李述方 王海榮
摘要: 高溫易引起綿羊熱應(yīng)激,熱應(yīng)激時(shí)下丘腦-垂體-腎上腺軸(The hypothalamic-pituitary-adrenal axis,HPA)和交感-腎上腺髓質(zhì)軸(The sympathetico-adrenomedullary axis,SAM)興奮,引起體內(nèi)多種激素水平變化,以抵抗熱應(yīng)激對(duì)機(jī)體的影響;同時(shí)產(chǎn)生大量的活性氧(ROS)和活性氮(RNS)通過(guò)核因子E2相關(guān)因子2(Nuclear factor erythroid 2-related factor 2,Nrf2)、抗氧化反應(yīng)元件(Antioxidant response element,ARE)、核轉(zhuǎn)錄因子kB(Nuclear factor kappa-B,NF-κB)等信號(hào)通路,調(diào)控抗氧化酶及細(xì)胞因子的表達(dá)與分泌。高溫引發(fā)的熱應(yīng)激最終會(huì)導(dǎo)致綿羊生長(zhǎng)和繁殖能力降低。本文主要闡述了熱應(yīng)激時(shí)綿羊體內(nèi)激素水平的變化,以及氧化應(yīng)激信號(hào)通路、天然免疫和適應(yīng)性免疫的調(diào)控作用,以期為減輕熱應(yīng)激對(duì)綿羊機(jī)體氧化損傷及免疫功能影響的研究提供參考依據(jù)。
關(guān)鍵詞: 熱應(yīng)激;綿羊;內(nèi)分泌激素;氧化應(yīng)激信號(hào)通路;免疫
中圖分類號(hào): S858.26?? 文獻(xiàn)標(biāo)識(shí)碼: A ? 文章編號(hào): 1000-4440(2023)07-1606-07
Effects of heat stress on oxidative damage and immune function in sheep
LI Shu-fang, WANG Hai-rong
(Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science/College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018,China)
Abstract: High temperature can cause heat stress in sheep. During heat stress,the hypothalamus-pituitary-adrenal axis (HPA) and the sympathetic-adrenomedullary axis (SAM) are excited, causing changes in various hormone levels in the body to resist the effects of heat stress. At the same time, a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced, which regulate the expression and secretion of antioxidant enzymes and cytokines through nuclear factor erythroid 2-related factor 2 (Nrf2), antioxidant response element (ARE), nuclear factor kappa-B (NF-κB) and other signaling pathways. The heat stress induced by high temperature can eventually lead to reduced growth and reproductive capacity of sheep. This article mainly described the changes of hormone levels in sheep during heat stress, as well as the regulatory effects of oxidative stress signaling pathways, natural immunity, and adaptive immunity, in order to provide reference for the study of reducing the effects of heat stress on oxidative damage and immune function in sheep.
Key words: heat stress;sheep;endocrine hormones;oxidative stress signaling pathway;immunity
綿羊?qū)俸銣貏?dòng)物,在等熱區(qū)(21~25 ℃)內(nèi)機(jī)體代謝穩(wěn)定,25 ℃以上引起綿羊熱應(yīng)激[1]。熱應(yīng)激下機(jī)體會(huì)調(diào)整營(yíng)養(yǎng)物質(zhì)的吸收代謝,降低代謝效率,機(jī)體內(nèi)自由基代謝平衡被擾亂,細(xì)胞和線粒體氧化損傷,最終導(dǎo)致綿羊生產(chǎn)能力下降[2]。熱應(yīng)激發(fā)生時(shí)體內(nèi)氧化-抗氧化平衡被打破,產(chǎn)生過(guò)多的活性氧(ROS)和活性氮(RNS),并通過(guò)次級(jí)代謝物[如超氧陰離子(O2·-)、過(guò)氧化氫(H2O2)、羥基自由基(·OH)、亞硝基離子(NO)或過(guò)氧亞硝酸鹽(ONOO-)]造成DNA和蛋白質(zhì)等生物大分子損傷、炎癥和細(xì)胞凋亡[3-4]。此外,熱應(yīng)激會(huì)激活HPA軸提高外周血糖皮質(zhì)激素水平,從而抑制細(xì)胞因子的合成和釋放,并通過(guò)下丘腦-垂體-腎上腺軸(The hypothalamic-pituitary-adrenal axis,HPA)和交感-腎上腺髓質(zhì)軸(The sympathetico-adrenomedullary axis,SAM)引起代謝、免疫和生殖障礙等,給畜牧業(yè)帶來(lái)較大的經(jīng)濟(jì)損失[5]。
1 熱應(yīng)激對(duì)內(nèi)分泌激素的影響
1.1 熱應(yīng)激引起HPA軸和SAM軸激活
HPA軸和SAM軸是機(jī)體感知內(nèi)穩(wěn)態(tài)失衡的反應(yīng)部位,是應(yīng)激發(fā)生時(shí)內(nèi)分泌系統(tǒng)兩個(gè)主要調(diào)節(jié)免疫應(yīng)答的途徑[6]。熱應(yīng)激激活SAM軸,促使腎上腺髓質(zhì)分泌腎上腺素(Epinephrine,EPI)、去甲腎上腺素(Norepinephrine,NE)和多巴胺(Dopamine,DA),提高機(jī)體應(yīng)激能力[7]。當(dāng)受到強(qiáng)烈刺激,SAM軸不能有效調(diào)節(jié)時(shí),HPA軸被激活,下丘腦室旁核分泌促腎上腺皮質(zhì)激素釋放激素(Corticotropin releasing hormone,CRH)刺激促腎上腺皮質(zhì)激素(Adrenal corticotropic hormone,ACTH)的分泌進(jìn)而促進(jìn)糖皮質(zhì)激素(Glucocorticoid,GC)的分泌[8]。ACTH的主要生理功能是維持腎上腺正常形態(tài)和功能并調(diào)控GC的分泌,GC的分泌有利于機(jī)體能量動(dòng)員和保持機(jī)體內(nèi)環(huán)境穩(wěn)定。熱應(yīng)激初期,HPA軸和SAM軸被激活,通過(guò)提高GC和兒茶酚胺(Catecholamine,CA)的分泌緩解熱應(yīng)激反應(yīng)[8-9]。當(dāng)機(jī)體處于慢性熱應(yīng)激(環(huán)境溫度持續(xù)升高幾天到幾周不等)狀態(tài)下,HPA軸持續(xù)興奮,導(dǎo)致HPA軸功能嚴(yán)重失調(diào)[10]。王哲奇[11]研究發(fā)現(xiàn),間歇性熱應(yīng)激條件下ACTH含量顯著增加,而重度熱應(yīng)激下ACTH含量未發(fā)生顯著性變化,可能是重度熱應(yīng)激導(dǎo)致HPA失調(diào),影響ACTH的分泌。Cwynar等[8]發(fā)現(xiàn)隨著環(huán)境溫度上升,美利奴羊血清中皮質(zhì)醇(Cortisol,COR)和EPI含量呈上升趨勢(shì),并且重度熱應(yīng)激下(50 ℃)血清中NE含量顯著升高。這可能是熱應(yīng)激激活了HPA軸和SAM軸,促進(jìn)GC和CA分泌,以緩解熱應(yīng)激對(duì)綿羊生長(zhǎng)發(fā)育帶來(lái)的負(fù)面影響。說(shuō)明熱應(yīng)激狀態(tài)下機(jī)體通過(guò)HPA軸和SAM軸調(diào)控激素的分泌以維持內(nèi)環(huán)境穩(wěn)定。
1.2 熱應(yīng)激引起血液皮質(zhì)醇含量變化
COR屬于應(yīng)激激素,通常被用作動(dòng)物應(yīng)激的生物標(biāo)記物。外界溫度升高時(shí),血漿中GC水平增加,動(dòng)物機(jī)體分解代謝加強(qiáng),以抵御機(jī)體造成的壓力。其調(diào)節(jié)機(jī)制是熱應(yīng)激時(shí)HPA軸和神經(jīng)內(nèi)分泌反饋通路被激活,導(dǎo)致血液中COR濃度升高[12]。Minton等[13]研究發(fā)現(xiàn),羔羊剛暴露于熱應(yīng)激條件下(35 ℃)時(shí)血清中COR濃度迅速增加3倍,12 h后恢復(fù)至正常水平。溫濕度指數(shù)(THI)是以溫度、濕度評(píng)價(jià)空氣炎熱程度的一個(gè)綜合性指標(biāo)。Wojtas等[9]發(fā)現(xiàn)對(duì)照組(THI=69.575)美利奴羊血清COR濃度為(5.88±2.80) ng/dl,熱應(yīng)激(THI=78.08)第7 d血清COR濃度升高至(7.97±1.80) ng/dl,熱應(yīng)激條件下通風(fēng)(THI=75.825)第7 d血清COR濃度降至(4.48±2.60) ng/dl。血漿COR濃度在熱應(yīng)激初期升高可能是由于HPA軸的激活,觸發(fā)了皮質(zhì)醇激素的級(jí)聯(lián)分泌,緩解了熱應(yīng)激;長(zhǎng)期遭受熱應(yīng)激且超過(guò)機(jī)體自身調(diào)節(jié)能力時(shí),HPA軸失調(diào),腎上腺功能受到抑制或受損,導(dǎo)致血液COR濃度低于正常水平,緩解熱應(yīng)激的能力下降[9]。此外,COR濃度逐漸降低至基礎(chǔ)水平也有利于減少動(dòng)物在慢性熱應(yīng)激期間的代謝產(chǎn)熱。
1.3 熱應(yīng)激引起血液甲狀腺激素變化
甲狀腺激素(Thyroid hormone,TH)是動(dòng)物體維持基礎(chǔ)代謝、調(diào)節(jié)產(chǎn)熱以維持體內(nèi)熱平衡的重要激素。熱應(yīng)激時(shí)機(jī)體通過(guò)下丘腦-垂體-甲狀腺(Hypothalamus-pituitary-thyroid,HPT)軸調(diào)控TH并抑制其分泌,從而降低基礎(chǔ)代謝率及細(xì)胞產(chǎn)熱水平[14]。TH主要有三碘甲狀腺原氨酸(Triiodothyronine,T3)和四碘甲狀腺素(Tetraiodothyronine,T4)2種形式[15],T3分泌的減少被認(rèn)為是動(dòng)物機(jī)體減少產(chǎn)熱,維持機(jī)體熱平衡的一種表現(xiàn)[16],T4能夠刺激細(xì)胞耗氧和產(chǎn)熱,從而提高基礎(chǔ)代謝率,提高葡萄糖利用率,改變脂質(zhì)代謝[17]。甲狀腺對(duì)溫度敏感,Omida等[18]發(fā)現(xiàn),熱應(yīng)激減少了綿羊促甲狀腺激素(Thyroid stimulating hormone,TSH)的分泌和血液T3、T4的濃度。Lu等[19]發(fā)現(xiàn),嚴(yán)重?zé)釕?yīng)激(THI連續(xù)7 d高于23.3)時(shí),湖羊血清中T3和T4的濃度分別為(3.920±0.041) ng/ml和(82.92±1.55) ng/ml,顯著高于中度熱應(yīng)激條件下(THI≤11.82)的(1.24±0.02) ng/ml和(41.89±1.23) ng/ml。熱應(yīng)激過(guò)程中TH水平降低可能是機(jī)體減少產(chǎn)熱的一種適應(yīng)性機(jī)制。
1.4 熱應(yīng)激引起血液中其他激素變化
熱應(yīng)激除了影響腎上腺和甲狀腺激素分泌,對(duì)生長(zhǎng)激素(Growth hormone,GH)、胰島素(Insulin,INS)和瘦素等激素分泌也產(chǎn)生一定影響。GH是主要的產(chǎn)熱激素之一,GH水平的下降可能會(huì)減少身體的熱量生成,以維持動(dòng)物機(jī)體熱平衡。張燦等[20]發(fā)現(xiàn),熱應(yīng)激導(dǎo)致藏綿羊血液中GH含量降低45.50%。GH參與調(diào)控機(jī)體糖、脂和蛋白質(zhì)代謝,綿羊GH水平降低可能與熱應(yīng)激期間體質(zhì)量減輕密切相關(guān)。但李林等[21]發(fā)現(xiàn),隨著熱應(yīng)激程度的加強(qiáng),第5周荷斯坦奶牛血液和肝臟中GH、IGF-I含量均高于第1周??赡苁且?yàn)闊釕?yīng)激導(dǎo)致血糖濃度升高,而GH能促使肝臟通過(guò)IGF-I軸激活糖異生途徑[22]。造成GH水平差異的原因可能與熱應(yīng)激強(qiáng)度、持續(xù)時(shí)間及動(dòng)物品種有關(guān)。瘦素調(diào)節(jié)攝食和能量平衡,其向下丘腦室旁核發(fā)送厭食信號(hào),導(dǎo)致采食量下降,減少代謝熱的產(chǎn)生,維持動(dòng)物體內(nèi)能量平衡[23]。有研究結(jié)果表明,熱應(yīng)激顯著降低了14 d羔羊和母羊血清中瘦素水平[11]。胰島素是體內(nèi)唯一的降血糖激素,目前關(guān)于熱應(yīng)激影響胰島素分泌的報(bào)道不一致。王哲奇[11]發(fā)現(xiàn),試驗(yàn)第28 d時(shí),中度和重度熱應(yīng)激均顯著升高了綿羊血清中胰島素水平。胰島素水平升高可能是由于熱應(yīng)激期間血糖濃度升高所導(dǎo)致。而Nicolas-lopez等[24]報(bào)道,熱應(yīng)激不影響綿羊胰島素的分泌。這種激素分泌的差異可能是品種差異、年齡及熱應(yīng)激程度而引起。
2 熱應(yīng)激對(duì)氧化應(yīng)激信號(hào)通路的調(diào)節(jié)
動(dòng)物發(fā)生熱應(yīng)激時(shí),體內(nèi)多種信號(hào)通路交互聯(lián)系組成調(diào)控網(wǎng)絡(luò),并相互調(diào)節(jié)以維持機(jī)體氧化平衡,本文主要從目前研究熱點(diǎn)Keap1-Nrf2/ARE通路和NF-κB通路的抗氧化應(yīng)激作用及其調(diào)控機(jī)制進(jìn)行綜述。
2.1 熱應(yīng)激與Keap1-Nrf2/ARE信號(hào)通路
Keap1-Nrf2/ARE信號(hào)通路是機(jī)體抵抗氧化應(yīng)激關(guān)鍵的防御性轉(zhuǎn)導(dǎo)通路。正常狀態(tài)下,Keap1與Nrf2經(jīng)泛素連接酶(Cul3)以泛素化底物結(jié)合蛋白的形式形成Keap1-Nrf2復(fù)合體,Nrf2處于失活狀態(tài)[25],隨后被泛素化降解使其無(wú)法進(jìn)入細(xì)胞核,抑制下游靶基因的轉(zhuǎn)錄[26]。熱應(yīng)激時(shí),機(jī)體氧化-抗氧化平衡被打破,形成大量O2·-和H2O2自由基和非自由基[27]。ROS與一氧化氮(NO)反應(yīng)產(chǎn)生NO、ONOO-和二硝基鐵絡(luò)合物等具高度氧化活性的自由基和硝基類親電子化合物[28]。自由基或親電子化合物與Keap1的半胱氨酸殘基通過(guò)氧化或共價(jià)修飾使其構(gòu)象改變,造成Nrf2與之解耦連激活Nrf2;此外Nrf2也可被磷脂酰肌醇3-激酶(PI3K)、蛋白激酶C(PKC)、絲裂原活化蛋白激酶(MAPKs)和蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(PERK)等激酶誘導(dǎo)其磷酸化,導(dǎo)致Nrf2與Keap1分離活化[29]?;罨蟮腘rf2移位進(jìn)入細(xì)胞核與小分子肌腱纖維瘤蛋白(Maf)形成異二聚體Nrf2-Maf并識(shí)別ARE,啟動(dòng)下游一系列保護(hù)基因如Ⅱ相解毒酶基因及抗氧化酶類基因如血紅素加氧酶1(HO-1)基因、醌氧化還原酶1(NQO1)基因、過(guò)氧化物酶Ⅰ(PrxⅠ)基因、超氧化物歧化酶(SOD)基因及過(guò)氧化氫酶(CAT)基因轉(zhuǎn)錄,增強(qiáng)細(xì)胞對(duì)ROS的清除能力[30-31]。減輕親電子化合物和自由基引起的細(xì)胞損傷,發(fā)揮對(duì)氧化損傷的保護(hù)作用。石璐璐等[32]研究發(fā)現(xiàn),高溫環(huán)境下14 d時(shí)綿羊血液白細(xì)胞中超氧化物歧化酶2(SOD2)基因和Nrf2 mRNA表達(dá)上調(diào),28 d時(shí),降低了血清中CAT、谷胱甘肽過(guò)氧化物酶(GSH-Px)、總超氧化物歧化酶(T-SOD)活性和總抗氧化能力(T-AOC),說(shuō)明慢性熱應(yīng)激能夠降低綿羊抗氧化能力。王換換等[33]發(fā)現(xiàn),熱應(yīng)激奶牛血液中COR含量以及肝臟組織中丙二醛(MDA)含量顯著升高,通過(guò)激活肝臟中Keap1-Nrf2/ARE信號(hào)通路上調(diào)下游的Ⅱ相解毒酶基因表達(dá)量,提高CAT、SOD 和GSH-Px活性緩解了氧化應(yīng)激。說(shuō)明熱應(yīng)激打破了機(jī)體氧化-抗氧化系統(tǒng)平衡,發(fā)生氧化應(yīng)激反應(yīng),激活Nrf2信號(hào)通路可以緩解氧化應(yīng)激帶來(lái)的損傷。
2.2 熱應(yīng)激與NF-κB信號(hào)通路
NF-κB通常以異源二聚體(p50/p65)的形式與NF-κB抑制蛋白(Inhibitor of nuclear factor kappa-B,IκB)在細(xì)胞質(zhì)基質(zhì)中結(jié)合,受到內(nèi)外界刺激激活后與IκB解離,移位至細(xì)胞核內(nèi)與特異的啟動(dòng)子結(jié)合,從而調(diào)控基因的轉(zhuǎn)錄。p50/p65可在氧化應(yīng)激條件下被直接修飾,Gambhir等[34]發(fā)現(xiàn),p50亞基結(jié)構(gòu)域的半胱氨酸殘基(Cys-62)容易氧化,使其與DNA結(jié)合能力降低。氧化應(yīng)激產(chǎn)生的O2·-在線粒體SOD作用下轉(zhuǎn)化為H2O2,H2O2在鐵的作用下通過(guò)Fenton反應(yīng)被還原為·OH [35],·OH可導(dǎo)致NF-κB激活,啟動(dòng)下游靶基因轉(zhuǎn)錄[36]。H2O2可以激活NF-κB誘導(dǎo)激酶(NIK),導(dǎo)致抑制性κB激酶α(IKKα)磷酸化和NF-κB活性增加[37]。熱應(yīng)激產(chǎn)生的熱休克蛋白70(Heat shock protein 70,HSP70)及熱休克蛋白90(Heat shock protein 90,HSP90)均能影響NF-κB活性[38-39], HSP70作為一種損傷相關(guān)模式分子(Death-associated molecular patterns,DAMP),可被Toll樣受體2(Toll-like receptors 2,TLR2)和Toll樣受體4(Toll-like receptors 4, TLR4)識(shí)別,觸發(fā)宿主的先天免疫反應(yīng)[40]。HSP90能調(diào)控IKKα與IKKβ活性,使用格爾德霉素(HSP90特異性抑制劑)時(shí)IKKα與抑制性κB激酶β(IKKβ)的合成被阻斷,從而影響NF-κB的激活[41]。此外,熱應(yīng)激還能使動(dòng)物腸道產(chǎn)生的脂多糖(LPS)發(fā)生移位,通過(guò)旁細(xì)胞通路和跨細(xì)胞轉(zhuǎn)運(yùn)等方式易位進(jìn)入血液或者上皮被免疫細(xì)胞和上皮細(xì)胞識(shí)別,經(jīng)LPS/ TLR4/NF-κB信號(hào)傳導(dǎo)途徑觸發(fā)炎癥反應(yīng)[42-43]。葉建新等[44]發(fā)現(xiàn),與正常組相比,模型組大鼠[相對(duì)溫度(40.0±0.5) ℃,相對(duì)濕度(70%±5%)]腦組織受損嚴(yán)重,腦組織中TLR4、NF-κB及下游炎性因子腫瘤壞死因子-α(Tumor necrosis factor alpha,TNF-α)、白細(xì)胞介素1β(Interleukin-1 beta,IL-1β)、白細(xì)胞介素6(Interleukin-6,IL-6)含量顯著升高。張宇等[45]發(fā)現(xiàn),熱應(yīng)激顯著升高了山羊小腸上皮細(xì)胞IL-1β基因、TNF-α基因、白細(xì)胞介素8基因(IL-8)、NF-κB基因表達(dá)水平。說(shuō)明熱應(yīng)激通過(guò)激活NF-κB信號(hào)途徑,導(dǎo)致機(jī)體炎性因子的大量分泌,造成組織和細(xì)胞損傷。然而NF-κB在氧化應(yīng)激時(shí)也起著有益作用,NADPH(Nicotinamide adenine dinucleotide phosphate)氧化還原系統(tǒng)提供了主要的抗氧化機(jī)制。Gu等[46]發(fā)現(xiàn),NIK可通過(guò)磷酸化和促進(jìn)葡萄糖-6-磷酸脫氫酶的活性,促進(jìn)NADPH的產(chǎn)生,減少ROS異常積累和緩解氧化應(yīng)激。Wu等[47]研究結(jié)果表明,持續(xù)的氧化應(yīng)激導(dǎo)致蛋白酶失活,通過(guò)阻止IκB的降解來(lái)抑制NF-κB的活化。說(shuō)明熱應(yīng)激在早期具有激活NF-κB的潛能,但在持續(xù)的氧化應(yīng)激中可能抑制了NF-κB活性。
氧化應(yīng)激是一個(gè)涉及多條信號(hào)通路的復(fù)雜過(guò)程,此過(guò)程并不是由某條通路單獨(dú)調(diào)控,而是多條通路協(xié)同作用。諸如PI3K/Akt、AMPK、MAPK及FoxO信號(hào)通路也參與氧化應(yīng)激的調(diào)節(jié),在對(duì)熱應(yīng)激引起的氧化應(yīng)激的研究應(yīng)綜合考慮各種因素之間的相互作用。
3 熱應(yīng)激對(duì)綿羊免疫功能的影響
動(dòng)物機(jī)體免疫調(diào)節(jié)是一個(gè)復(fù)雜的過(guò)程,其中各種理化成分在分子水平、細(xì)胞水平和組織器官水平上參與免疫調(diào)節(jié),熱應(yīng)激激活HPA和SAM軸以調(diào)節(jié)對(duì)熱應(yīng)激的反應(yīng),從而引起免疫反應(yīng)的變化。
3.1 熱應(yīng)激對(duì)天然免疫的影響
天然免疫系統(tǒng)是指機(jī)體天生具有的生理防御功能,具有作用范圍廣、反應(yīng)迅速、非特異性等特點(diǎn)。當(dāng)物理屏障不能消除病原體時(shí),天然免疫系統(tǒng)會(huì)促進(jìn)中性粒細(xì)胞、單核細(xì)胞和巨噬細(xì)胞遷移到感染部位,通過(guò)胞吞的方式吞噬病原體,溶酶體途徑殺死病原微生物,隨后產(chǎn)生特異性免疫[48]。He等[49]發(fā)現(xiàn),暴露于(37±2) ℃(8 h/d,持續(xù)14 d)的肉雞脾臟中,淋巴器官的生長(zhǎng)指數(shù)降低,促炎細(xì)胞因子IL-1β、IL-6和TNF-α mRNA豐度增加。白細(xì)胞是免疫系統(tǒng)的主要組成部分,包括淋巴細(xì)胞和各種吞噬細(xì)胞,其數(shù)量增加或減少是機(jī)體在熱應(yīng)激狀態(tài)下產(chǎn)生的一種免疫應(yīng)答反應(yīng)。Mcewen等[50]研究結(jié)果表明,應(yīng)激情況下動(dòng)物通過(guò)HPA軸引起GC增加導(dǎo)致血液淋巴細(xì)胞數(shù)量顯著下降。Wojtas等[9]用氣候室模擬熱應(yīng)激,觀察到美利奴羊外周血白細(xì)胞計(jì)數(shù)由(10.07±2.10) k/μl下降至(9.12±0.70) k/μl,并且COR從(5.88±2.80) ng/dl升至(7.97±1.80) ng/dl。血液中白細(xì)胞的減少可能是免疫細(xì)胞重新分配到其他器官以適應(yīng)熱應(yīng)激。與GC相反的是,CA已被證明能增加血液中白細(xì)胞數(shù)量。重度熱應(yīng)激時(shí),綿羊血液中白細(xì)胞數(shù)量增多,血清中NE濃度顯著升高[8]。熱應(yīng)激動(dòng)物的白細(xì)胞數(shù)量增加或減少,可能與激素濃度和組合的差異,以及動(dòng)物種類、應(yīng)激暴露時(shí)間和動(dòng)物對(duì)熱應(yīng)激的適應(yīng)有關(guān)。
熱應(yīng)激激活HPA軸引起GC分泌增加,GC抑制巨噬細(xì)胞的免疫功能,阻礙淋巴細(xì)胞分裂,加速凋亡,從而抑制天然免疫和細(xì)胞免疫[10]。Singh等[51]發(fā)現(xiàn),適應(yīng)性較好的Chokla綿羊在熱應(yīng)激時(shí)淋巴細(xì)胞計(jì)數(shù)增加,中性粒細(xì)胞計(jì)數(shù)減少,而適應(yīng)性較差的Marwari綿羊淋巴細(xì)胞計(jì)數(shù)減少,嗜酸性粒細(xì)胞和中性粒細(xì)胞數(shù)量增加。熱應(yīng)激初期和輕度熱應(yīng)激時(shí),熱應(yīng)激程度較弱,動(dòng)物機(jī)體能通過(guò)自身調(diào)節(jié)來(lái)適應(yīng)熱應(yīng)激,但重度熱應(yīng)激時(shí),免疫細(xì)胞數(shù)量及凋亡率發(fā)生變化,導(dǎo)致免疫力降低,同時(shí)漿細(xì)胞產(chǎn)生抗體減少,抑制體液免疫;熱應(yīng)激會(huì)阻礙抗原的識(shí)別遞呈和抗體的活化增殖,導(dǎo)致免疫應(yīng)答及時(shí)清除抗原的能力受到抑制[10]??梢姡瑹釕?yīng)激通過(guò)改變免疫功能和增加對(duì)疾病的易感性,對(duì)綿羊免疫系統(tǒng)產(chǎn)生不利影響。熱應(yīng)激條件下,與先天免疫反應(yīng)相關(guān)的急性期蛋白如血清白蛋白(Albumin,ALB)、觸珠蛋白(Haptoglobin,HP)以及血清內(nèi)毒素和熱休克蛋白(Heat shock proteins ,HSPs)含量增加[52]。Kaufman等[53]發(fā)現(xiàn),與在熱中性區(qū)的奶牛相比,奶牛發(fā)生熱應(yīng)激時(shí),血清急性期蛋白濃度升高。Dangi等[54]發(fā)現(xiàn),熱應(yīng)激時(shí)熱休克因子1(Heat shock factor 1,HSF1)進(jìn)入細(xì)胞核與熱休克元件(Heat shock element,HSE)結(jié)合啟動(dòng)HSP70和HSP90轉(zhuǎn)錄。熱休克蛋白可通過(guò)激活抗氧化酶系統(tǒng)來(lái)減少ROS的產(chǎn)生,來(lái)保護(hù)機(jī)體免受氧化損傷[55],同時(shí)熱應(yīng)激產(chǎn)生的HSP70及HSP90均能影響NF-κB活性[38-39]。Saadeldin等[56]發(fā)現(xiàn),急性熱應(yīng)激(45 ℃,4 h)條件下,綿羊成纖維細(xì)胞中HSP70和HSP90基因表達(dá)水平均顯著升高。以上結(jié)果揭示了熱應(yīng)激期間激活了全身炎癥,雖然目前炎癥的作用尚不清楚,但炎癥途徑的激活可能為動(dòng)物機(jī)體緩解熱應(yīng)激帶來(lái)的不利影響提供了思路。
3.2 熱應(yīng)激對(duì)適應(yīng)性免疫的影響
適應(yīng)性免疫由細(xì)胞免疫和體液免疫組成,細(xì)胞免疫是由免疫細(xì)胞介導(dǎo)的免疫反應(yīng),包括T細(xì)胞介導(dǎo)的免疫應(yīng)答,單核細(xì)胞、中性粒細(xì)胞和巨噬細(xì)胞的吞噬作用以及NK細(xì)胞的殺傷功能。高溫環(huán)境下,動(dòng)物選擇性產(chǎn)生輔助性T細(xì)胞1/2( T helper cells 1/2,Th1/2)型細(xì)胞因子以調(diào)節(jié)Th1/Th2細(xì)胞因子的平衡[57]。Th1分泌的干擾素γ(Interferon-γ,INF-γ)、白細(xì)胞介素2(Interleukin-2,IL-2)、白細(xì)胞介素12(Interleukin-12,IL-12)和TNF-α激活細(xì)胞免疫,促使炎癥發(fā)生;Th2分泌的白細(xì)胞介素4(Interleukin-4,IL-4)、白細(xì)胞介素5(Interleukin-5,IL-5)、IL-6、白細(xì)胞介素10(Interleukin-10,IL-10)、白細(xì)胞介素11(Interleukin-11,IL-11)和白細(xì)胞介素13(Interleukin-13,IL-13)誘導(dǎo)體液免疫和過(guò)敏反應(yīng)以及抑制炎癥反應(yīng)。熱應(yīng)激激活SAM軸和HPA軸調(diào)節(jié)GC和CA分泌[36],GC抑制IL-12表達(dá),CA抑制IL-12和促進(jìn)IL-10表達(dá),GC和CA通過(guò)影響細(xì)胞因子的分泌調(diào)節(jié)Th1和Th2的平衡[57]。Shi等[58]研究發(fā)現(xiàn),遭受間歇性不同程度熱應(yīng)激28 d后,綿羊血清中IL-2、IL-1和TNF-α濃度增加;間歇性不同程度熱應(yīng)激組和室外組第28 d綿羊血清中IL-2濃度較第14 d顯著降低,IL-1、IL-1β和TNF-α濃度較第14 d顯著升高。彭孝坤等[59] 報(bào)道,38 ℃急性熱應(yīng)激處理4 h后,肉羊血清中IL-2含量顯著升高,8 h后血清中IL-1β含量顯著升高,并且38 ℃急性熱應(yīng)激時(shí)TNF-α和IL-1β含量比30 ℃和34 ℃急性熱應(yīng)激時(shí)上升程度要高。結(jié)果表明急性和慢性熱應(yīng)激均促進(jìn)Th1細(xì)胞因子的分泌,降低細(xì)胞免疫功能。
免疫球蛋白在體液免疫中起主要作用,免疫球蛋白能夠促進(jìn)巨噬細(xì)胞的吞噬作用以及與抗原結(jié)合,其含量的高低代表體液免疫的狀況。Wu等[60]認(rèn)為,免疫球蛋白含量的變化受應(yīng)激類型、應(yīng)激持續(xù)時(shí)間、應(yīng)激強(qiáng)度以及動(dòng)物品種和動(dòng)物機(jī)體健康狀況的影響。陳浩等[61]研究結(jié)果表明,與非熱應(yīng)激期間相比,慢性熱應(yīng)激(CCI=29.61)條件下牛血清免疫球蛋白A(Immunoglobulin A,IgA)、免疫球蛋白G(Immunoglobulin G,IgG)含量分別減少了29%、25%,免疫球蛋白M(Immunoglobulin M,IgM)含量沒有變化。Shi等[58]發(fā)現(xiàn),熱應(yīng)激28 d時(shí),綿羊血清中IgA、IgG、IgM濃度降低。彭孝坤等[59]發(fā)現(xiàn),38 ℃急性熱應(yīng)激處理4 h后,肉羊血清中IgM、IgA和IgG含量顯著降低,而34 ℃熱應(yīng)激時(shí)無(wú)明顯變化。說(shuō)明急性和慢性熱應(yīng)激均可以降低動(dòng)物機(jī)體血清中免疫球蛋白含量,抑制體液免疫。
4 小 結(jié)
熱應(yīng)激時(shí)綿羊體內(nèi)過(guò)量的ROS和氮衍生物產(chǎn)生且通過(guò)Keap1-Nrf2/ARE、NF-κB信號(hào)通路調(diào)控抗氧化酶及細(xì)胞因子的表達(dá)與分泌,加劇氧化損傷;同時(shí),熱應(yīng)激激活HPA軸和SAM軸,造成激素水平的改變,調(diào)節(jié)機(jī)體熱平衡,影響綿羊免疫功能。本文通過(guò)綜述熱應(yīng)激時(shí)綿羊體內(nèi)激素水平改變、氧化應(yīng)激信號(hào)通路的作用以及天然免疫和適應(yīng)性免疫的調(diào)控,分析熱應(yīng)激時(shí)綿羊體內(nèi)生理狀況及免疫功能的變化,為緩解熱應(yīng)激對(duì)機(jī)體的損害提供依據(jù)。
參考文獻(xiàn):
[1] LIU H W,CAO Y,ZHOU D W. Effects of shade on welfare and meat quality of grazing sheep under high ambient temperature[J]. Journal of Animal Science,2012,90(13):4764-4770.
[2] CAROPRESE M,CILIBERTI M G,ANNICCHIARICO G,et al. Hypothalamic-pituitary-adrenal axis activation and immune regulation in heat-stressed sheep after supplementation with polyunsaturated fatty acids [J]. Journal of Dairy Science,2014,97(7):4247-4258.
[3] ZHANG Q,CONG X,LI H,et al. Puerarin ameliorates heat stress-induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing ROS production and upregulating Hsp72 expression[J]. Theriogenology,2017,15(88):215-227.
[4] KANTIDZE O,VELICHKO A K,LUZHIN A V,et al. Heat stress-induced DNA damage[J]. Acta Naturae,2016,8(2):75-78.
[5] MAURYA V P,SEJAIN V,KUMAR D,et al. Impact of heat stress,nutritional restriction and combined stresses (heat and nutritional) on growth and reproductive performance of Malpura rams under semi-arid tropical environment[J]. Journal of Animal Physiology & Animal Nutrition,2016,100(5):938-946.
[6] ANDRADE-FERRAZZA R D,MOGOLLON-GARCIA H D,VALLEJO-ARISTIZABAL V H, et al. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress[J]. Journal of Thermal Biology, 2017, 66(29): 68-80.
[7] CAIN D W,CIDLOWSKI J A. Iconography : Specificity and sensitivity of glucocorticoid signaling in health and disease[J]. Best Pract Res Clin Endocrinol Metab,2015,29(4):545-556.
[8] CWYNAR P,KOLACZ R,CZERSKI A. Effect of heat stress on physiological parameters and blood composition in Polish Merino rams[J]. Berliner Und Munchener Tierarztliche Wochenschrift,2014,127(5/6):177-182.
[9] WOJTAS K,CWYNER P, KOLACZ R. Effect of thermal stress on physiological and blood parameters in merino sheep[J]. Bulletin of the Veterinary Institute in Pulawy,2014,58(2):283-288.
[10]劉嘉莉,竇金煥,胡麗蓉,等.熱應(yīng)激對(duì)奶牛生理和免疫功能的影響及其機(jī)理[J].中國(guó)畜牧獸醫(yī),2018,45(1):263-270.
[11]王哲奇. 溫?zé)岘h(huán)境對(duì)綿羊增重性能及生理指標(biāo)影響的研究[D].內(nèi)蒙古:內(nèi)蒙古農(nóng)業(yè)大學(xué),2020.
[12]YARAHMADI P,MIANDARE H K,F(xiàn)AYAZ S,et al. Increased stocking density causes changes in expression of selected stress-and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss)[J]. Fish Shellfish Immunol,2016,48(5): 43-53.
[13]MINTON J E,BLECHA F. Effect of acute stressors on endocrinological and immunological functions in lambs[J]. Journal of Animal Science,1990,68(10):3145-3151.
[14]WEST J W. Nutritional strategies for managing the heat-stressed dairy cow[J]. Journal of Animal Science,1999, 77(2): 21-35.
[15]張 穎,姚 旋,宋宜云,等. 甲狀腺激素與代謝調(diào)控[J].生命科學(xué),2013,25(2):176-183.
[16]PANTOJA M,ESTEVES S N,JACINTO M,et al. Thermoregulation of male sheep of indigenous or exotic breeds in a tropical environment[J]. Journal of Thermal Biology, 2017, 69: 302-310.
[17]YEN P M. Physiological and molecular basis of thyroid hormone action[J]. Physiological Reviews, 2001, 81(3): 1097-1142.
[18]OMIDA A,KHEIRIE M,SARIR H. Impact of vitamin C on concentrations of thyroid stimulating hormone and thyroid hormones in lambs under short-term acute heat stress[J]. Veterinary Science Development,2015,5(1):155-169.
[19]LU Z,CHU M,LI Q,et al. Transcriptomic Analysis Provides Novel Insights into Heat Stress Responses in Sheep[J]. Animals, 2019, 9(6):387.
[20]張 燦,王之盛,彭全輝,等. 濕熱應(yīng)激對(duì)藏綿羊和山羊生長(zhǎng)性能、抗氧化能力以及免疫功能的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2017,29(6):2179-2187.
[21]李 林,艾 陽(yáng),謝正露,等. 熱應(yīng)激狀態(tài)下泌乳奶牛通過(guò)激活GHIGF-I軸增強(qiáng)糖異生變化[J].中國(guó)農(nóng)業(yè)科學(xué),2016,49(15):3046-3053.
[22]MISHRA S R. Behavioural,Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: an updated review[J]. Tropical Animal Health and Production, 2021, 53(3): 400-420.
[23]SETH M, BISWAS R, GANGULY S, et al. Leptin and obesity[J]. Physiology International,2022,107(4):455-468.
[24]NICOLAS-L0PEZ P, MACIAS-CRUZ U, MELLADO M,et al. Growth performance and changes in physiological, metabolic and hematological parameters due to outdoor heat stress in hair breed male lambs finished in feedlot [J]. International Journal of Biometeorology, 2021, 65(8): 1451-1459.
[25]ITOH K,MIMURA J,YAMAMOTO M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview[J]. Antioxid Redox Signal, 2010, 13(11):1665-1678.
[26]胡流芳,王 迎,任汝靜,等. Keap1-Nrf2/ARE信號(hào)通路的抗氧化應(yīng)激作用及其調(diào)控機(jī)制[J]. 國(guó)際藥學(xué)研究雜志,2016,43(1):146-152,166.
[27]張軼鳳,齊智利. 熱應(yīng)激條件下機(jī)體發(fā)生氧化應(yīng)激的機(jī)制[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2017,29(9):3051-3058.
[28]MARTINEZ M C,ANDRIANTSITOHAINA R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease[J]. Antioxid Redox Signal, 2009, 11(3):669-702.
[29]熊款款,譚 磊,王愛兵,等. Keap1-Nrf2/ARE信號(hào)通路抗氧化機(jī)制及抗氧化劑的研究進(jìn)展[J].動(dòng)物醫(yī)學(xué)進(jìn)展,2021,42(4):89-94.
[30]LEE J M,JOHNSON J A. An important role of Nrf2-ARE pathway in the cellular defense mechanism[J]. J Biochem Mol Biol,2004,37(2): 139-143.
[31]倪曉琦,陳錫威,金曉鋒. E3泛素連接酶接頭蛋白Keap1的研究進(jìn)展[J]. 生物化學(xué)與生物物理進(jìn)展, 2022,49(2):328-348.
[32]石璐璐,王哲奇,徐元慶,等. 熱應(yīng)激對(duì)綿羊血清免疫和抗氧化指標(biāo)及相關(guān)基因相對(duì)表達(dá)量的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2020,32(11): 5275-5284.
[33]王換換,申正杰,肖 航,等. 熱應(yīng)激對(duì)肝臟中Keap1-Nrf2信號(hào)通路及下游基因表達(dá)的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,40(1):151-156.
[34]GAMBHIR L,CHECKER R,SHARMA D,et al. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A[J]. Toxicology and Applied Pharmacology,2015,289(2):297-312.
[35]LIOCHEV S I,F(xiàn)RIDOVICH I. Superoxide and iron: partners in crime [J]. IUBMB Life,1999,48(2):157-161.
[36]LINGAPPAN K. NF-κB in oxidative stress[J]. Current Opinion in Toxicology,2018,2(7):81-86.
[37]LI Q,ENGELHARDT J F. Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NFkappaB-inducing kinase[J]. Journal of Biological Chemistry,2006,281(3):1495-1505.
[38]EVANS S S,REPASKY E A,F(xiàn)ISHER D T. Fever and the thermal regulation of immunity: The immune system feels the heat[J]. Nature Reviews Immunology,2015,15(6):335-349.
[39]PRODROMOU C. Mechanisms of Hsp90 regulation[J]. The Biochemical Journal, 2016, 473(16):2439-2452.
[40]ASEA A,KRAEFTS K, KURT-JONES E A,et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine[J]. Nature Medicine,2000,6(4):435-442.
[41]BROEME M, KRAPPMANN D, SCHEIDEREIT C. Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation[J]. Oncogene,2004,23(31): 5378-5386.
[42]唐志文,孫福昱,楊 亮,等.不同飼糧條件下奶牛胃腸道中內(nèi)毒素濃度與炎癥反應(yīng)相關(guān)關(guān)系研究進(jìn)展[J].家畜生態(tài)學(xué)報(bào),2018,39(5):6-10.
[43]OPAL S M. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis[J]. International Journal of Medical Microbiology,2007,297(5):365-377.
[44]葉建新,林 航,穆軍山,等. 探討TLR4/NF-κB信號(hào)通路在勞力性熱射病大鼠腦損傷中的作用[J].解放軍醫(yī)學(xué)院學(xué)報(bào),2019,40(12):1170-1173,1178.
[45]張 宇,徐子潔,黃曉瑜,等. 白藜蘆醇對(duì)熱應(yīng)激誘導(dǎo)的山羊小腸上皮細(xì)胞炎性反應(yīng)調(diào)節(jié)作用的研究[J].畜牧獸醫(yī)學(xué)報(bào),2020,51(8):1886-1894.
[46]GU M,ZHOU X,SOHN J H,et al. NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity[J]. Nature Immunology,2021,22(2): 193-204.
[47]WU M,BIAN Q,LIU Y,et al. Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome[J]. Free Radical Biology & Medicine,2009,46(1):62-69.
[48]BAGATH M, KRISHNAN G, DEVARAJ C, et al. The impact of heat stress on the immune system in dairy cattle: A review[J]. Research in Veterinary Science, 2019,126 (10):94-102.
[49]HE S,YU Q,HE Y,et al. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers[J]. Poultry Science,2019,98(12):6378-6387.
[50]MCEWEN D B S. Acute stress enhances while chronic stress suppresses cell-mediated immunityin vivo:a potential role for leukocyte trafficking [J]. Brain, Behavior, and Immunity,1997,11(4):286-306.
[51]SINGH K M,SINGH S,GANGULY I,et al. Evaluation of Indian sheep breeds of arid zone under heat stress condition[J]. Small Ruminant Research,2016,141(7): 113-117.
[52]RIUS A G. Heat stress-mediated activation of immune-inflammatory Pathways[J]. Antibiotics,2021,10(11):1285.
[53]KAUFMAN J D,BAILEY H R,KENNEDY A M,et al. Cooling and dietary crude protein affected milk production on heat-stressed dairy cows[J]. Livestock Science,2020,240(2): 104111.
[54]DANGI S S,BHARATI J,SAMAD H A,et al. Expression dynamics of heat shock proteins (HSP) in livestock under thermal stress[J]. Heat Shock Proteins in Veterinary Medicine and Sciences,2017,16 (12): 37-79.
[55]ARNAL M E,LALLES J P. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota[J]. Nutrition Reviews,2016,74(3):181-197.
[56]SAADELDIN I M,SWELUM A A,ZAKRI A M,et al. Effects of acute hyperthermia on the thermotolerance of cow and sheep skin-derived fibroblasts[J]. Animals,2020,10(4): 545.
[57]PARK H G,HAN S I,OH S Y,et al. Cellular responses to mild heat stress[J]. Cellular & Molecular Life Sciences Cmls,2005,62(1):10-23.
[58]SHI L,XU Y, MAO C,et al. Effects of heat stress on antioxidant status and immune function and expression of related genes in lambs [J]. International Journal of Biometeorology,2020,64(12): 2093-2104.
[59]彭孝坤,趙 天,黃曉瑜,等. 急性熱應(yīng)激對(duì)山羊血液生化指標(biāo)及血淋巴細(xì)胞熱休克蛋白70家族基因表達(dá)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2019,50(6):1219-1229.
[60]WU Y N, YAN F F, HN J Y, et al. The effect of chronic ammonia exposure on acute-phase proteins, immunoglobulin, and cytokines in laying hens[J]. Poultry Science, 2017, 96(6):1524-1530.
[61]陳 浩,王純潔,斯木吉德,等. 慢性熱應(yīng)激對(duì)西門塔爾牛血清酶活性和免疫功能的影響[J].中國(guó)獸醫(yī)學(xué)報(bào),2021,41(3):557-561.
(責(zé)任編輯:成紓寒)