on the expression, structure, and function of the P2X receptor protein family. It also elucidates the mechanisms by which the P2X receptor family participates in the progression of various solid tumors, as well as research on targeted P2X family for tumor therapy. These studies will enrich the basic research theory related to purinergic signaling and provide the new targets and strategies for clinical therapy of solid tumors by targeting P2X family.
KEY WORDS: P2X purinergic receptor; tumor microenvironment; adenosine triphosphate (ATP); solid tumor; targeted therapy
當(dāng)前,離子通道與腫瘤發(fā)生發(fā)展之間的關(guān)系是一個(gè)非常活躍的研究領(lǐng)域。在生理狀態(tài)下,離子通道控制著細(xì)胞與細(xì)胞器內(nèi)外離子的流動(dòng),對(duì)于維持細(xì)胞內(nèi)環(huán)境的穩(wěn)定性、傳導(dǎo)電信號(hào)、細(xì)胞體積調(diào)節(jié)、細(xì)胞周期進(jìn)程以及其他多種細(xì)胞功能至關(guān)重要[1]。在腫瘤中,每種離子通道的具體作用取決于它們?cè)谔囟[瘤類型中的表達(dá)模式、細(xì)胞內(nèi)定位以及它們與其他信號(hào)通路的相互作用[2]。因此,開(kāi)展對(duì)不同腫瘤類型中離子通道功能的研究,并在此基礎(chǔ)上研發(fā)針對(duì)特定離子通道的腫瘤治療策略,是腫瘤治療領(lǐng)域中非常有前景的研究方向[3]。腫瘤微環(huán)境中細(xì)胞外腺苷三磷酸(adenosine triphosphate,ATP)顯著上調(diào),而眾多離子通道中,由ATP特異性激活的P2X嘌呤能受體離子通道蛋白家族被證明在多種腫瘤的發(fā)生發(fā)展中起到關(guān)鍵作用[4]。本文就P2X嘌呤能受體離子蛋白家族成員的結(jié)構(gòu)與功能、對(duì)腫瘤進(jìn)展的影響以及靶向抑制P2X受體治療腫瘤的研究進(jìn)展進(jìn)行綜述。
1" P2X嘌呤能受體蛋白的結(jié)構(gòu)、表達(dá)與功能特點(diǎn)
嘌呤能受體蛋白P2家族根據(jù)功能可分為兩種亞型,其一是陽(yáng)離子滲透型離子通道蛋白P2X,其二是G蛋白耦聯(lián)受體P2Y,均可感知和響應(yīng)細(xì)胞外的ATP等配體信號(hào)[5]。本文所討論的P2X家族蛋白,可以調(diào)節(jié)非選擇性門控離子通道的開(kāi)放,引起內(nèi)向跨膜的正離子流(以Ca2+為主),進(jìn)而通過(guò)改變細(xì)胞內(nèi)外的電位和離子濃度來(lái)影響細(xì)胞的功能[6]。P2X家族的成員在多種生理過(guò)程中發(fā)揮重要作用,包括細(xì)胞增殖與凋亡、神經(jīng)遞質(zhì)釋放、炎癥反應(yīng)與免疫應(yīng)答等[7]。
P2X家族由7個(gè)成員組成,分別為P2RX1至P2RX7,對(duì)應(yīng)的7種受體亞基具有26%~47%的序列保守性[8]。這類通道蛋白由3個(gè)亞基組裝而成,3個(gè)相同的亞基組裝成同源三聚體,即P2RX1至P2RX7受體蛋白(除P2RX6外)[9]。不同亞基則可組裝成異源三聚體[10],如中樞神經(jīng)元中的P2RX2/6[11]、P2RX4/6[12]等。每個(gè)亞基包含胞外域(含胞外保守半胱氨酸環(huán)、前庭孔周疏水性H5區(qū)、ATP結(jié)合位點(diǎn)等),兩個(gè)跨膜區(qū)域TM1和TM2(TM1負(fù)責(zé)穩(wěn)定通道開(kāi)放和受體敏化,TM2則覆蓋膜孔,控制Na+、K+和Ca2+進(jìn)入),及胞內(nèi)的氨基末端和羧基末端(蛋白激酶的共有結(jié)合基序),形成包含頭部、背鰭和左右鰭等的類海豚狀結(jié)構(gòu)。并且相關(guān)蛋白某一亞基的頭部、左鰭和上半身及相鄰亞基的背鰭和下半身的保守ATP結(jié)合基序可以形成特異性ATP結(jié)合口袋[13-15]。在該位點(diǎn)處,P2X受體蛋白可以與微環(huán)境中的ATP特異性結(jié)合而活化,導(dǎo)致通道構(gòu)像變化和孔隙打開(kāi)?;罨^(guò)程非??焖?,通常持續(xù)幾毫秒到數(shù)百毫秒[16-17]。不同受體的激活、失活和脫敏動(dòng)力學(xué)存在一定差異,可分為快速脫敏(P2RX1和P2RX3)、緩慢或非脫敏(P2RX2、P2RX4和P2RX7)和天然條件下無(wú)功能(P2RX5和P2RX6)[18]。相關(guān)蛋白家族中,P2RX6無(wú)法形成獨(dú)立的同源通道[19]。P2RX7具有獨(dú)特的胞質(zhì)內(nèi)結(jié)構(gòu)域,且在一定條件下,P2RX7從離子通道轉(zhuǎn)變?yōu)榭蓾B透大分子(400~900 Da)的孔,該蛋白受到ATP激活的閾值濃度也顯著高于其他蛋白[20]。
研究表明,P2X家族的不同成員在人體組織和細(xì)胞類型中的表達(dá)模式各不相同,進(jìn)而導(dǎo)致其在功能上也有所不同。P2RX1通道主要在血小板、平滑肌和神經(jīng)元中表達(dá),參與血小板聚集和平滑肌收縮等過(guò)程[21-22]。P2RX2則主要表達(dá)于大腦與脊髓中,例如皮層下海馬、黑質(zhì)致密部等,參與交感神經(jīng)活動(dòng)和聽(tīng)覺(jué)、味覺(jué)信號(hào)傳導(dǎo)等。此外,P2RX2在視網(wǎng)膜、腎上腺髓質(zhì)和心肌細(xì)胞等非神經(jīng)性細(xì)胞中也有分布[22-24]。P2RX3以及P2RX2與P2RX3的異聚體,主要表達(dá)于疼痛神經(jīng)纖維、脊神經(jīng)背根以及神經(jīng)節(jié)的感覺(jué)神經(jīng)細(xì)胞中,是疼痛感受的關(guān)鍵分子,參與急慢性炎性疼痛、神經(jīng)性疼痛和機(jī)械痛等。此外,P2RX2與P2RX3的異聚體還在呼吸系統(tǒng)中表達(dá),與難治性慢性咳嗽和特發(fā)肺間質(zhì)纖維化關(guān)聯(lián)密切[25-28]。P2RX4一方面在中樞和外周神經(jīng)元廣泛表達(dá),與慢性神經(jīng)性疼痛有一定關(guān)聯(lián);同時(shí)該蛋白在肝、腎等組織細(xì)胞中也有一定表達(dá)。P2RX1與P2RX4的異聚體被認(rèn)為參與了膀胱的神經(jīng)源性收縮與動(dòng)脈平滑肌收縮[29-30]。P2RX5在免疫系統(tǒng)、心臟、骨骼肌等處高度表達(dá),由于外顯子跳躍的存在,絕大多數(shù)為截短的無(wú)功能受體。P2RX1與P2RX5異聚體可能參與神經(jīng)信號(hào)傳遞與環(huán)路的正負(fù)反饋調(diào)節(jié)[31-32]。P2RX6主要分布于中樞神經(jīng)系統(tǒng)和骨骼肌等組織中,常以P2RX2/4/6異源三聚體形式存在[33],P2RX2/6異聚體參與神經(jīng)祖細(xì)胞的分化,P2RX4/6與神經(jīng)系統(tǒng)的功能調(diào)節(jié)有關(guān)[11-12]。P2RX7通道則在免疫細(xì)胞以及心肌、肝臟、胰腺等多種組織中表達(dá),與炎癥反應(yīng)和免疫細(xì)胞的活化相關(guān)[34-35]。
P2X受體家族蛋白的結(jié)構(gòu)解析信息對(duì)于理解相關(guān)蛋白分子機(jī)制以及開(kāi)發(fā)靶向藥物非常重要。自P2X受體基因被克隆后,2009年到2012年間,斑馬魚源P2RX4單體閉合態(tài)的蛋白結(jié)構(gòu)與P2RX4-ATP復(fù)合物的晶體結(jié)構(gòu)依次得到了解析[14,36]。這些研究首次揭示了相關(guān)門控通道蛋白特異性結(jié)合ATP后的構(gòu)像變化。2016年,有研究報(bào)道了蜱蟲的P2X受體與ATP和鋅離子復(fù)合物的解析結(jié)構(gòu),揭示了鋅離子等二價(jià)離子可能與相關(guān)蛋白的胞內(nèi)域作用而調(diào)控通道活性[13]。此外,近年來(lái)P2RX3(人源)[37-38]、P2RX7(鼠源、雞源和大熊貓?jiān)矗?0,39-40]的X射線衍射結(jié)構(gòu)也得到確定?;陔婄R解析結(jié)構(gòu)所確認(rèn)的P2RX3 ATP口袋深處潛在的變構(gòu)抑制位點(diǎn),默克公司開(kāi)發(fā)了靶向抑制P2RX3蛋白的藥物Gefapixant用來(lái)治療難治性咳嗽[41-43]。2023年,結(jié)構(gòu)學(xué)家又借助冷凍電鏡揭示了斑馬魚P2RX4與特異性抑制劑BX430以及BAY1797的變構(gòu)抑制解析結(jié)構(gòu)[44]。可見(jiàn),結(jié)構(gòu)生物學(xué)研究的進(jìn)展證實(shí)了P2X受體家族蛋白激活、脫敏和抑制的分子機(jī)制,也為靶向藥物的設(shè)計(jì)提供了結(jié)構(gòu)證據(jù)。P2X家族單體亞基結(jié)構(gòu)及現(xiàn)有P2X家族蛋白的結(jié)構(gòu)解析結(jié)果示意圖見(jiàn)圖1。
總之,P2X受體家族獨(dú)特的結(jié)構(gòu)與表達(dá)特點(diǎn)賦予了其在人體生理和腫瘤病理中的功能可塑性,而針對(duì)其蛋白結(jié)構(gòu)的靶向藥物開(kāi)發(fā)將會(huì)對(duì)腫瘤的治療產(chǎn)生深遠(yuǎn)影響。
2" P2X受體蛋白在腫瘤發(fā)生進(jìn)展中的作用
近年來(lái),隨著對(duì)P2X受體家族的不斷深入研究,越來(lái)越多證據(jù)表明其相關(guān)蛋白通過(guò)與腫瘤微環(huán)境相互作用,在調(diào)節(jié)腫瘤細(xì)胞生長(zhǎng)、凋亡、轉(zhuǎn)移、侵襲和腫瘤-宿主相互作用中扮演著重要角色。
2.1" P2X受體蛋白與結(jié)腸癌
P2RX4與P2RX7蛋白現(xiàn)已證實(shí)在結(jié)腸癌(colorectal cancer, CRC)進(jìn)展中扮演關(guān)鍵角色。研究發(fā)現(xiàn),CRC體外類器官經(jīng)化療誘導(dǎo)后,部分死亡的腫瘤細(xì)胞導(dǎo)致ATP釋放至微環(huán)境中,觸發(fā)P2RX4介導(dǎo)的相鄰腫瘤細(xì)胞中雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)依賴的促生存信號(hào),增強(qiáng)其對(duì)mTOR抑制劑的抵抗。靶向抑制P2RX4或協(xié)同雷帕霉素治療,可干預(yù)上述嘌呤能信號(hào)引起的促腫瘤細(xì)胞生存程序[45]。研究表明,P2RX7蛋白在CRC組織中顯著高表達(dá),與腫瘤生存和轉(zhuǎn)移相關(guān)。過(guò)表達(dá)P2RX7的CRC細(xì)胞系相對(duì)于對(duì)照組表現(xiàn)出更強(qiáng)的抗凋亡、促血管生成、增強(qiáng)腫瘤干細(xì)胞特性以及促腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macropha-ges, TAMs)浸潤(rùn)。沉默P2RX7則可逆轉(zhuǎn)上述現(xiàn)象[46-49]。此外,有研究證實(shí)P2RX7受體可與失調(diào)的腸道菌群協(xié)同激活炎癥小體并誘發(fā)級(jí)聯(lián)炎癥反應(yīng),進(jìn)而促進(jìn)結(jié)腸炎相關(guān)CRC的發(fā)展[50]。但也有文獻(xiàn)指出,抑制P2RX7會(huì)誘發(fā)TGF-β1的產(chǎn)生,促進(jìn)Treg和中性粒細(xì)胞的浸潤(rùn)而加重CRC進(jìn)展[51]。此外,有研究鑒定出P2RX5是促進(jìn)CRC發(fā)生的前四大危險(xiǎn)因素,發(fā)現(xiàn)P2RX5及其他差異表達(dá)基因參與細(xì)胞凋亡和調(diào)控神經(jīng)營(yíng)養(yǎng)因子信號(hào)通路,但詳細(xì)的機(jī)制尚不清楚[52]。
2.2" P2X受體蛋白與肝癌
現(xiàn)有研究證明,P2RX3、P2RX4與P2RX7在肝癌中高表達(dá)。在原發(fā)性肝細(xì)胞癌中(hepatocellular carcinoma,HCC),細(xì)胞外ATP通過(guò)P2RX3蛋白激活JNK信號(hào)進(jìn)而誘導(dǎo)細(xì)胞周期蛋白D3和細(xì)胞周期蛋白依賴激酶4(cyclin dependent kinase 4, CDK4)表達(dá),促進(jìn)肝癌細(xì)胞惡性增殖[53]。此外,有研究表明丙肝病毒(hepatitis C virus,HCV)感染導(dǎo)致的HCC中P2RX4受體相較于非HCV相關(guān)HCC表達(dá)顯著增加,提示P2X相關(guān)蛋白的表達(dá)可能與肝炎病毒感染相關(guān)[54]。P2RX7則被證實(shí)與HCC侵襲和炎癥反應(yīng)密切相關(guān)。有學(xué)者報(bào)道他汀類藥物在肝癌中的抗腫瘤功效與P2RX7相關(guān),機(jī)制研究顯示他汀類藥物可通過(guò)P2RX7下調(diào)p-AKT與p-Gsk3β的水平,進(jìn)而抑制HCC的侵襲性[55]。同時(shí)有研究指出,沉默HepG2細(xì)胞系P2RX7受體的表達(dá),可促進(jìn)AMP活化誘導(dǎo)的蛋白激酶(AMP-activated protein kinase, AMPK)的磷酸化并降低固醇調(diào)節(jié)元件結(jié)合蛋白1(sterol regulatory element-binding protein 1,SREBP1)的表達(dá),進(jìn)而阻礙肝癌進(jìn)展[56]。此外,也有研究發(fā)現(xiàn)在HCC發(fā)育過(guò)程中,P2RX7受體的表達(dá)隨著炎癥持續(xù)時(shí)間的延長(zhǎng)而增加,并通過(guò)激活炎癥小體、氧化應(yīng)激和免疫調(diào)節(jié)促進(jìn)肝癌的持續(xù)進(jìn)展[57-59]。近期研究揭示,長(zhǎng)鏈非編碼RNA LncDQ可靶向P2RX7受體促進(jìn)腫瘤微環(huán)境中M2樣TAMs極化,導(dǎo)致HCC的免疫逃逸[60-62]。除HCC外,在肝腺癌和壺腹癌中也檢測(cè)到P2RX4和P2RX7受體的高表達(dá),其調(diào)控機(jī)制也與炎癥反應(yīng)密切相關(guān)[63]。
2.3" P2X受體蛋白與胃癌
研究報(bào)道P2RX3、P2RX4和P2RX7與胃癌(gastric cancer,GC)發(fā)病相關(guān)。P2RX3和P2RY2,一種P2嘌呤能G蛋白耦聯(lián)受體,被證明是VSNL1的下游基因,促進(jìn)了GC細(xì)胞的增殖和遷移[64]。也有研究報(bào)道P2RX4過(guò)表達(dá)增加了GC細(xì)胞的耐藥性,GC細(xì)胞通過(guò)主動(dòng)釋放ATP并與P2RX4受體作用促進(jìn)GC細(xì)胞增殖[65]。此外,GC中P2RX7表達(dá)顯著上調(diào),敲除P2RX7受體基因可導(dǎo)致GC細(xì)胞系HGC-27和AGS存活率顯著降低。而在SGC-7901細(xì)胞中過(guò)表達(dá)P2RX7受體則可顯著促進(jìn)細(xì)胞增殖[66-67]。近期研究證明ATP5B和P2RX7可促進(jìn)GC增殖并參與上皮間質(zhì)細(xì)胞轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)進(jìn)程。機(jī)制研究顯示,ATP合酶可上調(diào)GC微環(huán)境中的eATP,ATP5B過(guò)表達(dá)或BzATP處理顯著提高GC細(xì)胞中FAK和AKT的磷酸化以及MMP2的表達(dá),同時(shí)P2RX7的激活調(diào)節(jié)了E-cadherin、N-cadherin等間充質(zhì)標(biāo)志物的表達(dá)。使用P2RX7受體拮抗劑A740003可抑制上述FAK/AKT/MMP2通路,阻止GC進(jìn)展[68]。
2.4" P2X受體蛋白與腎癌
P2RX4、P2RX6與P2RX7被證明參與腎細(xì)胞癌(renal cell carcinoma,RCC)進(jìn)展。研究顯示,氧化磷酸化是RCC衍生ATP的主要來(lái)源,并通過(guò)P2RX4受體對(duì)RCC能量代謝和線粒體活性產(chǎn)生關(guān)鍵影響。靶向抑制P2RX4或沉默該受體的表達(dá)會(huì)引起腫瘤氧化應(yīng)激、溶酶體完整性失調(diào)和線粒體通透性變化(即過(guò)渡孔復(fù)合物的打開(kāi)、膜電位改變和鈣超載)。類器官模型進(jìn)一步證實(shí)該靶點(diǎn)對(duì)富含線粒體的腎癌組織具有更好的治療效果[69]。亦有文獻(xiàn)報(bào)道,微環(huán)境中的ATP通過(guò)激活P2RX6受體調(diào)節(jié)Ca2+內(nèi)流,介導(dǎo)p-ERK1/2/MMP9信號(hào)通路,促進(jìn)RCC細(xì)胞的遷移和侵襲,同時(shí)其相關(guān)蛋白受到METTL14的m6A甲基化修飾[70]。有研究還表明P2RX7在腎癌組織中顯著高表達(dá),是腎透明細(xì)胞癌患者術(shù)后癌癥特異性生存期的潛在獨(dú)立不良預(yù)后指標(biāo)[71]。
2.5" P2X受體蛋白與前列腺癌
P2RX2、P2RX4與P2RX7與前列腺癌也存在一定的關(guān)聯(lián)性。前列腺癌是一種雄激素依賴性疾病,睪酮等雄激素通過(guò)與雄激素受體結(jié)合促進(jìn)前列腺癌的進(jìn)展。研究顯示,睪丸間質(zhì)細(xì)胞中睪酮產(chǎn)生和分泌的嘌呤能受體是由P2RX2、P2RX4和P2RX6亞基異源組裝而成的,睪酮衍生物可選擇性增強(qiáng)P2RX2受體和P2RX4受體功能,提示嘌呤能受體與雄激素信號(hào)存在潛在關(guān)聯(lián)[72-73]。其中,P2RX2表達(dá)與腫瘤免疫細(xì)胞浸潤(rùn)水平和免疫檢查點(diǎn)基因表達(dá)呈正相關(guān),下調(diào)P2RX2導(dǎo)致前列腺癌患者生存率低[74]。P2RX4在前列腺癌組織中同樣呈顯著性增高,其與術(shù)后發(fā)生轉(zhuǎn)移相關(guān)。激動(dòng)劑處理可提高前列腺癌細(xì)胞系的遷移和侵襲能力[75]。而敲低P2RX4可減弱前列腺癌細(xì)胞的生長(zhǎng)、遷移和侵襲,并抑制FVB/NJ小鼠皮下腫瘤移植物的生長(zhǎng)[76]。此外,有研究顯示P2RX4參與PTEN和PHLPP調(diào)控的前列腺癌進(jìn)展以及阻止p-AKT耗竭的負(fù)反饋機(jī)制[77]。P2RX7受體同樣在前列腺癌組織中顯著高表達(dá),具有分期特異性,其表達(dá)水平與前列腺特異性抗原水平正相關(guān),是前列腺癌潛在的早期標(biāo)志物[78]。前列腺癌的惡性進(jìn)展被認(rèn)為與前列腺組織內(nèi)源性炎癥密切相關(guān)。有研究認(rèn)為,前列腺癌中P2RX7受體的上調(diào)可能通過(guò)NF-κB通路激活下游促炎因子的產(chǎn)生進(jìn)而影響腫瘤進(jìn)展[79]。此外有研究證實(shí),微環(huán)境中ATP可激活P2RX7受體促進(jìn)前列腺癌細(xì)胞的遷移和侵襲,并調(diào)節(jié)Snail、E-cadherin和Claudin-1等標(biāo)志物分子的表達(dá)。沉默或靶向抑制P2RX7后,ATP和BzATP介導(dǎo)的體外侵襲和遷移以及EMT相關(guān)標(biāo)志物的水平均受到抑制,IL-8和MMP-3的表達(dá)水平亦下調(diào),過(guò)表達(dá)P2RX7則具有相反的促癌作用[80-82]。還有文獻(xiàn)報(bào)道,阿托伐他汀可通過(guò)P2RX7/EHBP1/P-Rex1通路來(lái)抵抗前列腺癌的侵襲性,其中P2RX7發(fā)揮關(guān)鍵作用[83-84]。
2.6" P2X受體蛋白與乳腺癌
P2RX1、P2RX4和P2RX7可能與乳腺癌的進(jìn)展相關(guān)。P2RX1在正常乳腺上皮細(xì)胞中的表達(dá)低于腫瘤細(xì)胞,且與免疫細(xì)胞浸潤(rùn)程度和免疫檢查點(diǎn)表達(dá)呈顯著正相關(guān),但研究機(jī)制仍有待挖掘[85]。研究顯示,P2RX4可定位于乳腺癌細(xì)胞的酸性細(xì)胞器溶酶體中。P2RX4受體可以介導(dǎo)溶酶體釋放Ca2+以觸發(fā)
融合與自噬,同時(shí)抑制上皮標(biāo)志物E-cadherin和ZO-1的表達(dá),促進(jìn)乳腺癌EMT發(fā)生[86]。P2RX7被報(bào)道在正常乳腺組織中基本不表達(dá),在小葉和導(dǎo)管原位癌中,P2RX7受體在胞漿內(nèi)表達(dá),而在浸潤(rùn)性上皮癌細(xì)胞中,P2RX7受體在細(xì)胞表面表達(dá)[87-88]。因此,P2RX7相關(guān)受體可用來(lái)識(shí)別增生性小葉的早期癌變,并確定浸潤(rùn)性病變中癌變擴(kuò)散的真實(shí)程度,輔助確定手術(shù)切緣[89]。靶向抑制P2RX7有助于抑制乳腺癌進(jìn)展。miR-186和miR-150等miRNA被證明可以通過(guò)識(shí)別P2RX7受體的3′-UTR從而抑制其表達(dá),誘導(dǎo)乳腺癌細(xì)胞凋亡[90]。與P2RX4類似,P2RX7通過(guò)多種機(jī)制影響乳腺癌的侵襲與轉(zhuǎn)移。有研究發(fā)現(xiàn),P2RX7受體通過(guò)下調(diào)E-cadherin并上調(diào)AKT通路而介導(dǎo)MMP13表達(dá),促進(jìn)T47D乳腺癌細(xì)胞的侵襲和轉(zhuǎn)移[91]。P2RX7受體可以激活Ca2+-SK3鉀通道,介導(dǎo)乳腺癌細(xì)胞系的侵襲[92]。P2RX7受體還促進(jìn)了成熟形式的半胱氨酸組織蛋白酶的表達(dá),該蛋白酶可降解細(xì)胞外基質(zhì),促進(jìn)乳腺癌侵襲轉(zhuǎn)移。P2RX7還被證明能促進(jìn)Cathepsin B的釋放,激活Cdc42、Rho-GTP酶,重塑F-actin蛋白,促進(jìn)細(xì)胞伸長(zhǎng)和絲狀偽足形成,進(jìn)而促進(jìn)乳腺癌細(xì)胞間充質(zhì)侵襲性表型的形成[93]。此外,缺氧驅(qū)動(dòng)的P2RX7受體表達(dá)上調(diào)可引起ERK和AKT的磷酸化和NF-κB的核積累,調(diào)控基質(zhì)金屬蛋白酶MMP2和MMP9的表達(dá),進(jìn)而促進(jìn)MCF-7和MDA-MB-231等乳腺癌細(xì)胞系的侵襲和轉(zhuǎn)移[94-95]?,F(xiàn)有研究也關(guān)注了P2RX7對(duì)乳腺癌耐藥的影響,在他莫昔芬耐藥的MCF-7細(xì)胞中,P2RX7受體受到刺激后驅(qū)動(dòng)細(xì)胞外囊泡的分泌,以濃度依賴性方式促進(jìn)MCF-7細(xì)胞的侵襲[96]。
上述研究顯示P2X受體家族可通過(guò)多種機(jī)制作用于腫瘤細(xì)胞,亦可作用于腫瘤微環(huán)境中的免疫細(xì)胞,進(jìn)而影響腫瘤的發(fā)生發(fā)展及侵襲轉(zhuǎn)移。
3" 靶向P2X受體蛋白治療腫瘤
目前,腫瘤的轉(zhuǎn)移、復(fù)發(fā)及放化療耐藥仍是患者死亡的主要誘因,對(duì)腫瘤患者個(gè)體化的治療亟需深入揭示腫瘤進(jìn)展的關(guān)鍵分子機(jī)制,進(jìn)而開(kāi)發(fā)更多的治療靶點(diǎn)。如前文所述,越來(lái)越多研究揭示了P2X受體家族與腫瘤進(jìn)展密切相關(guān),因此抑制相關(guān)受體的表達(dá)和功能成為潛在的腫瘤治療新策略。目前已有20余項(xiàng)靶向抑制P2RX7治療慢性炎癥性疾病的藥物已經(jīng)推進(jìn)至臨床Ⅰ/Ⅱ期實(shí)驗(yàn)。然而,僅有1項(xiàng)關(guān)于靶向P2RX7治療腫瘤的臨床試驗(yàn)在研,提示P2X受體蛋白的功能可塑性可能影響了靶向性藥物開(kāi)發(fā)[97]。
多項(xiàng)臨床前研究已經(jīng)證明,使用P2X受體小分子拮抗劑可以抑制腫瘤生長(zhǎng)與轉(zhuǎn)移。例如在腎癌中,使用P2RX4特異性抑制劑5-BDBD可以引起腎癌細(xì)胞系和類器官能量代謝失穩(wěn)態(tài)而抑制腎癌進(jìn)展[69];在前列腺癌中,P2RX4特異性抑制劑5-BDBD和PSB-12062可導(dǎo)致前列腺癌細(xì)胞增殖減慢,減少其侵襲和轉(zhuǎn)移的能力[75];兩種P2RX7的特異性抑制劑LY294002和U0126可分別通過(guò)抑制前列腺癌細(xì)胞PI3K/AKT和ERK1/2通路的激活抑制其增殖和轉(zhuǎn)移[80-82];同樣P2RX7特異性抑制劑可阻止胰腺癌細(xì)胞增殖,侵襲和轉(zhuǎn)移[98];P2RX7拮抗劑大黃素可逆轉(zhuǎn)肺癌中的順鉑耐藥性[99];在結(jié)直腸癌中,通過(guò)A438079等藥物藥理學(xué)抑制P2RX7功能,可影響PI3K/Akt/GSK-3β信號(hào)通路,進(jìn)而使結(jié)腸癌細(xì)胞EMT和耐藥性產(chǎn)生了逆轉(zhuǎn),在肝癌模型中的研究也獲得了相似的結(jié)果[49,56]。受體拮抗劑的體外治療活性也表明相關(guān)受體可重編程細(xì)胞能量代謝,對(duì)腫瘤進(jìn)展起到重要作用。
P2X受體在腫瘤中作用具有兩面性,長(zhǎng)時(shí)間激活和刺激相關(guān)受體亦可引起細(xì)胞毒性反應(yīng)。正變構(gòu)激動(dòng)劑的治療作用一方面可能源于對(duì)免疫細(xì)胞腫瘤抗原抵抗以及抗腫瘤活性物質(zhì)釋放的促進(jìn)作用,另一方面可能是P2RX7大孔激活引起物質(zhì)跨膜運(yùn)輸所導(dǎo)致。有研究者發(fā)現(xiàn),在乳腺癌中利用P2RX4與P2RX7的天然激動(dòng)劑伊維菌素,腫瘤細(xì)胞發(fā)生壞死。機(jī)制研究顯示,該激動(dòng)劑可抑制NADPH氧化酶產(chǎn)生的活性氧、鈣調(diào)蛋白依賴性蛋白激酶Ⅱ(calcium-calmodulin-dependent protein kinase Ⅱ, CaMKⅡ)及線粒體通透性過(guò)渡孔(mitochondrial permeability transition pore, MPTP)。亦有研究指出,伊維菌素在乳腺癌中具有免疫調(diào)節(jié)和免疫檢測(cè)點(diǎn)誘導(dǎo)雙重作用,可將冷腫瘤轉(zhuǎn)化為熱腫瘤增加免疫治療的敏感性[100-101]。另有研究顯示,給予EL-4或EG7淋巴瘤、MCA纖維肉瘤或B16黑色素瘤的小鼠使用P2RX7激動(dòng)劑NAD+可導(dǎo)致Treg細(xì)胞耗竭和腫瘤消退[102]。可見(jiàn),無(wú)論是使用P2X受體拮抗劑還是激動(dòng)劑均可治療腫瘤,提示這與P2X受體發(fā)揮的作用不同有關(guān)。
4" 小結(jié)與展望
腫瘤微環(huán)境以及離子通道對(duì)腫瘤發(fā)生發(fā)展的影響是當(dāng)前腫瘤研究領(lǐng)域亟需解決的問(wèn)題之一。ATP在腫瘤微環(huán)境中積累,并通過(guò)激活P2X嘌呤能受體離子通道家族影響腫瘤的進(jìn)展。現(xiàn)有研究顯示,不同類型的腫瘤中都呈現(xiàn)出多種異常水平表達(dá)的P2X受體家族蛋白成員,這些相關(guān)蛋白通過(guò)下游信號(hào)通路影響了腫瘤的生長(zhǎng)、凋亡、侵襲和轉(zhuǎn)移等惡性行為。此外,P2RX4與P2RX7等受體在免疫細(xì)胞中高表達(dá),在腫瘤-免疫細(xì)胞間的相互作用扮演重要角色?,F(xiàn)今,隨著多種P2X家族蛋白的結(jié)構(gòu)不斷得到解析,促進(jìn)了靶向P2X家族的特異性靶向藥研發(fā)。然而,P2X家族蛋白在不同的組織微環(huán)境中具有功能的可塑性。因而,未來(lái)進(jìn)一步揭示P2X家族在不同腫瘤進(jìn)展中的關(guān)鍵作用和機(jī)制,探索P2X靶向藥對(duì)腫瘤治療的個(gè)體化用藥是研究的重點(diǎn)。同時(shí),鑒于部分家族分子在免疫系統(tǒng)中的表達(dá),未來(lái)聯(lián)合P2X受體的靶向治療與免疫治療也有望豐富腫瘤治療策略,助力腫瘤的個(gè)體化精準(zhǔn)治療。
參考文獻(xiàn):
[1] PREVARSKAYA N, SKRYMA R, SHUBA Y. Ion channels in cancer: are cancer hallmarks oncochannelopathies?[J]. Physiol Rev, 2018, 98(2): 559-621.
[2] CAPATINA A L, LAGOS D, BRACKENBURY W J. Targeting ion channels for cancer treatment: current progress and future challenges[J]. Rev Physiol Biochem Pharmacol, 2022, 183: 1-43.
[3] LEANZA L, MANAG A, ZORATTI M, et al. Pharmacolo-gical targeting of ion channels for cancer therapy: in vivo evidences[J]. Biochim Biophys Acta, 2016, 1863(6 Pt B): 1385-1397.
[4] DI V F, VULTAGGIO-POMA V, SARTI A C. P2X receptors in cancer growth and progression[J]. Biochem Pharmacol, 2021, 187: 114350.
[5] ILLES P, MLLER C E, JACOBSON K A, et al. Update of P2X receptor properties and their pharmacology: IUPHAR review 30[J]. Br J Pharmacol, 2021, 178(3): 489-514.
[6] TAM S W, HUFFER K, LI M, et al. Ion permeation pathway within the internal pore of P2X receptor channels[J]. Elife, 2023, 12: e84796.
[7] BURNSTOCK G, KENNEDY C. P2X receptors in health and disease[J]. Adv Pharmacol, 2011, 61: 333-372.
[8] HABERMACHER C, DUNNING K T, CHATAIGNEAU T, et al. Molecular structure and function of P2X receptors[J]. Neuropharmacology, 2016, 104: 18-30.
[9] SCHMID R, EVANS R J. ATP-gated P2X receptor channels: molecular insights into functional roles[J]. Annu Rev Physiol, 2019, 81: 43-62.
[10] SAUL A, HAUSMANN R, KLESS A, et al. Heteromeric assembly of P2X subunits[J]. Front Cell Neurosci, 2013, 7: 250.
[11] SCHWINDT T T, TRUJILLO C A, NEGRAES P D, et al. Directed differentiation of neural progenitors into neurons is accompanied by altered expression of P2X purinergic receptors[J]. J Mol Neurosci, 2011, 44(3): 141-146.
[12] CHEN L, LIU Y W, YUE K, et al. Differential expression of ATP-gated P2X receptors in DRG between chronic neuropathic pain and visceralgia rat models[J]. Purinergic Signal, 2016, 12(1): 79-87.
[13] KASUYA G, FUJIWARA Y, TAKEMOTO M, et al. Structural insights into divalent cation modulations of ATP-gated P2X receptor channels[J]. Cell Rep, 2016, 14(4): 932-944.
[14] HATTORI M, GOUAUX E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors[J]. Nature, 2012, 485(7397): 207-212.
[15] SAMWAYS D S K, LI Z Y, EGAN T M. Principles and pro-perties of ion flow in P2X receptors[J]. Front Cell Neurosci, 2014, 8: 6.
[16] KAWATE T, ROBERTSON J L, LI M F, et al. Ion access pathway to the transmembrane pore in P2X receptor channels[J]. J Gen Physiol, 2011, 137(6): 579-590.
[17] HEYMANN G, DAI J, LI M F, et al. Inter-and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels[J]. Proc Natl Acad Sci U S A, 2013, 110(42): E4045-E4054.
[18] ROBERTS J A, VIAL C, DIGBY H R, et al. Molecular pro-perties of P2X receptors[J]. Pflugers Arch, 2006, 452(5): 486-500.
[19] BARRERA N P, ORMOND S J, HENDERSON R M, et al. Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize[J]. J Biol Chem, 2005, 280(11): 10759-10765.
[20] MCCARTHY A E, YOSHIOKA C, MANSOOR S E. Full-length P2X7 structures reveal how palmitoylation prevents channel desensitization[J]. Cell, 2019, 179(3): 659-670.e13.
[21] BENNETTS F M, MOBBS J I, VENTURA S, et al. The P2X1 receptor as a therapeutic target[J]. Purinergic Signal, 2022, 18(4): 421-433.
[22] HAUSMANN R, SCHMALZING G. P2X1 and P2X2 receptors in the central nervous system as possible drug targets[J]. CNS Neurol Disord Drug Targets, 2012, 11(6): 675-686.
[23] SCHNEIDER R, LEVEN P, GLOWKA T, et al. A novel P2X2-dependent purinergic mechanism of enteric gliosis in intestinal inflammation[J]. EMBO Mol Med, 2021, 13(1): e12724.
[24] KUANG X J, ZHANG C Y, YAN B Y, et al. P2X2 receptors in pyramidal neurons are critical for regulating vulnerability to chronic stress[J]. Theranostics, 2022, 12(8): 3703-3718.
[25] LUO H M, YE J R, PU F Q, et al. Role and therapeutic target of P2X2/3 receptors in visceral pain[J]. Neuropeptides, 2023, 101: 102355.
[26] MARUCCI G, DAL BEN D, BUCCIONI M, et al. Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications[J]. Expert Opin Ther Pat, 2019, 29(12): 943-963.
[27] YI B Y, WANG S Y, LI W Z, et al. Potential applications of P2X3 receptor antagonists in the treatment of refractory cough[J]. Respir Med, 2023, 217: 107336.
[28] KRAJEWSKI J L. P2X3-Containing receptors as targets for the treatment of chronic pain[J]. Neurotherapeutics, 2020, 17(3): 826-838.
[29] SOPHOCLEOUS R A, OOI L, SLUYTER R. The P2X4 receptor: cellular and molecular characteristics of a promising neuroinflammatory target[J]. Int J Mol Sci, 2022, 23(10): 5739.
[30] HARHUN M I, POVSTYAN O V, ALBERT A P, et al. ATP-evoked sustained vasoconstrictions mediated by heteromeric P2X1/4 receptors in cerebral arteries[J]. Stroke, 2014, 45(8): 2444-2450.
[31] KING B F. Rehabilitation of the P2X5 receptor: a re-evaluation of structure and function[J]. Purinergic Signal, 2023, 19(2): 421-439.
[32] LALO U, BOGDANOV A, PANKRATOV Y. Age- and experience-related plasticity of ATP-mediated signaling in the neocortex[J]. Front Cell Neurosci, 2019, 13: 242.
[33] ANTONIO L S, STEWART A P, VARANDA W A, et al. Identification of P2X2/P2X4/P2X6 heterotrimeric receptors using atomic force microscopy(AFM)imaging[J]. FEBS Lett, 2014, 588(12): 2125-2128.
[34] PEGORARO A, DE MARCHI E, ADINOLFI E. P2X7 variants in oncogenesis[J]. Cells, 2021, 10(1): 189.
[35] DI VIRGILIO F, DAL BEN D, SARTI A C, et al. The P2X7 receptor in infection and inflammation[J]. Immunity, 2017, 47(1): 15-31.
[36] KAWATE T, MICHEL J C, BIRDSONG W T, et al. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state[J]. Nature, 2009, 460(7255): 592-598.
[37] MANSOOR S E, L W, OOSTERHEERT W, et al. X-ray structures define human P2X(3) receptor gating cycle and antagonist action[J]. Nature, 2016, 538(7623): 66-71.
[38] LI M F, WANG Y, BANERJEE R, et al. Molecular mechanisms of human P2X3 receptor channel activation and modulation by divalent cation bound ATP[J]. Elife, 2019, 8: e47060.
[39] KASUYA G, YAMAURA T, MA X B, et al. Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel[J]. Nat Commun, 2017, 8(1): 876.
[40] SHENG D Q, YUE C X, JIN F, et al. Structural insights into the orthosteric inhibition of P2X receptors by non-ATP analog antagonists[J]. Elife, 2024, 12: RP92829.
[41] MARKHAM A. Gefapixant: first approval[J]. Drugs, 2022, 82(6): 691-695.
[42] MCGARVEY L P, BIRRING S S, MORICE A H, et al. Efficacy and safety of gefapixant, a P2X3 receptor antagonist, in refractory chronic cough and unexplained chronic cough (COUGH-1 and COUGH-2): results from two double-blind, randomised, parallel-group, placebo-controlled, phase 3 trials[J]. Lancet, 2022, 399(10328): 909-923.
[43] WANG J, WANG Y, CUI W W, et al. Druggable negative allosteric site of P2X3 receptors[J]. Proc Natl Acad Sci U S A, 2018, 115(19): 4939-4944.
[44] SHEN C, ZHANG Y Q, CUI W W, et al. Structural insights into the allosteric inhibition of P2X4 receptors[J]. Nat Commun, 2023, 14(1): 6437.
[45] SCHMITT M, CETECI F, GUPTA J, et al. Colon tumour cell death causes mTOR dependence by paracrine P2X4 stimulation[J]. Nature, 2022, 612(7939): 347-353.
[46] ADINOLFI E, RAFFAGHELLO L, GIULIANI A L, et al. Expression of P2X7 receptor increases in vivo tumor growth[J]. Cancer Res, 2012, 72(12): 2957-2969.
[47] QIAN F, XIAO J J, HU B Y, et al. High expression of P2X7R is an independent postoperative indicator of poor prognosis in colorectal cancer[J]. Hum Pathol, 2017, 64: 61-68.
[48] ZHANG Y, DING J J, WANG L L. The role of P2X7 receptor in prognosis and metastasis of colorectal cancer[J]. Adv Med Sci, 2019, 64(2): 388-394.
[49] ZHANG Y, LI F, WANG L L, et al. A438079 affects colorectal cancer cell proliferation, migration, apoptosis, and pyroptosis by inhibiting the P2X7 receptor[J]. Biochem Biophys Res Commun, 2021, 558: 147-153.
[50] BERNARDAZZI C, CASTELO-BRANCO M T L, PGO B, et al. The P2X7 receptor promotes colorectal inflammation and tumorigenesis by modulating gut microbiota and the inflammasome[J]. Int J Mol Sci, 2022, 23(9): 4616.
[51] HOFMAN P, CHERFILS-VICINI J, BAZIN M, et al. Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer[J]. Cancer Res, 2015, 75(5): 835-845.
[52] GAO P, HE M, ZHANG C L, et al. Integrated analysis of gene expression signatures associated with colon cancer from three datasets[J]. Gene, 2018, 654: 95-102.
[53] MAYNARD J P, LEE J S, SOHN B H, et al. P2X3 purinergic receptor overexpression is associated with poor recurrence-free survival in hepatocellular carcinoma patients[J]. Oncotarget, 2015, 6(38): 41162-41179.
[54] KHALID M, MANZOOR S, AHMAD H, et al. Purinoceptor expression in hepatocellular virus (HCV)-induced and non-HCV hepatocellular carcinoma: an insight into the proviral role of the P2X4 receptor[J]. Mol Biol Rep, 2018, 45(6): 2625-2630.
[55] GHALALI A, MARTIN-RENEDO J, HGBERG J, et al. Atorvastatin decreases HBx-induced phospho-Akt in hepatocytes via P2X receptors[J]. Mol Cancer Res, 2017, 15(6): 714-722.
[56] LI X, ZHANG Y, JIN Q, et al. Liver kinase B1/AMP-activated protein kinase-mediated regulation by gentiopicroside ameliorates P2X7 receptor-dependent alcoholic hepatosteatosis[J]. Br J Pharmacol, 2018, 175(9): 1451-1470.
[57] NI J, ZHANG Z, LUO X, et al. Plasticizer DBP activates NLRP3 inflammasome through the P2X7 receptor in HepG2 and L02 cells[J]. J Biochem Mol Toxicol, 2016, 30(4): 178-185.
[58] HRAUF J A, KANY S, JANICOVA A, et al. Short exposure to ethanol diminishes caspase-1 and ASC activation in human HepG2 cells in vitro[J]. Int J Mol Sci, 2020, 21(9): 3196.
[59] ZHANG W J, HU C G, ZHU Z M, et al. Effect of P2X7 receptor on tumorigenesis and its pharmacological properties[J]. Biomed Pharmacother, 2020, 125: 109844.
[60] LIN Z W, LIU J K. lncRNA DQ786243 promotes hepatocellular carcinoma cell invasion and proliferation by regulating the miR-15b-5p/Wnt3A axis[J]. Mol Med Rep, 2021, 23(5): 318.
[61] ZENG B, LIN Z W, YE H L, et al. Upregulation of LncDQ is associated with poor prognosis and promotes tumor progression via epigenetic regulation of the EMT pathway in HCC[J]. Cell Physiol Biochem, 2018, 46(3): 1122-1133.
[62] ALMATROODI S A, MCDONALD C F, DARBY I A, et al. Characterization of M1/M2 tumour-associated macrophages (TAMs) and Th1/Th2 cytokine profiles in patients with NSCLC[J]. Cancer Microenviron, 2016, 9(1): 1-11.
[63] ASIF A, KHALID M, MANZOOR S, et al. Role of purinergic receptors in hepatobiliary carcinoma in Pakistani population: an approach towards proinflammatory role of P2X4 and P2X7 receptors[J]. Purinergic Signal, 2019, 15(3): 367-374.
[64] DAI Q Q, WANG Y Y, JIANG Y P, et al. VSNL1 promotes gastric cancer cell proliferation and migration by regulating P2X3/P2Y2 receptors and is a clinical indicator of poor prognosis in gastric cancer patients[J]. Gastroenterol Res Pract, 2020, 2020: 7241942.
[65] REYNA-JELDES M, DE LA FUENTE-ORTEGA E, CERDA D, et al. Purinergic P2Y2 and P2X4 receptors are involved in the epithelial-mesenchymal transition and metastatic potential of gastric cancer derived cell lines[J]. Pharmaceutics, 2021, 13(8): 1234.
[66] CALIK I, CALIK M, SARIKAYA B, et al. P2X7 receptor as an Independent prognostic indicator in gastric cancer[J]. Bosn J Basic Med Sci, 2020, 20(2): 188-196.
[67] LILI W, YUN L, TINGRAN W, et al. P2RX7 functions as a putative biomarker of gastric cancer and contributes to worse prognosis[J]. Exp Biol Med (Maywood), 2019, 244(9): 734-742.
[68] WANG X F, CHANG X Y, HE C Y, et al. ATP5B promotes the metastasis and growth of gastric cancer by activating the FAK/AKT/MMP2 pathway[J]. FASEB J, 2021, 35(4): e20649.
[69] RUPERT C, DELL' AVERSANA C, MOSCA L, et al. Therapeutic targeting of P2X4 receptor and mitochondrial metabolism in clear cell renal carcinoma models[J]. J Exp Clin Cancer Res, 2023, 42(1): 134.
[70] GONG D K, ZHANG J, CHEN Y H, et al. The m6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca2+ influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway[J]. J Exp Clin Cancer Res, 2019, 38(1): 233.
[71] LIU Z, LIU Y D, XU L, et al. P2X7 receptor predicts postope-rative cancer-specific survival of patients with clear-cell renal cell carcinoma[J]. Cancer Sci, 2015, 106(9): 1224-1231.
[72] ANTONIO L S, COSTA R R, GOMES M D, et al. Mouse Leydig cells express multiple P2X receptor subunits[J]. Purinergic Signal, 2009, 5(3): 277-287.
[73] SIVCEV S, SLAVIKOVA B, RUPERT M, et al. Synthetic testosterone derivatives modulate rat P2X2 and P2X4 receptor channel gating[J]. J Neurochem, 2019, 150(1): 28-43.
[74] LI Q Y, WU B L, DABA M T A, et al. Identification of calcium channel-related gene P2RX2 for prognosis and immune infiltration in prostate cancer[J]. Dis Markers, 2022, 2022: 8058160.
[75] HE J P, ZHOU Y H, ARREDONDO CARRERA H M, et al. Inhibiting the P2X4 receptor suppresses prostate cancer growth in vitro and in vivo, suggesting a potential clinical target[J]. Cells, 2020, 9(11): 2511.
[76] MAYNARD J P, LU J Y, VIDAL I, et al. P2X4 purinergic receptors offer a therapeutic target for aggressive prostate cancer[J]. J Pathol, 2022, 256(2): 149-163.
[77] GHALALI A, YE Z W, HGBERG J, et al. PTEN and PHLPP crosstalk in cancer cells and in TGFβ-activated stem cells[J]. Biomed Pharmacother, 2020, 127: 110112.
[78] SOLINI A, SIMEON V, DEROSA L, et al. Genetic interaction of P2X7 receptor and VEGFR-2 polymorphisms identifies a favorable prognostic profile in prostate cancer patients[J]. Oncotarget, 2015, 6(30): 28743-28754.
[79] RAVENNA L, SALE P, DI VITO M, et al. Up-regulation of the inflammatory-reparative phenotype in human prostate carcinoma[J]. Prostate, 2009, 69(11): 1245-1255.
[80] QIU Y, LI W H, ZHANG H Q, et al. P2X7 mediates ATP-driven invasiveness in prostate cancer cells[J]. PLoS One, 2014, 9(12): e114371.
[81] WANG Z L, ZHU S, TAN S R, et al. The P2 purinoceptors in prostate cancer[J]. Purinergic Signal, 2023, 19(1): 255-263.
[82] QIAO C C, TANG Y Q, LI Q Q, et al. ATP-gated P2X7 receptor as a potential target for prostate cancer[J]. Hum Cell, 2022, 35(5): 1346-1354.
[83] GHALALI A, WIKLUND F, ZHENG H Y, et al. Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells[J]. Carcinogenesis, 2014, 35(7): 1547-1555.
[84] GHALALI A, WIKLUND F, DARABI H, et al. Abstract 588: evidence for a role of a P2X7-EHBP1-Akt axis in prostate carcinogenesis and in statin chemo-prevention[J]. Cancer Res, 2021, 72(8 Supplemen): 588.
[85] XU Y Y, ZOU B, FAN B J, et al. NcRNAs-mediated P2RX1 expression correlates with clinical outcomes and immune infiltration in patients with breast invasive carcinoma[J]. Aging (Albany NY), 2022, 14(10): 4471-4485.
[86] CHADET S, ALLARD J, BRISSON L, et al. P2x4 receptor promotes mammary cancer progression by sustaining autophagy and associated mesenchymal transition[J]. Oncogene, 2022, 41(21): 2920-2931.
[87] TAN C, HAN L I, ZOU L L, et al. Expression of P2X7R in breast cancer tissue and the induction of apoptosis by the gene-specific shRNA in MCF-7 cells[J]. Exp Ther Med, 2015, 10(4): 1472-1478.
[88] ZHENG L M, ZHANG X K, YANG F, et al. Regulation of the P2X7R by microRNA-216b in human breast cancer[J]. Biochem Biophys Res Commun, 2014, 452(1): 197-204.
[89] SLATER M, DANIELETTO S, POOLEY M, et al. Differentiation between cancerous and normal hyperplastic lobules in breast lesions[J]. Breast Cancer Res Treat, 2004, 83(1): 1-10.
[90] ROBERTSON N M, YIGIT M V. The role of microRNA in resistance to breast cancer therapy[J]. Wiley Interdiscip Rev RNA, 2014, 5(6): 823-833.
[91] XIA J Y, YU X L, TANG L, et al. P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway[J]. Oncol Rep, 2015, 34(1): 103-110.
[92] JELASSI B, CHANTME A, ALCARAZ-PREZ F, et al. P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness[J]. Oncogene, 2011, 30(18): 2108-2122.
[93] BRISSON L, CHADET S, LOPEZ-CHARCAS O, et al. P2X7 receptor promotes mouse mammary cancer cell invasiveness and tumour progression, and is a target for anticancer treatment[J]. Cancers (Basel), 2020, 12(9): 2342.
[94] TAFANI M, SCHITO L, PELLEGRINI L, et al. Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-κB[J]. Carcinogenesis, 2011, 32(8): 1167-1175.
[95] AZIMI I, BEILBY H, DAVIS F M, et al. Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells[J]. Mol Oncol, 2016, 10(1): 166-178.
[96] PARK M, KIM J, PHUONG N T T, et al. Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production[J]. Sci Rep, 2019, 9(1): 11587.
[97] YOUNG C N J, GRECKI D C. P2RX7 purinoceptor as a therapeutic target-the second coming?[J]. Front Chem, 2018, 6: 248.
[98] YU Q Q, WANG X, LI X Y, et al. Purinergic P2X7R as a potential target for pancreatic cancer[J]. Clin Transl Oncol, 2023, 25(8): 2297-2305.
[99] LI Q Q, ZHU X D, SONG W, et al. The P2X7 purinergic receptor: a potential therapeutic target for lung cancer[J]. J Cancer Res Clin Oncol, 2020, 146(11): 2731-2741.
[100] DRAGANOV D, HAN Z, RANA A, et al. Ivermectin converts cold tumors hot and synergizes with immune checkpoint blockade for treatment of breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 22.
[101] DRAGANOV D, GOPALAKRISHNA-PILLAI S, CHEN Y R, et al. Modulation of P2X4/P2X7/pannexin-1 sensitivity to extracellular ATP via ivermectin induces a non-apoptotic and inflammatory form of cancer cell death[J]. Sci Rep, 2015, 5: 16222.
[102] KOCH-NOLTE F, EICHHOFF A, PINTO-ESPINOZA C, et al. Novel biologics targeting the P2X7 ion channel[J]. Curr Opin Pharmacol, 2019, 47: 110-118.
(編輯" 張" 敏)