招月,金高,周勝,2
矩形hBN層狀光柵中的Goos-H?nchen位移
招月1,金高1,周勝1,2
(1. 哈爾濱師范大學(xué) 物理與電子工程學(xué)院,黑龍江 哈爾濱 150025;2. 廣州航海學(xué)院 基礎(chǔ)教學(xué)部,廣東 廣州 510725)
六方氮化硼(hBN)是一種天然的范德瓦爾斯雙曲材料,在兩個(gè)紅外波長(zhǎng)范圍內(nèi)表現(xiàn)出雙曲色散關(guān)系,可用于加強(qiáng)光與物質(zhì)的相互作用.在目前的工作中,設(shè)計(jì)了矩形層狀光柵hBN(RLG)結(jié)構(gòu),通過數(shù)值模擬發(fā)現(xiàn)能夠增大Goos-H?nchen(GH)位移的同時(shí)具有較高的反射率.利用電場(chǎng)分布直接揭示了GH位移增強(qiáng)歸因于RLG結(jié)構(gòu)中的高局域的電場(chǎng).值得注意的是,GH峰值的頻率和寬度也可以由入射光偏振,hBN層各向異性軸方向的高度和厚度等參數(shù)來調(diào)控.基于GH位移的RLG結(jié)構(gòu)傳感特性,靈敏度高達(dá)1.401 μm/ RIU.這些結(jié)果可以為高靈敏光學(xué)傳感器、光學(xué)開關(guān)和光電子探測(cè)器的設(shè)計(jì)提供有益參考.
Goos-H?nchen位移;hBN光柵;光學(xué)傳感器
在幾何光學(xué)中,入射光束和反射光束嚴(yán)格滿足反射定律,但在1947年,Goos和H?nchen[1]兩位科學(xué)家在實(shí)驗(yàn)中首次發(fā)現(xiàn)光束在兩種界面上發(fā)生全反射時(shí),反射光束相對(duì)于幾何光學(xué)反射光束會(huì)產(chǎn)生橫向位移,后來人們把這種現(xiàn)象稱為Goos-H?nchen(GH)位移[2].1948年Artmann[3]在物理上提出了穩(wěn)態(tài)相位法,對(duì)這種現(xiàn)象做出了理論解釋,同時(shí)還給出了求GH位移的公式
GH位移可以被介電光柵層中導(dǎo)模共振的激發(fā)增強(qiáng)[18-21].例如:LI[22]等研究了SLG、介電光柵、銀膜和1DPC雜化結(jié)構(gòu)中的GH位移,其GH位移可以被來自于金屬層中的SPR和1DPC中的波導(dǎo)模式聯(lián)合效應(yīng)在特定角度下最大增大到波長(zhǎng)的7430倍,證實(shí)了GH位移可以通過改變SLG的費(fèi)米能量來調(diào)整.ZHU[23]等研究了單層二硫化鉬和對(duì)稱/不對(duì)稱介電光柵組合結(jié)構(gòu)中反射波的生長(zhǎng)激素位移.當(dāng)單層二硫化鉬接到對(duì)稱和非對(duì)稱介電光柵層上時(shí),GH位移可以被顯著增強(qiáng),其增強(qiáng)可歸因于介電光柵層中導(dǎo)模共振的激發(fā).單層二硫化鉬不對(duì)稱光柵實(shí)現(xiàn)了高達(dá)9490倍的波長(zhǎng).巨大的GH位移往往伴隨著極低的反射率,這在一定程度上給研究造成了阻礙,這種情況一般采用弱測(cè)量的方法進(jìn)行精密測(cè)量.弱測(cè)量是被Aharonov[24]等在1988年首次提出的,他們認(rèn)為測(cè)量得到的弱值可以遠(yuǎn)遠(yuǎn)大于可觀測(cè)量的范圍.直到1991年,Ritchie[25]等在實(shí)驗(yàn)中驗(yàn)證了這一理論的正確性.弱測(cè)量為量子測(cè)量提供了新方法,更重要的是,弱測(cè)量的弱值放大效應(yīng)為微弱信號(hào)的精密測(cè)量提供了嶄新的思路.但是,對(duì)弱信號(hào)的捕捉、放大和檢測(cè)也必然需要很大的工作量.
本文利用中心光束法,研究了矩形hBN層狀光柵增強(qiáng)GH位移的可能性.研究發(fā)現(xiàn),GH位移可以有效地被該結(jié)構(gòu)增大,特別是在GH位移達(dá)到峰值時(shí),相應(yīng)波長(zhǎng)上的反射率[26]也很高,這克服了GH值和反射率之間的困難.
圖1 矩形hBN層狀光柵結(jié)構(gòu)示意圖
圖2 不同頻率情況下hBN的介電常數(shù)
中心光束法是計(jì)算GH位移的一種有效方法.基于斯奈爾公式和有效的瓊斯矩陣[29],它可以很容易地描述光束的波場(chǎng)變換和結(jié)構(gòu)的接觸面,并確定光束質(zhì)心坐標(biāo).其計(jì)算公式可以表示為[30]
圖3 矩形hBN層狀光柵結(jié)構(gòu)GH位移和反射率隨頻率的變化
圖4 矩形hBN層狀光柵結(jié)構(gòu)在不同頻率下電場(chǎng)分布
圖5 橫電(TE)波和橫磁(TM)波分別入射及各項(xiàng)異軸平行于軸時(shí)的GH位移和反射率
注:黑色的虛線表示TE波;紅色的實(shí)線代表TM波;插圖顯示了TM波在相應(yīng)頻率的局部放大圖.
圖6 不同參數(shù)下GH位移和反射率隨頻率的變化
式中:定義為峰值波長(zhǎng);在的條件下,;為光在空氣中的速度;,為入射波頻率;,為上方空間的介電常數(shù),折射率與介電常數(shù)的關(guān)系為.在從左側(cè)入射的情況下,對(duì)介電常數(shù)很敏感(見圖7).本文分析了RLG結(jié)構(gòu)在GH位移中的作用,以探討其在傳感器中的潛在應(yīng)用.利用靈敏度因子對(duì)該傳感器的性能進(jìn)行了表征.當(dāng)介電常數(shù)從1.001到1.01,掃描間隔為0.00 1時(shí),尋找GH位移最大最高的靈敏性,其靈敏度可達(dá)到.值得注意的是,空氣的介電常數(shù)為1,溫度可以改變其介電常數(shù).
[1] Goos F,Hanchen H.Ein neuer und fundamentaler versuch zurtotalreflexion[J].Ann Pays,1947,436(7):333-346.
[2] Goos F,Lindberg-H?nchen H.Neumessung des strahlversetzungseffektes bei totalreflexion[J].Annalen der Physik,1949,440(3):251-252.
[3] Artmann K.Berechnung der Seitenversetzung des totalreflektieren Strahles[J].Ann Phys,1948,437(1/2):87.
[4] Das C M,Kang L,Hu D,et al.Graphene Coated Gold Chips for Enhanced Goos Hanchen Shift Plasmonic Sensing[J].Physica Status Solidi(a),2021,218(8):2000690.
[5] Olaya C M,Hayazawa N,Balois-Oguchi M V,et al.Molecular Monolayer Sensing Using Surface Plasmon Resonance and Angular Goos-H?nchen Shift[J].Sensors,2021,21(13):4593.
[6] ZHANG Xiangli,WANG Yuhan,ZHAO Xiang,et al.Fano resonance based on long range surface phonon resonance in the mid-infrared region[J].IEEE Photonics Journal,2019,11(2):1-8.
[7] Petrov N I,Sokolov Y M, Stoiakin V V,et al.Observation of Giant Angular Goos-Hanchen Shifts Enhanced by Surface Plasmon Resonance in Subwavelength Grating[C]//Photonics MDPI,2023,10(2):180.
[8] Jahani D,Akhavan O,Hayat A,et al.Optical Goos H?nchen effect in uniaxially strained graphene[J].JOSA A,2023,40(1):21-26.
[9] YU Tianyi,LI Honggen,CAO Zhang,et al.Oscillating wave displacement sensor using the enhanced Goos H?nchen effect in a symmetrical metal-cladding optical waveguide[J].Optics Letters,2008,33(9):1001-1003.
[10] Wan R G,Zubairy M S.Tunable and enhanced Goos-H?nchen shift via surface plasmon resonance assisted by a coherent medium[J].Optics Express,2020,28(5):6036-6047.
[11] ZHOU Xiang,LIU Shuoqing,DING Yiping,et al.Precise control of positive and negative Goos-H?nchen shifts in graphene[J].Carbon,2019,149: 604-608.
[12] HAN Lei,PAN Jianxing,WU Cuiming,et al.Giant Goos-H?nchen shifts in Au-ITO-TMDCs-graphene heterostructure and its potential for high performance sensor[J].Sensors,2020,20(4):1028.
[13] Ogawa S,F(xiàn)ukushima S,Shimatani M.Extraordinary optical transmission by hybrid phonon plasmon polaritons using hBN embedded in plasmonic nanoslits[J].Nanomaterials,2021,11(6):1567.
[14] SONG Haoyuan,ZHOU Sheng,SONG Yuling,et al.Tunable propagation of surface plasmon-phonon polaritons in graphene-hBN metamaterials[J].Optics & Laser Technology,2021,142:107232.
[15] LI Yubo,SONG Haoyuan,ZHANG Yuqi,et al.Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN[J].Chinese Physics B,2022,31(6):064207.
[16] YUE Qinxin,ZHEN Weiming,DING Yiping,et al.Giant Goos-H?nchen shifts controlled by exceptional points in a PT-symmetric periodic multilayered structure coated with graphene[J].Optical Materials Express,2021,11(12):3954-3965.
[17] DU Xiaodong,DA Haixia.Large and controlled Goos H?nchen shift in monolayer graphene covered multilayer photonic crystals grating[J].Optics Communications,2021,483:126606.
[18] LI Tingwei,DA Haixia,DU Xiaoming,et al.Giant enhancement of Goos H?nchen shift in graphene-based dielectric grating[J].Journal of Physics D:Applied Physics,2020,53(11):115108.
[19] ZHANG Changwei,YE Hong,LI Zhengyang,et al.Giant and controllable Goos H?nchen shift of monolayer graphene strips enabled by a multilayer dielectric grating structure[J].Applied Optics,2022,61(3):844-850.
[20] MA Shanshan,ZHU Xiaojun,LU Delian,et al.Dual dielectric grating-assisted enhancement of Goos-H?nchen shift in monolayer graphene[J].Physica Scripta,2022,97(8):085504.
[21] WU Feng,LUO Ma,WU Jiaju,et al.Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-H?nchen shifts with perfect reflection[J].Physical Review A,2021,104(2):023518.
[22] LI Zhengyang,ZHANG Changwei,YE Hong,et al.Enhanced Goos-H?nchen shift of graphene via hybrid structure with dielectric grating,metallic layer and photonic crystal[J].Physica E:Low-dimensional Systems and Nanostructures,2022,142:115272.
[23] ZHU Xiaojun,LU Delian,MA Shanshan,et al.Guided mode resonance-driven giant Goos–H?nchen shift in monolayer MoS2based dielectric grating structure[J].Physica B:Condensed Matter,2022,643:414173.
[24] Aharonov Y,Albert D Z,Vaidman L.How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J].Physical Review Letters,1988,60(14):1351.
[25] Ritchie N W M,Story J G,Hulet Randall G Realization of a measurement of a“weak value”[J].Physical Review Letters,1991, 66(9):1107.
[26] LU Delian,MA Shanshan,ZHU Xiaojun,et al.Temperature controllable Goos H?nchen shift and high reflectance of monolayer graphene induced by BK7 glass grating[J].Nanotechnology,2022,33(48):485201-485209.
[27] Glover P W J.Geophysical Properties of the Near Surface Earth:Electrical Properties-ScienceDirect[J].Treatise on Geophysics (Second Edition),2015,11:89-137.
[28] Ogawa S,F(xiàn)ukushima S,Shimatani M.Extraordinary optical transmission by hybrid phonon plasmon polaritons using hBN embedded in plasmonic nanoslits[J].Nanomaterials,2021,11(6):1567.
[29] Mishalov V D,Bachinsky V T,Vanchuliak O Y,et al.Jones matrix mapping of polycrystalline networks of layers of main types of amino acids[C]//Photonics Applications in Astronomy,Communications,Industry,and High-Energy Physics Experiments,2019.
[30] FU Shufang,WANG Xiangguang,ZHAN Yuqi,et al.Spin-splitting in a reflective beam off an antiferro magnetic surface[J].Optics Express,2021,29,39125-39136.
[31] Haneef M,Bacha B A,Khan H,et al.Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect[J].Chinese Physics B. 2018,27(11):114215.
[32] ZHANG Jing,JIANG Bo,SONG Yibin,et al.Surface phonon resonance enhanced Goos-H?nchen shift and its sensing application in the mid-infrared region[J].Optics Express,2021,29(21/11):32973-32982.
Goos-Hanchen shift in rectangular hBN layered gratings
ZHAO Yue1,JIN Gao1,ZHOU Sheng1,2
(1. School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China;2. Department of Basic Teaching,Guangzhou Navigation University,Guangzhou 510725,China)
hBN is a van der Waals material which is expected to a naturally occurring hyperbolic material,exhibits natural hyperbolic dispersion relations in tworangesofinfrared wavelengths that can strengthen light-matter interactions.In the present work,a rectangular laminar grating hBN(RLG)structure is designed,which is found to be able to increase the Goos-H?nchen(GH)shift with high reflectivity through numerical simulations.The electromagnetic field distribution in this structure directly reveals that enhanced GH shift can be attributed to electric field of the high localization in the RLG structure.It is worth noting that the frequency and width of the GH peak can also be regulated by parameters such as incident light polarization,height and thickness of the direction of the anisotropic axis of the hBN layer.In addition,the structure-sensing properties based on the GH shift was evaluated with a sensitivity of up to 1.401 μm/ RIU.The increased and controlled GH shift in the RLG structure shows promise for the applications,such as,optical sensors,optical switches and optoelectronic detectors.
Goos-H?nchen shift;hBN gratings;optical sensors
1007-9831(2023)11-0032-07
O43∶TB32
A
10.3969/j.issn.1007-9831.2023.11.007
2023-09-17
哈爾濱師范大學(xué)研究生課程建設(shè)項(xiàng)目;哈爾濱師范大學(xué)研究生創(chuàng)新項(xiàng)目(HSDSSCX2022-49)
招月(1999-),女,黑龍江綏化人,在讀碩士研究生,從事微納光學(xué)研究.E-mail:2291346449@qq.com
周勝(1978?),男,黑龍江哈爾濱人,教授,碩士生導(dǎo)師,從事微納光學(xué)研究.E-mail:zhousheng_wl@126.com