于永進(jìn) 楊 洋
基于全局滑模的自適應(yīng)電力系統(tǒng)混沌容錯(cuò)控制
于永進(jìn)1楊 洋2
(1. 山東科技大學(xué)電氣與自動(dòng)化工程學(xué)院 青島 266590 2. 國家電網(wǎng)陽泉供電公司變電運(yùn)維中心 陽泉 045000)
當(dāng)電力系統(tǒng)參數(shù)變動(dòng)或遭受擾動(dòng)后,系統(tǒng)極易進(jìn)入局部混沌振蕩狀態(tài),局部的功角振蕩可能會(huì)演化為大范圍的系統(tǒng)振蕩,最終可能造成系統(tǒng)解列等嚴(yán)重后果。因此,抑制電力系統(tǒng)的局部混沌振蕩狀態(tài)具有重要意義。為抑制七階系統(tǒng)的混沌狀態(tài),增強(qiáng)系統(tǒng)的抗擾能力,采用擴(kuò)張觀測(cè)器對(duì)系統(tǒng)發(fā)電機(jī)側(cè)與負(fù)荷側(cè)的系統(tǒng)項(xiàng)進(jìn)行觀測(cè),設(shè)計(jì)了基于全局滑模的容錯(cuò)控制器。該文考慮了發(fā)電機(jī)側(cè)遭受擾動(dòng)與負(fù)荷側(cè)控制器故障的情況。為減少系統(tǒng)在擾動(dòng)下的最大偏差與穩(wěn)態(tài)誤差,并補(bǔ)償控制器故障導(dǎo)致的輸出幅值損失,設(shè)計(jì)了基于全局滑模的自適應(yīng)容錯(cuò)控制器。仿真結(jié)果表明,當(dāng)系統(tǒng)分別遭受傳輸故障、階躍擾動(dòng)及控制器故障時(shí),系統(tǒng)在基于自適應(yīng)全局滑模的容錯(cuò)控制器的作用下均能有效收斂至目標(biāo)軌道。
電力系統(tǒng) 混沌 全局滑模 自適應(yīng) 擴(kuò)張觀測(cè)器
當(dāng)電力系統(tǒng)遭受外部擾動(dòng)或參數(shù)在某一特定范圍內(nèi)發(fā)生變化時(shí),系統(tǒng)功角可能在一定范圍內(nèi)出現(xiàn)無序振蕩現(xiàn)象,即系統(tǒng)進(jìn)入混沌狀態(tài)。近年來,新能源發(fā)電大量接入電力系統(tǒng),緩解了傳統(tǒng)發(fā)電模式帶來的能源和環(huán)境問題。相對(duì)于傳統(tǒng)能源系統(tǒng),新能源發(fā)電功率的不確定性可視為傳統(tǒng)系統(tǒng)的參數(shù)變化或外部擾動(dòng),極有可能使系統(tǒng)進(jìn)入振蕩狀態(tài),在沒有得到及時(shí)有效的控制下,系統(tǒng)可能最終進(jìn)入混沌狀態(tài)[1-2]。
對(duì)于低階模型,目前已有較多文獻(xiàn)對(duì)其混沌特性分析與控制問題進(jìn)行研究,提出了多種控制策略。文獻(xiàn)[4-8]運(yùn)用不同的控制理論對(duì)二階模型進(jìn)行控制器設(shè)計(jì),達(dá)到良好的控制效果。文獻(xiàn)[9-12]分別在不同方面對(duì)四階模型進(jìn)行混沌特性的分析,并設(shè)計(jì)了控制器。對(duì)于高階模型,目前學(xué)術(shù)界普遍承認(rèn)的最高階模型為七階系統(tǒng)模型,其相關(guān)研究仍然較少。對(duì)于七階系統(tǒng)的混沌分析,文獻(xiàn)[13]運(yùn)用時(shí)域圖、相圖及龐加萊截面對(duì)系統(tǒng)通往混沌的道路進(jìn)行了分析。對(duì)于七階系統(tǒng)的控制,國內(nèi)外學(xué)者將非線性理論推廣至七階系統(tǒng)中,從不同程度上消除了系統(tǒng)的混沌狀態(tài)。文獻(xiàn)[14]將儲(chǔ)能裝置添加到七階電力系統(tǒng)中,使其成為一個(gè)十三階系統(tǒng),并根據(jù)各狀態(tài)變量之間的耦合關(guān)系,將系統(tǒng)分為三個(gè)模塊,根據(jù)反演定理,為各模塊均設(shè)計(jì)了動(dòng)態(tài)滑模面控制器,通過對(duì)各個(gè)模塊的控制使系統(tǒng)各狀態(tài)變量均收斂至目標(biāo)軌道。文獻(xiàn)[15]將一種新穎的協(xié)同控制策略推廣至七階電力系統(tǒng)的混沌控制,通過對(duì)所選變量的控制,消除系統(tǒng)各變量的振蕩狀態(tài)。文獻(xiàn)[16]基于等效原理,將固定時(shí)間控制、自適應(yīng)控制和滑??刂葡嘟Y(jié)合,提出一種適用于七階電力系統(tǒng)的自適應(yīng)控制策略,該策略能保證七階電力系統(tǒng)在有限時(shí)間內(nèi)收斂至目標(biāo)軌道。文獻(xiàn)[17]運(yùn)用時(shí)間尺度分離理論,設(shè)計(jì)了一種基于時(shí)間尺度分離的滑模控制策略,該控制策略中不含切換項(xiàng),解決了控制器輸出不連續(xù)的問題。目前相關(guān)文獻(xiàn)中所設(shè)計(jì)的控制器雖能使被控對(duì)象收斂至目標(biāo)軌道,但其控制器設(shè)計(jì)較為依賴系統(tǒng)的精確模型,并且大部分并未考慮系統(tǒng)在遭受擾動(dòng)和發(fā)生故障時(shí)的情況,實(shí)用性相對(duì)較差。如果系統(tǒng)在遭受較大擾動(dòng)導(dǎo)致系統(tǒng)模型出現(xiàn)變化,或出現(xiàn)控制器故障導(dǎo)致控制器輸出信號(hào)幅值下降時(shí),上述控制器可能沒有足夠的容錯(cuò)能力,導(dǎo)致系統(tǒng)狀態(tài)偏離目標(biāo)軌道。
本文建立了考慮外部擾動(dòng)和控制器故障的七階電力系統(tǒng)數(shù)學(xué)模型,并針對(duì)該模型設(shè)計(jì)了一種基于全局滑模的自適應(yīng)容錯(cuò)控制策略(Adaptive Fault-Tolerant Control, AFTC)。該控制器不需要系統(tǒng)精確的數(shù)學(xué)模型,只需要系統(tǒng)各狀態(tài)變量的信息,降低了控制器參數(shù)的整定難度,提高了控制器的通用性。針對(duì)七階系統(tǒng)發(fā)電機(jī)側(cè)易受干擾和負(fù)載側(cè)控制器易發(fā)生故障的問題,在發(fā)電機(jī)側(cè)控制器中采用固定增益與自適應(yīng)增益相結(jié)合的控制策略,在負(fù)載側(cè)控制器中采用自適應(yīng)故障估計(jì)來補(bǔ)償控制器故障造成的控制器輸出損失。仿真結(jié)果表明,當(dāng)系統(tǒng)在無擾動(dòng)、外部階躍擾動(dòng)、傳輸故障及控制器故障的情況下,所設(shè)計(jì)的控制器均能使系統(tǒng)收斂到預(yù)定目標(biāo)軌道附近。
七階電力系統(tǒng)是以典型的三節(jié)點(diǎn)電力系統(tǒng)為研究對(duì)象,其由發(fā)電機(jī)、負(fù)荷和無窮大系統(tǒng)組成,各部分之間通過輸電線路連接。七階電力系統(tǒng)電氣結(jié)構(gòu)如圖1所示。
圖1中,為無窮大母線電壓,1、2和3為輸電網(wǎng)絡(luò)中的各段線路的導(dǎo)納值,、和為各段線路的導(dǎo)納角,t為發(fā)電機(jī)端電壓幅值,m為發(fā)電機(jī)功角,L為負(fù)荷側(cè)母線電壓幅值,L為負(fù)荷側(cè)母線功角,和分別為負(fù)荷側(cè)母線的動(dòng)態(tài)有功功率與無功功率。七階電力系統(tǒng)模型表達(dá)式為
狀態(tài)變量初始值的選取是系統(tǒng)能否產(chǎn)生混沌的關(guān)鍵條件之一。經(jīng)過多組迭代,最終選取系統(tǒng)初始值為[1.3331 0 1.332678-0.3283 4.198 0.2936 0.93]。
為研究七階系統(tǒng)的動(dòng)態(tài)特性,選取系統(tǒng)恒定負(fù)荷有功功率0與無功功率0的典型參數(shù)為系統(tǒng)變量,其余參數(shù)取值均取自文獻(xiàn)[14],觀察此區(qū)間內(nèi)系統(tǒng)功角的分岔圖及在不同取值下系統(tǒng)的三維相圖。
由圖2可知,當(dāng)0=0.397(pu)時(shí),系統(tǒng)處于混沌狀態(tài);隨著0的增加,當(dāng)0=0.397 9(pu)時(shí)系統(tǒng)經(jīng)歷逆向分岔轉(zhuǎn)為4周期態(tài);當(dāng)0=0.399 1(pu)時(shí)系統(tǒng)經(jīng)歷逆向分岔轉(zhuǎn)為2周期態(tài);當(dāng)0=0.405 5(pu)時(shí)系統(tǒng)再次經(jīng)歷逆向分岔,此后系統(tǒng)轉(zhuǎn)為1周期態(tài)。此外,當(dāng)0>0.42(pu)和0<0.397(pu)時(shí),系統(tǒng)分別為1周期和混沌態(tài)。由此可得,當(dāng)0在一定范圍內(nèi)增加,系統(tǒng)經(jīng)歷逆向分岔后從混沌轉(zhuǎn)為周期態(tài)。
圖3 變化時(shí)系統(tǒng)的分岔圖與相圖
在電力系統(tǒng)中,信號(hào)傳輸元件的作用至關(guān)重要。而此類元件一般屬于高敏感性元件,因而容易遭受干擾而導(dǎo)致其精度下降,從而使電力系統(tǒng)出現(xiàn)振蕩現(xiàn)象。本文考慮被控系統(tǒng)與所設(shè)計(jì)觀測(cè)器之間的傳輸故障的情況,被控對(duì)象數(shù)學(xué)模型為
式中,為故障發(fā)生時(shí)間。式(3)表示時(shí)刻傳感器發(fā)生故障。
除發(fā)電機(jī)側(cè)時(shí)常遭受各類擾動(dòng)外,負(fù)荷端控制器由于工作環(huán)境復(fù)雜,使得控制器故障率大大提升,并且由于其遠(yuǎn)離操作中心,使得控制器發(fā)生故障時(shí)檢修人員不能及時(shí)進(jìn)行維修,進(jìn)而可能導(dǎo)致負(fù)荷電壓與相角偏離預(yù)定值,造成負(fù)荷電壓質(zhì)量降低。綜上所述,負(fù)荷端控制器需要有一定的容錯(cuò)性,以應(yīng)對(duì)可能發(fā)生的故障。
負(fù)荷端控制器發(fā)生故障時(shí),控制器故障的數(shù)學(xué)模型為
滑??刂谱鳛橐环N實(shí)用性很強(qiáng)的控制策略,已被運(yùn)用在諸多領(lǐng)域中[21-26]。在傳統(tǒng)的非線性滑模控制器的設(shè)計(jì)中,要求控制器輸出中含有系統(tǒng)非線性項(xiàng),故需已知系統(tǒng)準(zhǔn)確的數(shù)學(xué)表達(dá)式及各參數(shù)值,給控制器的設(shè)計(jì)帶來較大限制。非線性擴(kuò)張觀測(cè)器具有所需系統(tǒng)信息少、不依賴系統(tǒng)模型和觀測(cè)精度高的優(yōu)點(diǎn)。采用擴(kuò)張觀測(cè)器[27]對(duì)系統(tǒng)模型進(jìn)行觀測(cè),并將所觀測(cè)到的系統(tǒng)項(xiàng)輸入控制器中,解決了由于故障和擾動(dòng)而無法及時(shí)獲取系統(tǒng)項(xiàng)變化的問題。
首先,設(shè)計(jì)觀測(cè)器對(duì)同步發(fā)電機(jī)轉(zhuǎn)子運(yùn)行特性進(jìn)行觀測(cè),由于發(fā)電機(jī)側(cè)功角與系統(tǒng)項(xiàng)存在二階導(dǎo)數(shù)關(guān)系。故設(shè)計(jì)如式(7)所示的三階擴(kuò)張觀測(cè)器。
其次,對(duì)負(fù)荷側(cè)母線設(shè)計(jì)觀測(cè)器。由于負(fù)荷側(cè)功角與負(fù)荷側(cè)系統(tǒng)項(xiàng)的表達(dá)式存在一階導(dǎo)數(shù)關(guān)系,設(shè)計(jì)如式(8)所示的二階擴(kuò)張觀測(cè)器。
取全局滑??刂频幕C鏋?/p>
根據(jù)式(12),基于全局滑模擴(kuò)張觀測(cè)器的容錯(cuò)控制(Fault-Tolerant Control, FTC)表達(dá)式為
將式(13)代入式(12)中可得
發(fā)電機(jī)端遭受各類擾動(dòng)的概率較高,當(dāng)擾動(dòng)幅值與變化率較高時(shí),對(duì)系統(tǒng)的影響尤為劇烈。此時(shí),觀測(cè)器的最終觀測(cè)精度可能下降,進(jìn)而引起控制器輸出偏離理想值,系統(tǒng)收斂到穩(wěn)定軌道的時(shí)間顯著增加。針對(duì)發(fā)電機(jī)側(cè)擾動(dòng)問題,在控制器中采用固定增益與自適應(yīng)增益相結(jié)合的方式。由此,基于全局滑模觀測(cè)器的自適應(yīng)容錯(cuò)控制的發(fā)電機(jī)側(cè)控制器輸出表達(dá)式為
為改善負(fù)荷側(cè)控制器的動(dòng)態(tài)特性,提高控制器跟蹤精度,將此自適應(yīng)故障估計(jì)的表達(dá)式進(jìn)行變換,變換結(jié)果為
對(duì)式(27)進(jìn)行化簡(jiǎn)后可得
進(jìn)一步化簡(jiǎn)可得
式(29)最終可簡(jiǎn)化為
結(jié)合式(1)~式(31)綜合可得,AFTC表達(dá)式為
綜上所述,在考慮外部擾動(dòng)、傳輸故障和控制器輸出故障的情況下,AFTC系統(tǒng)框圖如圖4所示。
圖4 基于全局滑模觀測(cè)器的自適應(yīng)容錯(cuò)控制系統(tǒng)框圖
由圖7a可知,在DSMC的作用下,m在兩次擾動(dòng)后最終未能收斂至原軌道,兩次擾動(dòng)后m對(duì)于目標(biāo)軌道的穩(wěn)定偏差分別為0.06和0.35。而在FTC與AFTC的作用下,m在偏離原軌道后迅速收斂至原目標(biāo)軌道上,在收斂過程中,與目標(biāo)軌道的最大偏差分別為0.22和0.05。
由圖7b可得,當(dāng)發(fā)電機(jī)側(cè)在=30 s時(shí)第一次遭受階躍擾動(dòng)后,DSMC控制下的各狀態(tài)變量立即偏離原目標(biāo)軌道,并最終保持在擾動(dòng)后的偏離軌道上;當(dāng)發(fā)電機(jī)側(cè)在=40 s時(shí)第二次遭受階躍擾動(dòng)后,各狀態(tài)變量在次發(fā)生偏移,并穩(wěn)定在偏移后的軌道上。由圖7c可知,在AFTC的控制作用下,當(dāng)系統(tǒng)在上述兩時(shí)刻遭受階躍擾動(dòng)后,各狀態(tài)變量?jī)H出現(xiàn)小幅波動(dòng),并很快收斂至原軌道。
圖8 控制器故障下各控制器投入后的系統(tǒng)狀態(tài)時(shí)域圖
由圖8d可知,當(dāng)負(fù)荷側(cè)控制器發(fā)生故障時(shí),DSMC控制器輸出信號(hào)幅值隨之迅速下降,并最終穩(wěn)定在約理想控制器輸出的0.1倍處。由圖8e可知,F(xiàn)TC控制器輸出同樣最終穩(wěn)定在約理想控制器輸出的0.1倍處。由圖8f可知,由于自適應(yīng)故障估計(jì)對(duì)控制器具有補(bǔ)償作用,AFTC控制器輸出信號(hào)幅值先短暫下降,繼而隨著自適應(yīng)項(xiàng)的減小而增大,最終逐漸接近故障前的輸出信號(hào)幅值。
1)根據(jù)七階系統(tǒng)的自身特點(diǎn),運(yùn)用分岔圖與相圖對(duì)七階系統(tǒng)進(jìn)行混沌特性的分析,對(duì)系統(tǒng)關(guān)鍵參數(shù)變化下系統(tǒng)狀態(tài)的變化情況進(jìn)行了分析,得到系統(tǒng)在關(guān)鍵參數(shù)0和0下的混沌特性。經(jīng)過分析可知,當(dāng)上述參數(shù)變化時(shí),系統(tǒng)呈現(xiàn)出周期與混沌狀態(tài)切換的現(xiàn)象。
2)對(duì)于七階系統(tǒng)的控制問題,為減少控制器對(duì)于系統(tǒng)模型的依賴性,提出一種FTC策略。繼而考慮發(fā)電機(jī)易遭受外部擾動(dòng),負(fù)荷側(cè)控制器易遭受故障,為提高系統(tǒng)的容錯(cuò)能力,提出一種AFTC策略。仿真結(jié)果表明,所設(shè)計(jì)的控制器均能消除系統(tǒng)的混沌狀態(tài),而當(dāng)系統(tǒng)分別遭受階躍擾動(dòng)、傳輸故障與控制器故障時(shí),在AFTC的控制下,系統(tǒng)的最大偏移及穩(wěn)態(tài)誤差均較小。
3)對(duì)七階系統(tǒng)來說,不能用傳統(tǒng)的Wolf法求取Lyapunov指數(shù),故目前七階系統(tǒng)只能采用分岔圖與相圖相結(jié)合的方式進(jìn)行混沌特性的分析。如何對(duì)Wolf法進(jìn)行改進(jìn)使其可以推廣至七階系統(tǒng)中,是今后需要關(guān)注的問題。
[1] 趙光宙, 齊冬蓮. 混沌控制理論及其應(yīng)用[J]. 電工技術(shù)學(xué)報(bào), 2001, 16(5): 77-82. Zhao Guangzhou, Qi Donglian. Chaotic control theory and applications[J]. Transactions of China Electrote-chnical Society, 2001, 16(5): 77-82.
[2] 王寶華, 楊成梧, 張強(qiáng). 電力系統(tǒng)分岔與混沌研究綜述[J]. 電工技術(shù)學(xué)報(bào), 2005, 20(7): 1-10. Wang Baohua, Yang Chengwu, Zhang Qiang. Summary of bifurcation and chaos research in electric power system[J]. Transactions of China Electro-technical Society, 2005, 20(7): 1-10.
[3] Kumar A, Anwar M N, Kumar S. Sliding mode controller design for frequency regulation in an interconnected power system[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 6.
[4] 許德智, 黃泊珉, 楊瑋林. 神經(jīng)網(wǎng)絡(luò)自適應(yīng)的永磁直線同步電機(jī)超扭曲終端滑??刂芠J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(13): 64-71. Xu Dezhi, Huang Bomin, Yang Weilin. Neural network adaptive super twist terminal sliding mode control for a permanent magnet linear synchronous mtor[J]. Power System Protection and Control, 2021, 49(13): 64-71.
[5] 于永進(jìn), 王家斌, 王艷. 基于自適應(yīng)全局滑模的電力系統(tǒng)混沌振蕩控制[J]. 電力系統(tǒng)保護(hù)與控制, 2019, 47(16): 43-49. Yu Yongjin, Wang Jiabin, Wang Yan. Chaotic oscillation control in power system based on adaptive total sliding mode[J]. Power System Protection and Control, 2019, 47(16): 43-49.
[6] Ma Caoyuan, Wang Faxin, Li Zhijie, et al. Adaptive fixed-time fast terminal sliding mode control for chaotic oscillation in power system[J]. Mathematical Problems in Engineering, 2018, 2018: 1-10.
[7] 倪駿康, 劉崇新, 龐霞. 電力系統(tǒng)混沌振蕩的等效快速終端模糊滑??刂芠J]. 物理學(xué)報(bào), 2013, 62(19): 190507. Ni Junkang, Liu Chongxin, Pang Xia. Fuzzy fast terminal sliding mode controller using an equivalent control for chaotic oscillation in power system[J]. Acta Physica Sinica, 2013, 62(19): 190507.
[8] 王家斌, 于永進(jìn), 閻振坤, 等. 基于自適應(yīng)非奇異終端滑模控制的電力系統(tǒng)混沌抑制[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(7): 120-126.Wang Jiabin, Yu Yongjin, Yan Zhenkun, et al. Chaotic suppression of a power system based on adaptive non-singular terminal sliding mode control[J]. Power System Protection and Control, 2021, 49(7): 120-126.
[9] 李小騰, 王江彬, 劉崇新, 等. 四階混沌電力系統(tǒng)的全局快速滑??刂破髟O(shè)計(jì)[J]. 科學(xué)技術(shù)與工程, 2021, 21(24): 10298-10303. Li Xiaoteng, Wang Jiangbin, Liu Chongxin, et al. Global fast sliding mode controller design for a four-dimensional chaotic power system[J]. Science Technology and Engineering, 2021, 21(24): 10298-10303.
[10] Alrifai M T, Zribi M. Sliding mode control of chaos in a single machine connected to an infinite bus power system[J]. Mathematical Problems in Engineering, 2018, 2018: 1-13.
[11] 王江彬, 劉崇新. 4階混沌電力系統(tǒng)的協(xié)同控制方法[J]. 西安交通大學(xué)學(xué)報(bào), 2020, 54(1): 26-31. Wang Jiangbin, Liu Chongxin. Synergetic control method for four-dimensional chaotic power system[J]. Journal of Xi’an Jiaotong University, 2020, 54(1): 26-31.
[12] 楊洋, 于永進(jìn), 王云飛. 基于全局滑模時(shí)滯的電力系統(tǒng)混沌振蕩控制[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(15): 59-67. Yang Yang, Yu Yongjin, Wang Yunfei. Power system chaotic oscillation control based on global sliding mode time delay[J]. Power System Protection and Control, 2021, 49(15): 59-67.
[13] Yu Yixin, Jia Hongjie, Li Peng, et al. Power system instability and chaos[J]. Electric Power Systems Research, 2003, 65(3): 187-195.
[14] 王江彬, 劉凌, 劉崇新. 基于擴(kuò)張狀態(tài)觀測(cè)器七階混沌振蕩電力系統(tǒng)的滑模變結(jié)構(gòu)控制[J]. 電工技術(shù)學(xué)報(bào), 2020, 35(21): 4524-4531. Wang Jiangbin, Liu Ling, Liu Chongxin. Sliding mode variable structure control for seven-dimensional chaotic power system based on extended state observer[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4524-4531.
[15] Wang Jiangbin, Liu Ling, Liu Chongxin, et al. Fixed-time synergetic control for a seven-dimensional chaotic power system model[J]. International Journal of Bifurcation and Chaos, 2019, 29(10): 1950130.
[16] Wang Jiangbin, Liu Ling, Liu Chongxin, et al. Adaptive sliding mode control based on equivalence principle and its application to chaos control in a seven-dimensional power system[J]. Mathematical Problems in Engineering, 2020, 2020: 1-13.
[17] Ni Junkang, Liu Ling, Liu Chongxin, et al. Chattering-free time scale separation sliding mode control design with application to power system chaos suppression[J]. Mathematical Problems in Engineering, 2016, 2016: 1-14.
[18] Rajesh K G, Padiyar K R. Bifurcation analysis of a three node power system with detailed models[J]. International Journal of Electrical Power & Energy Systems, 1999, 21(5): 375-393.
[19] Jia H J, Yu Y X, Li P. Relationship of power system chaos and instability modes[J]. Proceedings of the Chinese Society of Electrical Engineering, 2003, 23(2):1-4.
[20] Jia Hongjie, Yu Yixin, Li Peng, et al. Torus bifurcation and chaos in power systems[C]// Proceedings of International Conference on Power System Technology, Kunming, China, 2002: 1717-1722.
[21] 曹學(xué)謙, 葛瓊璇, 朱進(jìn)權(quán), 等. 基于積分滑模的高速磁懸浮列車牽引控制策略[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(14): 3598-3607. Cao Xueqian, Ge Qiongxuan, Zhu Jinquan, et al. Traction-system research of high-speed maglev train based on integral sliding mode control[J]. Transactions of China Electrotechnical Society, 2022, 37(14): 3598-3607.
[22] 武志濤, 李帥, 程萬勝. 基于擴(kuò)展滑模擾動(dòng)觀測(cè)器的永磁直線同步電機(jī)定結(jié)構(gòu)滑模位置跟蹤控制[J]. 電工技術(shù)學(xué)報(bào), 2022, 37(10): 2503-2512. Wu Zhitao, Li Shuai, Cheng Wansheng. Fixed structure sliding mode position tracking control for permanent magnet linear synchronous motor based on extended sliding mode disturbance observer[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2503-2512.
[23] 魏惠芳, 王麗梅. 永磁直線同步電機(jī)自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)時(shí)變滑??刂芠J]. 電工技術(shù)學(xué)報(bào), 2022, 37(4): 861-869. Wei Huifang, Wang Limei. Adaptive fuzzy neural network time-varying sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 861-869.
[24] 張康, 王麗梅. 基于反饋線性化的永磁直線同步電機(jī)自適應(yīng)動(dòng)態(tài)滑??刂芠J]. 電工技術(shù)學(xué)報(bào), 2021, 36(19): 4016-4024. Zhang Kang, Wang Limei. Adaptive dynamic sliding mode control of permanent magnet linear synchronous motor based on feedback linearization[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4016-4024.
[25] 王勃, 王天擎, 于泳, 等. 感應(yīng)電機(jī)電流環(huán)非線性積分滑模控制策略[J]. 電工技術(shù)學(xué)報(bào), 2021, 36(10): 2039-2048.Wang Bo, Wang Tianqing, Yu Yong, et al. Nonlinear integral sliding mode control strategy for current loop of induction motor drives[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2039-2048.
[26] 楊挺, 張璐, 張亞健, 等. 基于信息熵計(jì)算模型的電力信息物理系統(tǒng)融合控制方法[J]. 電力系統(tǒng)自動(dòng)化, 2021, 45(12): 65-74. Yang Ting, Zhang Lu, Zhang Yajian, et al. Fusion control method for cyber-physical power system based on information entropy calculation model[J]. Automation of Electric Power Systems, 2021, 45(12): 65-74.
[27] 韓京清. 自抗擾控制技術(shù): 估計(jì)補(bǔ)償不確定因素的控制技術(shù)[M]. 北京: 國防工業(yè)出版社, 2008: 197-198.
[28] Feng Y, Bao S, Yu X, Design method of non-singular terminal sliding mode control systems[J]. Control and Decision, 2002(02):194-198.
[29] 劉壯, 鄭雪梅, 馮勇, 等. 全階無抖振非奇異終端滑??刂品椒╗J]. 控制工程, 2020, 27(5): 824-829. Liu Zhuang, Zheng Xuemei, Feng Yong, et al. Full-order chattering free non-singular terminal sliding mode control method[J]. Control Engineering of China, 2020, 27(5): 824-829.
Chaos Fault-Tolerant Control of Adaptive Power System Based on Global Sliding Mode
Yu Yongjin1Yang Yang2
(1.School of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao 266590 China 2. Substation Operation and Maintenance Center State Grid Yangquan Power Supply Company Yangquan 045000 China)
When the power system suffers from external disturbance or the parameters change in a certain range, the power Angle of the system may appear disordered oscillation in a certain range, that is, the system enters a chaotic state. At present, in order to suppress the chaotic state of power system, controllers using various principles have been designed, but the disturbance and controller failure are rarely considered in the design process. To solve this problem, this paper proposes an adaptive fault-tolerant control strategy based on global sliding mode, which makes the system more stable under the action of the controller.
Firstly, according to the characteristics of the seven-dimensional system, the dynamic characteristics of the system under the change of key parameters0and0are obtained by using the bifurcation diagram and phase diagram. After analysis, it can be seen that when0changes from small to large, the system presents a transition phenomenon from periodic to chaotic state, and when0changes from small to large, the system presents a transition phenomenon from chaotic to periodic state. Through the analysis of chaotic characteristics, the chaotic state parameters of the system are obtained.
Secondly, in order to solve the problem that the controller could not timely obtain the changes of system items due to the disturbance, an observer was designed to observe the operation characteristics of the synchronous generator rotor and input the observation results to the input end of the controller. This paper proposes a Fault-tolerant control (FTC) strategy based on global sliding mode extended observer. In order to further reduce the fluctuation of the system under the disturbance and consider the possible failure, the method of combining fixed gain and adaptive gain is adopted in the controller. A strategy of adaptive fault-tolerant control (AFTC) based on global sliding mode observer is proposed.
The simulation results show that, under the action of FTC, the state variables of the system converge to the fixed orbit, and the output of the extended observer approximates the system term in finite time. When the system suffers from transmission faults, the stable deviations ofmandLfrom the current orbit and the target orbit are 0.04 and -0.07 under the action of DSMC. Under the action of FTC and AFTC, the maximum deviation ofmandLfrom the target orbit is 0.022 and 0.009, and -0.038 and -0.037, respectively. When the system is subjected to step perturbation, under the action of DSMC, the stability deviation ofmto the target orbit after two perturbations is 0.06 and 0.35, respectively. Under the action of FTC and AFTC,mrapidly converges to the original target orbit after deviating from the original orbit, and the maximum deviation from the target orbit is 0.22 and 0.05, respectively. When the system suffers from controller failure, the stability deviation ofLto the target orbit is -0.20 under the action of DSMC. Under the action of FTC, the stability deviation ofLto the target orbit is -0.16. Under the action of AFTC,Lconverges to the vicinity of the target orbit again, and the maximum deviation ofLto the target orbit is -0.11, and the stability deviation is -0.013.
By analyzing the simulation results, it can be found that all the designed controllers can eliminate the chaotic state of the system, and when the system is subjected to step disturbance, transmission fault and controller fault, the maximum offset and steady-state error of the system are small under the control of AFTC.
Power system, chaos, global sliding mode, adaptive, extended state observer
10.19595/j.cnki.1000-6753.tces.221660
TM712
國家自然科學(xué)基金資助項(xiàng)目(61803233)。
2022-08-30
2022-10-18
于永進(jìn) 男,1980年生,副教授,碩士生導(dǎo)師,研究方向?yàn)殡娏ο到y(tǒng)運(yùn)行與控制。E-mail:yaydjto@ 163.com
楊 洋 男,1995年生,碩士,研究方向電力系統(tǒng)運(yùn)行與控制。E-mail:2534019091@qq.com(通信作者)
(編輯 赫蕾)