摘要 缺血性腦卒中發(fā)病率較高,其高致殘率影響病人的生存質(zhì)量,動(dòng)脈粥樣硬化是缺血性腦卒中的主要病因。microRNA作為一類內(nèi)源性小分子RNA在腦血管疾病中參與調(diào)控炎癥反應(yīng)、細(xì)胞損傷等病理過(guò)程,其中miR-155認(rèn)為在腦血管疾病的發(fā)生中發(fā)揮了重要的調(diào)控作用?;趍iR-155在動(dòng)脈粥樣硬化及缺血性腦卒中病人與動(dòng)物實(shí)驗(yàn)?zāi)P椭械谋磉_(dá)情況,綜述miR-155與動(dòng)脈粥樣硬化及缺血性腦卒中的關(guān)系,為缺血性腦卒中的預(yù)防、治療及預(yù)后的評(píng)估提供依據(jù)。
關(guān)鍵詞 缺血性腦卒中;miR-155;動(dòng)脈粥樣硬化;綜述
doi:10.12102/j.issn.1672-1349.2023.16.016
腦卒中是全球第二大死因,缺血性腦卒中是重要的疾病類型[1]。缺血性腦卒中是中老年人群的高發(fā)疾病,由于腦供血?jiǎng)用}狹窄或閉塞,引起供血部位缺血、缺氧,進(jìn)而導(dǎo)致腦組織的壞死,病人發(fā)生偏癱、言語(yǔ)不利等癥狀[2-3]。動(dòng)脈粥樣硬化作為缺血性腦卒中的病理學(xué)基礎(chǔ),受到高血壓、糖尿病、高脂血癥等因素的影響,與microRNA-155(miR-155)表達(dá)密切相關(guān)[4]。miR-155作為一類內(nèi)源性小分子非編碼RNA,參與神經(jīng)炎癥、神經(jīng)變性等生物學(xué)進(jìn)程[5]。有研究表明,miR-155表達(dá)促進(jìn)了動(dòng)脈粥樣硬化的形成[6],參與缺血性腦卒中的進(jìn)展[7]。現(xiàn)通過(guò)分析miR-155在缺血性腦卒中病人及動(dòng)物實(shí)驗(yàn)?zāi)P椭械谋磉_(dá)情況,探討其對(duì)缺血性腦卒中的預(yù)測(cè)及缺血后腦損傷嚴(yán)重程度判定的意義,為缺血性腦卒中病人的預(yù)防及治療提供依據(jù)。
1 miR-155可促進(jìn)動(dòng)脈粥樣硬化的進(jìn)展
1.1 miR-155作用于血管平滑肌細(xì)胞
人體內(nèi)血管平滑肌細(xì)胞具有維持血管的穩(wěn)定性和正常收縮的功能,同時(shí)參與維持血管張力[8],血管平滑肌細(xì)胞破壞導(dǎo)致動(dòng)脈粥樣硬化。Li等[9]構(gòu)建了轉(zhuǎn)染miR-155基因的小鼠模型,使miR-155在小鼠體內(nèi)過(guò)表達(dá),結(jié)果顯示,小鼠主動(dòng)脈鈣沉積與miR-155表達(dá)呈正相關(guān),可能是miR-155通過(guò)抑制蛋白激酶B(AKT)的激活,促進(jìn)血管平滑肌細(xì)胞凋亡,從而導(dǎo)致血管壁形成鈣化。Park等[10]通過(guò)逆轉(zhuǎn)錄聚合酶鏈?zhǔn)椒磻?yīng)(reverse transcription-polymerase chain reaction,RT-PCR)技術(shù)測(cè)定動(dòng)脈粥樣硬化小鼠外周血清miR-155的表達(dá)水平,結(jié)果顯示,動(dòng)脈粥樣硬化小鼠miR-155表達(dá)水平高于正常小鼠,該研究表明核因子κB(nuclear factor kappa-B,NF-κB)誘導(dǎo)的miR-155破壞了血管平滑肌的正常功能,促進(jìn)內(nèi)膜增殖。miR-155以NF-κB依賴性方式抑制可溶性鳥苷酸環(huán)化酶β1(soluble guanylyl cyclase β1,sGCβ1)表達(dá),進(jìn)而在炎癥反應(yīng)發(fā)生條件下抑制可溶性鳥苷酸環(huán)化酶/環(huán)鳥苷單磷酸(soluble guanylyl cyclase/cyclic guanosine monophosphate,sGC/cGMP)通路,使血管平滑肌細(xì)胞由收縮性轉(zhuǎn)變?yōu)楹铣尚?,促進(jìn)動(dòng)脈粥樣硬化發(fā)生。由此可知,miR-155在破壞血管平滑肌細(xì)胞的正常表型及功能同時(shí)促進(jìn)了血管平滑肌細(xì)胞凋亡,導(dǎo)致動(dòng)脈粥樣硬化形成。因此,敲低miR-155表達(dá)可改善血管平滑肌損傷程度,阻止細(xì)胞表型的轉(zhuǎn)換,從而抑制或延緩動(dòng)脈粥樣硬化進(jìn)程。
1.2 miR-155與趨化因子(chemokines)相互作用
趨化因子作為一類分泌細(xì)胞因子,參與誘導(dǎo)細(xì)胞遷移、炎癥反應(yīng)及自身免疫發(fā)生等病理學(xué)進(jìn)程,有研究顯示,趨化因子在動(dòng)脈粥樣硬化形成過(guò)程中發(fā)揮著重要的調(diào)控作用[11]。在動(dòng)脈粥樣硬化斑塊形成過(guò)程中,血管內(nèi)皮細(xì)胞受損分泌炎性物質(zhì),同時(shí)分泌趨化因子[12-13],促使炎癥細(xì)胞聚集,觸發(fā)炎癥反應(yīng)[14]。有研究指出,趨化因子C-C基序配體2(C-C motif ligand 2,CCL2)作為一類炎癥趨化因子,通過(guò)激活 C-C趨化因子受體2(C-C Chemokine receptor 2,CCR2)促進(jìn)動(dòng)脈粥樣硬化形成[13]。有研究分析了miR-155與趨化因子CCL2之間的關(guān)系,進(jìn)而探討miR-155對(duì)動(dòng)脈粥樣硬化的調(diào)控作用,結(jié)果顯示,在參與動(dòng)脈粥樣硬化的巨噬細(xì)胞中,miR-155表達(dá)顯著上調(diào),且巨噬細(xì)胞分泌的CCL2促進(jìn)血管內(nèi)炎癥反應(yīng),過(guò)表達(dá)的miR-155可抑制B淋巴細(xì)胞6(B cell lymphoma 6,Bcl-6)的表達(dá),Bcl-6缺乏觸發(fā)CCL2表達(dá),促進(jìn)CCL2介導(dǎo)的炎癥反應(yīng),加速動(dòng)脈粥樣硬化進(jìn)展[15]。Chistiakov等[16]研究動(dòng)脈粥樣硬化過(guò)程中發(fā)現(xiàn),miR-155誘導(dǎo)CCL2表達(dá)可促使動(dòng)脈粥樣硬化炎性反應(yīng)的發(fā)生,加速動(dòng)脈粥樣硬化進(jìn)展。因此,在臨床治療中敲低miR-155的表達(dá)或阻斷miR-155對(duì)CCL2的誘導(dǎo)作用,從而使巨噬細(xì)胞靜止,減弱炎癥反應(yīng),有效阻止動(dòng)脈粥樣硬化的進(jìn)展,為動(dòng)脈粥樣硬化的治療提供了新思路。
1.3 miR-155作用于血管內(nèi)皮細(xì)胞
血管內(nèi)皮細(xì)胞功能障礙參與了動(dòng)脈粥樣硬化的病理性進(jìn)展。Gimbrone等[17]研究表明,高脂血癥、糖尿病、高血壓、炎癥反應(yīng)等因素均導(dǎo)致血管內(nèi)皮細(xì)胞功能受損,促進(jìn)動(dòng)脈粥樣硬化斑塊的形成。Weber等[18]研究顯示,內(nèi)皮功能障礙是早期動(dòng)脈粥樣硬化的重要特征,使小鼠主動(dòng)脈內(nèi)皮細(xì)胞中miR-155過(guò)表達(dá)后,相較于對(duì)照組,血管內(nèi)皮細(xì)胞的增殖、凋亡及遷移能力受到抑制,Krüppel樣因子5(Krüppel-like factor 5,KLF5)是一種含鋅指轉(zhuǎn)錄因子,可促進(jìn)血管重塑。Zheng等[19]在過(guò)表達(dá)KLF5的細(xì)胞外囊泡中分離出miR-155,通過(guò)RT-PCR技術(shù)測(cè)定后可見miR-155表達(dá)水平較對(duì)照組高15.31倍。KLF5可將血管平滑肌細(xì)胞產(chǎn)生的miR-155轉(zhuǎn)移至血管內(nèi)皮細(xì)胞,轉(zhuǎn)移至內(nèi)皮細(xì)胞的miR-155降低緊密連接(tight junction,TJ)蛋白的表達(dá),破壞內(nèi)皮細(xì)胞的功能。在miR-155模擬轉(zhuǎn)染模型中miR-155通過(guò)抑制血管內(nèi)皮細(xì)胞的增殖、血管新生及遷移影響內(nèi)皮功能。因此推斷,KLF5與miR-155表達(dá)呈正相關(guān),由血管平滑肌細(xì)胞轉(zhuǎn)移至血管內(nèi)皮細(xì)胞的miR-155在抑制血管內(nèi)皮細(xì)胞功能同時(shí)降低了細(xì)胞膜TJ蛋白表達(dá),促進(jìn)動(dòng)脈粥樣硬化。由此可見,miR-155通過(guò)破壞血管內(nèi)皮細(xì)胞的功能加速動(dòng)脈粥樣硬化的進(jìn)展。因此,在臨床治療中敲低miR-155的表達(dá),并阻斷miR-155在血管平滑肌細(xì)胞及血管內(nèi)皮細(xì)胞之間的轉(zhuǎn)移,可阻止血管內(nèi)皮功能損傷,延緩動(dòng)脈粥樣硬化的進(jìn)展。
miR-155參與了多個(gè)促進(jìn)動(dòng)脈粥樣硬化的病理過(guò)程:miR-155損害了血管平滑肌細(xì)胞與血管內(nèi)皮細(xì)胞,改變細(xì)胞表型,促進(jìn)鈣化及脂質(zhì)的聚集;miR-155與趨化因子相互作用促進(jìn)血管壁及巨噬細(xì)胞內(nèi)的炎癥反應(yīng),加速動(dòng)脈粥樣硬化進(jìn)展。敲低miR-155的表達(dá)阻斷與miR-155共同作用的因子,并阻斷miR-155在不同類型細(xì)胞間的轉(zhuǎn)移,控制動(dòng)脈粥樣硬化的進(jìn)展,從而預(yù)防缺血性腦卒中的發(fā)生。
2 miR-155促進(jìn)缺血性腦卒中的進(jìn)展
缺血性腦卒中發(fā)生后引起神經(jīng)功能損害,缺血后再灌注引起腦水腫、顱內(nèi)再出血等繼發(fā)性腦損傷。在缺血性腦卒中的進(jìn)展中,miR-155作為缺血性腦卒中的生物學(xué)標(biāo)志物,作用于相關(guān)信號(hào)通路促進(jìn)缺血性腦卒中發(fā)展,參與缺血后腦損傷及缺血再灌注損傷的病理過(guò)程[20-21]。
2.1 miR-155作用于缺血性腦卒中的相關(guān)信號(hào)通路及靶點(diǎn)
有研究顯示,Janus激酶2/信號(hào)轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子3(Janus kinase 2/signal transducers and activators of transcription 3,JAK2/STAT3)軸參與了腦卒中病人神經(jīng)細(xì)胞損傷[22]。Adly等[23]分析46例急性缺血性腦卒中病人外周血清miR-155的表達(dá)水平,急性缺血性腦卒中病人外周血清miR-155表達(dá)水平是正常人8.5倍,與正常人相比,急性缺血性腦卒中病人JAK2與STAT3分別高出2.9倍及4.2倍,miR-155、JAK2與STAT3與炎癥介質(zhì)腫瘤壞死因子α(tumor necrosis factor alpha,TNF-α)表達(dá)成正比,上述相關(guān)因子過(guò)表達(dá)均導(dǎo)致缺血后腦損傷的病理變化。由于JAK2是STAT3的上游,并且STAT3是miR-155表達(dá)必需的因子,因此認(rèn)為觸發(fā)JAK2/STAT3軸可作為miR-155引發(fā)缺血后炎癥反應(yīng)的潛在機(jī)制之一。Chen等[24]使用過(guò)表達(dá)miR-155的小鼠構(gòu)建缺血性腦卒中模型,通過(guò)水迷宮測(cè)試小鼠的學(xué)習(xí)記憶能力,結(jié)果顯示,過(guò)表達(dá)miR-155的小鼠學(xué)習(xí)及記憶能力低于對(duì)照組,miR-155的過(guò)表達(dá)造成了神經(jīng)細(xì)胞功能損傷;Toll樣受體4(Toll-like receptor 4,TLR4)和人髓樣分化因子88(myeloid differentiation primary response 88,MyD88)表達(dá)隨之增加,抑制miR-155表達(dá)后TLR4和MyD88表達(dá)減弱,但人神經(jīng)母細(xì)胞瘤細(xì)胞SH-SY5Y 細(xì)胞活性增強(qiáng);使用TLR4/MyD88通路抑制劑可逆轉(zhuǎn)miR-155對(duì)SH-SY5Y細(xì)胞的損傷作用。上述結(jié)果表明miR-155通過(guò)激活TLR4/MyD88通路導(dǎo)致缺血后神經(jīng)細(xì)胞損傷,參與缺血性腦卒中的病理過(guò)程。V-maf肌腱膜纖維肉瘤癌基因同源物B(V-maf musculoaponeurotic fibrosarcoma oncogene homolog B,MafB)是一種抗炎因子基因的關(guān)鍵轉(zhuǎn)錄激活因子,是miR-155的下游靶基因。Zhang等[25]測(cè)定缺血性腦卒中病人外周血清miR-155表達(dá)升高,MafB表達(dá)降低,利用誘導(dǎo)的氧葡萄糖剝奪/復(fù)氧(oxygen glucose deprivation/reoxygenation,OGD/R)細(xì)胞模型處理SH-SY5Y細(xì)胞后,miR-155與MafB的表達(dá)呈負(fù)相關(guān)。由此可見,miR-155通過(guò)負(fù)調(diào)節(jié)MafB的表達(dá)對(duì)腦組織產(chǎn)生破壞作用。miR-155參與缺血性腦卒中的多個(gè)信號(hào)通路及作用靶點(diǎn),敲低miR-155表達(dá)并應(yīng)用相應(yīng)的抑制劑拮抗miR-155的作用靶點(diǎn)阻止信號(hào)通路的傳導(dǎo)可作為治療缺血性腦卒中的新方法。
2.2 miR-155作為缺血性腦卒中的生物學(xué)標(biāo)志物
多種因子可作為缺血性腦卒中發(fā)展過(guò)程中的標(biāo)志物,miR-155是其中重要因子之一。在缺血性腦卒中的病變過(guò)程中miR-155升高提示著疾病的進(jìn)展[26]。為探討miR-155在缺血后腦損傷中的作用,Yang等[27]將脈絡(luò)叢上皮(choroid plexus epithelial,CPE)細(xì)胞暴露于OGD/R下,miR-155-5p表達(dá)增加,利用小鼠構(gòu)建瞬時(shí)大腦中動(dòng)脈閉塞(transient middle cerebral artery occlusion,tMCAO)模型,使用miR-155-5p抑制劑處理后的小鼠腦組織細(xì)胞自噬性及炎癥反應(yīng)降低,可見miR-155-5p表達(dá)加重了缺血性腦損傷的程度。Shi等[28]利用大鼠建立了大腦中動(dòng)脈閉塞/再灌注(middle cerebral artery occlusion/reperfusion,MCAO/R)大鼠模型,缺血30 min后再灌注,伴隨再灌注時(shí)間增加,miR-155-5p表達(dá)水平隨之增高,應(yīng)用miR-155-5p拮抗劑注射到MCAO/R大鼠體內(nèi)后通過(guò)聚合酶鏈?zhǔn)椒磻?yīng)(PCR)技術(shù)測(cè)得miR-155-5p表達(dá)降低,減小腦梗死的面積,提示miR-155-5p可能是腦缺血再灌注損傷的調(diào)節(jié)因子;隨著復(fù)氧時(shí)間增加,miR-155-5p的表達(dá)隨之增加,炎癥反應(yīng)發(fā)生,且細(xì)胞活力降低,抑制miR-155-5p表達(dá)后細(xì)胞活力增加且炎性因子釋放減少。表明miR-155-5p可能參與了缺血再灌注的細(xì)胞損傷及炎癥反應(yīng),并加速了缺血再灌注造成的腦組織損傷進(jìn)程。血管內(nèi)皮細(xì)胞分泌的內(nèi)皮微泡(endothelial microvesicle,EMV)可反映內(nèi)皮細(xì)胞的功能改變[29],內(nèi)皮微泡是循環(huán)中miRNA的主要載體[30]。Zhang等[31]研究顯示,在缺血性腦卒中急性期,攜帶miR-155的微泡EMVs-miR-155相較于對(duì)照組增加了1.7倍,亞急性期EMVs-miR-155的表達(dá)增加了2.5倍,隨著病情進(jìn)展,miR-155的表達(dá)隨之增加,EMVs-miR-155的表達(dá)水平與梗死體積和美國(guó)國(guó)立衛(wèi)生研究院卒中量表(NIHSS)評(píng)分呈正相關(guān)。NIHSS評(píng)分中重度的缺血性腦卒中病人EMVs-miR-155表達(dá)顯著增加,EMVs及EMVs-miR-155可作為缺血性腦卒中病人的獨(dú)立性危險(xiǎn)因素,并對(duì)缺血性腦卒中有較高的診斷價(jià)值,同時(shí)該研究表明EMVs-miR-155在非中風(fēng)個(gè)體中也可作為缺血性腦卒中發(fā)生的預(yù)測(cè)因子。miR-155作為缺血性腦卒中疾病進(jìn)展的特異性生物學(xué)標(biāo)志物,可評(píng)估缺血性腦卒中發(fā)生后腦損傷的程度。敲低miR-155的表達(dá)可減輕缺血后的腦損傷程度,改善病人預(yù)后。
3 小 結(jié)
綜上所述,miR-155在缺血性腦卒中的疾病進(jìn)展中作用于多種信號(hào)通路及靶點(diǎn),可評(píng)估缺血后腦損傷及缺血再灌注后腦損傷的程度,且miR-155可作為缺血性腦卒中發(fā)生的預(yù)測(cè)因子,為缺血性腦卒中的嚴(yán)重程度判定及預(yù)后評(píng)估提供了新的思路。miR-155參與了動(dòng)脈粥樣硬化及缺血性腦卒中的發(fā)展過(guò)程,發(fā)揮了對(duì)疾病的調(diào)控作用。抑制miR-155的表達(dá),阻斷相關(guān)通路及作用靶點(diǎn)可有效預(yù)防和延緩缺血性腦卒中,因此miR-155可作為缺血性腦卒中潛在的治療靶點(diǎn)。若能結(jié)合其他相關(guān)調(diào)控因子綜合治療,將進(jìn)一步改善病人預(yù)后。
參考文獻(xiàn):
[1]HERPICH F,RINCON F.Management of acute ischemic stroke[J].Critical Care Medicine,2020,48(11):1654-1663.
[2]PUTAALA J.Ischemic stroke in young adults[J].Continuum,2020,26(2):386-414.
[3]MAIDA C D,NORRITO R L,DAIDONE M,et al.Neuroinflammatory mechanisms in ischemic stroke:focus on cardioembolic stroke,background,and therapeutic approaches[J].International Journal of Molecular Sciences,2020,21(18):6454.
[4]DU F,YU F,WANG Y Z,et al.microRNA-155 deficiency results in decreased macrophage inflammation and attenuated atherogenesis in apolipoprotein E-deficient mice[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2014,34(4):759-767.
[5]ZHANG B,YAO Y,SUN Q F,et al.Circulating mircoRNA-21 as a predictor for vascular restenosis after interventional therapy in patients with lower extremity arterial occlusive disease[J].Bioscience Reports,2017,37(2):BSR20160502.
[6]CHISTIAKOV D A,OREKHOV A N,BOBRYSHEV Y V.Chemokines and relevant microRNAs in the atherogenic process[J].Mini Reviews in Medicinal Chemistry,2018,18(7):597-608.
[7]HARTMANN P,SCHOBER A,WEBER C.Chemokines and microRNAs in atherosclerosis[J].Cellular and Molecular Life Sciences,2015,72(17):3253-3266.
[8]CHOI S,PARK M,KIM J,et al.TNF-α elicits phenotypic and functional alterations of vascular smooth muscle cells by miR-155-5p-dependent down-regulation of cGMP-dependent kinase 1[J].The Journal of Biological Chemistry,2018,293(38):14812-14822.
[9]LI Y,SUN W,SAAOUD F,et al.MiR155 modulates vascular calcification by regulating Akt-FOXO3a signalling and apoptosis in vascular smooth muscle cells[J].Journal of Cellular and Molecular Medicine,2021,25(1):535-548.
[10]PARK M,CHOI S,KIM S,et al.NF-κB-responsive miR-155 induces functional impairment of vascular smooth muscle cells by downregulating soluble guanylyl cyclase[J].Experimental amp; Molecular Medicine,2019,51(2):1-12.
[11]GENCER S,EVANS B R,VAN DER VORST E P C,et al.Inflammatory chemokines in atherosclerosis[J].Cells,2021,10(2):226.
[12]WINTER C,SILVESTRE-ROIG C,ORTEGA-GOMEZ A,et al.Chrono-pharmacological targeting of the CCL2-CCR2 axis ameliorates atherosclerosis[J].Cell Metabolism,2018,28(1):175-182.e5.
[13]DE JAGER S C,BOT I,KRAAIJEVELD A O,et al.Leukocyte-specific CCL3 deficiency inhibits atherosclerotic lesion development by affecting neutrophil accumulation[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2013,33(3):e75-e83.
[14]HALVORSEN B,DAHL T B,SMEDBAKKEN L M,et al.Increased levels of CCR7 ligands in carotid atherosclerosis:different effects in macrophages and smooth muscle cells[J].Cardiovascular Research,2014,102(1):148-156.
[15]HARTMANN P,SCHOBER A,WEBER C.Chemokines and microRNAs in atherosclerosis[J].Cellular and Molecular Life Sciences,2015,72(17):3253-3266.
[16]CHISTIAKOV D A,OREKHOV A N,BOBRYSHEV Y V.Chemokines and relevant microRNAs in the atherogenic process[J].Mini Reviews in Medicinal Chemistry,2018,18(7):597-608.
[17]GIMBRONE M A,GARCA-CARDEA G.Endothelial cell dysfunction and the pathobiology of atherosclerosis[J].Circulation Research,2016,118(4):620-636.
[18]WEBER M,KIM S,PATTERSON N,et al.MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells[J].American Journal of Physiology Heart and Circulatory Physiology,2014,306(8):H1192-H1203.
[19]ZHENG B,YIN W N,SUZUKI T,et al.Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis[J].Molecular Therapy,2017,25(6):1279-1294.
[20]ZHANG J F,SHI L L,ZHANG L,et al.microRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through fas/FasL pathway[J].Journal of Molecular Neuroscience,2016,58(4):507-516.
[21]FUMAGALLI S,PEREGO C,PISCHIUTTA F,et al.The ischemic environment drives microglia and macrophage function[J].Frontiers in Neurology,2015,6:81.
[22]WU Y Q,XU J A,XU J,et al.Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia[J].Molecular Medicine Reports,2018;17(4):5007-5012.
[23]ADLY SADIK N,AHMED RASHED L,AHMED ABD-EL MAWLA M.Circulating miR-155 and JAK2/STAT3 axis in acute ischemic stroke patients and its relation to post-ischemic inflammation and associated ischemic stroke risk factors[J].International Journal of General Medicine,2021,14:1469-1484.
[24]CHEN W,WANG L T,LIU Z P.microRNA-155 influences cell damage in ischemic stroke via TLR4/MYD88 signaling pathway[J].Bioengineered,2021,12(1):2449-2458.
[25]ZHANG L,LIU C,HUANG C,et al.miR-155 knockdown protects against cerebral ischemia and reperfusion injury by targeting MafB[J].Bio Med Research International,2020,2020:6458204.
[26]CHOI G H,KO K H,KIM J O,et al.Association of miR-34a,miR-130a,miR-150 and miR-155 polymorphisms with the risk of ischemic stroke[J].International Journal of Molecular Medicine,2016,38(1):345-356.
[27]YANG Z,SHI X F,GAO Z D,et al.miR-155-5p in extracellular vesicles derived from choroid plexus epithelial cells promotes autophagy and inflammation to aggravate ischemic brain injury in mice[J].Oxidative Medicine and Cellular Longevity,2022,2022:8603427.
[28]SHI Y,LI K,XU K,et al.miR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways[J].European Review for Medical and Pharmacological Sciences,2020,24(3):1408-1419.
[29]DENG F,WANG S,XU R P,et al.Endothelial microvesicles in hypoxic hypoxia diseases[J].Journal of Cellular and Molecular Medicine,2018,22(8):3708-3718.
[30]KUHN S,SPLITH K,BALLSCHUH C,et al.Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner[J].Purinergic Signalling,2018,14(4):423-432.
[31]ZHANG H T,CHEN G H,QIU W J,et al.Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke[J].Journal of Neuroscience Research,2020,98(11):2290-2301.
(收稿日期:2022-09-23)
(本文編輯薛妮)
通訊作者 萬(wàn)大海,E-mail:13403451338@163.com
引用信息 孫彥琪,任葉青,郭庚,等.miR-155與缺血性腦卒中關(guān)系的研究進(jìn)展[J].中西醫(yī)結(jié)合心腦血管病雜志,2023,21(16):2995-2998.