劉彬,李晟,毛玉剛,李鵬飛*,李亮亮,孟憲凱,王賽蘭,吳嘉誠(chéng)
TA15鈦合金高溫摩擦磨損性能研究
劉彬1,李晟1,毛玉剛1,李鵬飛1*,李亮亮2,3,孟憲凱1,王賽蘭1,吳嘉誠(chéng)1
(1.江蘇大學(xué) 機(jī)械工程學(xué)院,江蘇 鎮(zhèn)江 212013;2.吉林大學(xué) 機(jī)械與航空航天工程學(xué)院,長(zhǎng)春 130025;3.沈陽(yáng)飛機(jī)工業(yè)(集團(tuán))有限公司 創(chuàng)新研究院,沈陽(yáng) 110000)
為探究TA15鈦合金高溫耐磨性能的潛力,研究了TA15鈦合金在室溫~800 ℃下的摩擦磨損性能。利用Rtec摩擦磨損試驗(yàn)機(jī)(Rtec,San Jose,USA)進(jìn)行TA15鈦合金的摩擦磨損性能測(cè)試,通過(guò)激光共聚焦顯微鏡、JSM-7800F掃描電鏡(SEM)、能譜儀(EDS)、X射線衍射儀(XRD)等手段,分析了TA15鈦合金在不同溫度下的磨痕形貌、成分變化以及磨損機(jī)理。在不同試驗(yàn)溫度下,微觀組織沒(méi)有出現(xiàn)明顯變化,主要為等軸α相和β相;不同溫度下的摩擦因數(shù)波動(dòng)不大,從室溫的0.279下降到600 ℃的0.224,而在800 ℃時(shí),表面嚴(yán)重氧化導(dǎo)致摩擦因數(shù)增大到0.309;在室溫~400 ℃時(shí),試樣表面磨痕不斷變窄變淺,犁溝和磨屑不斷減少,而到400 ℃以上時(shí)磨痕逐漸變寬,比磨損率也大幅增大,且在600 ℃時(shí)的磨損量最大;在600 ℃時(shí),以氧化磨損為主,并伴隨著磨粒磨損和黏著磨損,且表面磨痕形貌和寬度比較均勻;在800 ℃時(shí)磨損表面以黏著磨損和氧化磨損為主,并伴隨著高溫焊接的發(fā)生。TA15合金表面的O元素含量隨溫度的升高而逐漸升高,并且氧化反應(yīng)主要發(fā)生在β相內(nèi)。隨著試驗(yàn)溫度的升高,TA15鈦合金磨損表面的氧化磨損現(xiàn)象也更加明顯。
TA15鈦合金;高溫性能;磨損機(jī)理;氧化磨損;摩擦因數(shù)
TA15(Ti-6Al-2Zr-1Mo-1V)合金是典型的近α型中強(qiáng)度鈦合金,具有高比強(qiáng)度、良好的熱穩(wěn)定性、較好的耐腐蝕性及焊接性能等優(yōu)點(diǎn),廣泛應(yīng)用于航空航天、船舶等領(lǐng)域[1],因其優(yōu)異的綜合力學(xué)性能,成為承載復(fù)雜載荷結(jié)構(gòu)件的重要材料之一,也是燃?xì)廨啓C(jī)壓氣機(jī)葉片和壓氣機(jī)盤的重要材料[2-3]。由于TA15合金具有良好的高溫力學(xué)性能,它廣泛應(yīng)用在一些高溫場(chǎng)合[4-7]。因此,研究TA15鈦合金在不同溫度下的力學(xué)性能具有重要意義。
Wang等[8]在800~900 ℃下進(jìn)行了高溫拉伸試驗(yàn),研究了激光焊接TA15接頭的熱變形機(jī)制,研究發(fā)現(xiàn),在900 ℃、應(yīng)變速率為0.001 s?1時(shí),最大延伸率為292%。Vo等[9]在975、1 000、1 025、1 060、1 100 ℃的溫度和0.1、1 s?1的應(yīng)變率下,模擬了TA15鈦合金壓縮試驗(yàn)中的流動(dòng)應(yīng)力。Yang等[10]在溫度為750~850 ℃(以25 ℃為間隔)以及應(yīng)變率為0.001、0.01、0.1 s?1條件下進(jìn)行了拉伸試驗(yàn),研究了TA15的熱拉伸性能,金相結(jié)果表明,初生α相變?yōu)榈容S晶,次生α相和層狀β相彎曲直至破碎。Hao等[11]在溫度為?60~900 ℃和應(yīng)變率為0.001s?1條件下進(jìn)行了TA15鈦合金的拉伸試驗(yàn),利用電子背散射衍射(EBSD)分析了不同溫度下微觀組織的演變和變形機(jī)制。研究表明,在相對(duì)較低的溫度(60、23、400 ℃)下,位錯(cuò)滑移機(jī)制主導(dǎo)了變形,在高溫(600 ℃和800 ℃)下α板條的球化和動(dòng)態(tài)再結(jié)晶(DRX)占主導(dǎo)地位,導(dǎo)致了流動(dòng)軟化。Zhao等[12-13]研究了TA15鈦合金板材在退火和800 ℃高溫拉伸過(guò)程中的再結(jié)晶行為,并分析了熱拉伸過(guò)程中TA15鈦合金板材在750 ℃時(shí)沿軋制方向的變形不均勻性和滑移模式。Zhao等[14]通過(guò)等溫拉伸試驗(yàn)研究了雙態(tài)組織TA15合金的熱變形行為與斷裂特征,結(jié)果表明,材料的流動(dòng)軟化主要由雙態(tài)組織動(dòng)態(tài)球化引起。Li等[15]通過(guò)指數(shù)型Zener-Hollomon方程研究了應(yīng)變和溫度對(duì)熱變形的影響,在溫度為800~1 000 ℃,應(yīng)變速率為10、1、0.1、0.01和0.001 s?1以及應(yīng)變?yōu)?.9的條件下進(jìn)行了等溫壓縮試驗(yàn),驗(yàn)證了所提出本構(gòu)方程的有效性。Feng等[16-17]研究了400~700 ℃溫度范圍內(nèi)TiB晶須增強(qiáng)TA15鈦基復(fù)合材料(TiBw/TA15)的拉伸性能和斷裂機(jī)理,并嘗試通過(guò)添加TiBw提高TA15鈦合金的高溫塑性變形能力。Li等[18]揭示了鈦合金在溫度為910~970 ℃、應(yīng)變速率為0.01~0.1 s?1的單軸熱拉伸試驗(yàn)中的流動(dòng)軟化和塑性損傷機(jī)制。Zhao等[19]通過(guò)試驗(yàn)和晶體塑性仿真的方式,研究了TA15板材在750 ℃的拉伸試驗(yàn)中沿軋制方向的織構(gòu)演變規(guī)律。Liu等[20]探究了750 ℃高溫下變形的TA15鈦合金的值與應(yīng)變的相關(guān)性。
雖然有學(xué)者系統(tǒng)研究了TA15合金在高溫下的拉伸性能和組織演變機(jī)理,但是國(guó)內(nèi)對(duì)其摩擦磨損性能的研究卻很少。因此,本文以TA15鈦合金為研究對(duì)象,進(jìn)行了5組不同溫度下的摩擦磨損性能測(cè)試,分析了TA15鈦合金從室溫(RT)到800 ℃的磨損性能及微觀組織的變化規(guī)律,進(jìn)而探究其高溫條件下的磨損機(jī)理。
所用材料為鍛造TA15鈦合金,其化學(xué)成分如表1所示。通過(guò)不同溫度下的摩擦磨損試驗(yàn),獲得需要觀察的微觀組織區(qū)域。通過(guò)制備金相試樣和標(biāo)準(zhǔn)的檢驗(yàn)方法對(duì)試樣進(jìn)行研磨和拋光。使用HF+HCl+HNO3+水(體積分?jǐn)?shù)分別為1%、1.5%、2.5%、95%)化學(xué)腐蝕25 s,采用SEM觀察試樣微觀組織。
采用精度為0.1 mg的電子天平稱量磨損試驗(yàn)前后的質(zhì)量損失,利用激光共聚焦顯微鏡觀察磨損形貌并測(cè)量磨痕的寬度和深度。用X射線衍射儀(XRD)測(cè)定其物相組成,用掃描電鏡分析磨痕表面宏觀和微觀形貌,并使用其配備的能譜儀(EDS)分析磨痕的化學(xué)成分,計(jì)算比磨損率,并探究磨損機(jī)理。
表1 TA15鈦合金化學(xué)成分
Tab.1 Chemical composition of TA15 titanium alloy wt.%
使用Rtec摩擦磨損試驗(yàn)機(jī)進(jìn)行高溫摩擦學(xué)和磨損試驗(yàn),該設(shè)備配有高溫爐,加熱速度為100 ℃/min,摩擦磨損測(cè)試后爐溫冷卻。試驗(yàn)設(shè)備和試樣尺寸如圖1所示。摩擦磨損試驗(yàn)在室溫(RT)、200 ℃、400 ℃、600 ℃和800 ℃下進(jìn)行,在每個(gè)溫度下均進(jìn)行2次測(cè)試,取測(cè)試結(jié)果的平均值,每次測(cè)試都在一個(gè)新的拋光試樣表面上進(jìn)行,以保證所有測(cè)試的起始條件相同。使用直徑為9.525 mm、硬度為1 500HV的氮化硅球,在球?qū)ΡP裝置中進(jìn)行試驗(yàn)。為保證在磨損試驗(yàn)中出現(xiàn)明顯劃痕且不使基體產(chǎn)生嚴(yán)重的塑性變形,采用摩擦載荷為10 N、滑動(dòng)速度為50 mm/s、滑動(dòng)持續(xù)時(shí)間為1 200 s、磨損軌跡半徑為8 mm[21]。
圖1 高溫磨損設(shè)備及尺寸
測(cè)試溫度從RT到800 ℃時(shí)TA15鈦合金的微觀組織形貌和XRD譜圖如圖2所示??梢钥闯?,在β相基體中存在大量等軸初生α相,并且不同試樣的微觀組織差異不明顯,這說(shuō)明高溫測(cè)試時(shí)間過(guò)短,對(duì)TA15合金的微觀組織影響不大。
為了進(jìn)一步明確TA15合金中α相與β相含量的差異,在600 ℃下對(duì)試樣的微觀結(jié)構(gòu)進(jìn)行EDS掃描分析,結(jié)果如圖3所示。結(jié)合表1可以看出,Ti仍是TA15合金的主要元素,而V和O元素的含量明顯增加,這表明試樣磨損表面發(fā)生氧化。EDS譜圖結(jié)果表明,Ti和Al元素主要分布在α相中,Mo、V和O元素主要分布在β相中。
摩擦因數(shù)是衡量材料摩擦磨損性能的重要指標(biāo)之一。不同溫度下TA15合金磨損試樣在10 N載荷下的摩擦因數(shù)隨滑動(dòng)時(shí)間的變化情況如圖4所示??梢?jiàn),RT、200 ℃、400 ℃、600 ℃、800 ℃溫度下的平均摩擦因數(shù)分別為0.279、0.247、0.266、0.224、0.309。隨著試驗(yàn)溫度的升高,在600 ℃時(shí)摩擦因數(shù)最小,這是因?yàn)殡S著摩擦磨損表面的溫度逐漸升高,合金發(fā)生高溫軟化,導(dǎo)致工件表面硬度降低,對(duì)塑性變形的抗力下降,磨削球可以更容易壓入磨損表面,此時(shí)磨損產(chǎn)生的磨屑也會(huì)充當(dāng)潤(rùn)滑作用,因此摩擦因數(shù)不斷降低。但由于在800 ℃時(shí)TA15合金表面存在更厚的氧化層,導(dǎo)致摩擦阻力變大,使摩擦因數(shù)突然增大。
圖2 不同溫度下的微觀組織和XRD譜圖
圖3 600 ℃磨損試驗(yàn)后TA15微觀組織的EDS圖譜和元素含量分析
圖4 不同溫度下TA15合金的摩擦因數(shù)
不同溫度下TA15合金的磨損形貌如圖5所示。在室溫時(shí),磨痕比較寬,犁溝細(xì)而密,并且深度較大。在200 ℃和400 ℃時(shí),磨損寬度發(fā)生明顯變化,結(jié)合各個(gè)試樣的平均寬度(見(jiàn)圖5g)和平均深度(圖5h)可以看出,隨著試驗(yàn)溫度的升高,表面磨痕平均寬度和深度不斷減小,在400 ℃時(shí)達(dá)到最低。但當(dāng)試驗(yàn)溫度超過(guò)400 ℃后,磨痕的寬度和深度都大幅增大,這說(shuō)明TA15鈦合金的磨損程度隨溫度的升高而降低,而超過(guò)400 ℃后表面磨損程度反而增大。在600 ℃時(shí)磨損寬度誤差最小,但磨損深度誤差最大,這主要是因?yàn)樵诟邷剀浕饔孟掳l(fā)生了磨粒磨損,從而導(dǎo)致試樣表面劃痕偏深。當(dāng)試驗(yàn)溫度為800 ℃時(shí),試樣被擠壓變形,磨損寬度顯著增大。此外,試樣表面磨痕深度因受高硬度氧化層的影響而大幅下降。
圖5 用激光共聚焦顯微鏡觀察磨損形貌
不同試驗(yàn)溫度下TA15合金的磨損量如圖6所示??梢钥闯觯?dāng)試驗(yàn)溫度低于600 ℃時(shí),隨溫度的升高,磨損量減小,從0.005 1 g下降到0.004 3 g,然而在600 ℃時(shí),磨損量突然增大到0.019 1 g,這主要是因?yàn)樵?00 ℃時(shí),高溫軟化起主導(dǎo)作用,導(dǎo)致試樣的塑性非常好。由此可見(jiàn),高溫顯微硬度也會(huì)影響磨損量和磨損機(jī)理。結(jié)合圖5g、圖5h和圖6可以得出,在600 ℃時(shí),硬度下降,塑性有所提升,從而使磨損量大大增大。但當(dāng)試驗(yàn)溫度為800 ℃時(shí),總質(zhì)量意外增大0.019 4 g,這主要是由于TA15鈦合金在高溫軟化后發(fā)生了明顯的高溫焊接。
圖6 不同試驗(yàn)溫度下TA15合金的磨損量比較
為了更加準(zhǔn)確地比較試樣在不同溫度下的磨損量,可用磨損體積來(lái)計(jì)算磨損率。球體積磨損的計(jì)算如式(1)所示。
式中:為試樣磨損體積,mm3;為磨痕寬度,mm;為磨損球半徑,mm。
目前,常用比磨損率作為衡量材料摩擦磨損性能的重要指標(biāo)。比磨損率定義公式如式(2)所示。
式中:為比磨損率,mm3/(N·m);為法向載荷,N;為滑動(dòng)距離,m。
經(jīng)計(jì)算,不同溫度下TA15鈦合金試樣的比磨損率如表2所示??梢悦黠@看出,當(dāng)溫度低于600 ℃時(shí),隨著溫度的升高,TA15鈦合金的比磨損率不斷降低,在400 ℃時(shí),試樣的比磨損率不足RT時(shí)的1/5,降幅達(dá)83.2%,表明此時(shí)TA15鈦合金具有最佳的耐磨損性能。但是,600 ℃時(shí)的比磨損率為23.89× 10?5mm3/(N·m),此時(shí)試樣的比磨損率高于RT時(shí)的,并隨溫度的升高而升高,而且800 ℃時(shí)的比磨損率遠(yuǎn)高于RT時(shí)的,漲幅為64.1%。
表2 不同溫度下TA15鈦合金的磨損體積和比磨損率
Tab.2 Wear volume and specific wear rate of TA15 titanium alloy at different temperatures
為了研究不同溫度下的摩擦磨損機(jī)理,采用掃描電鏡分析表面磨痕形貌,如圖7所示。從圖7a可以看出,磨粒磨損是RT下的主要磨損形式,磨痕表面黏附著大量磨屑,機(jī)械犁耕現(xiàn)象明顯。從圖7b和圖7c可以看出,200 ℃和400 ℃時(shí)的磨損機(jī)理相似,主要以黏著磨損為主,而且均出現(xiàn)了明顯的分層和撕裂痕跡,并伴有少量的磨屑。此外,磨痕邊緣的不均勻可能與分層密切相關(guān)。600 ℃時(shí)磨損寬度和形貌比較均勻,如圖7d所示,表面看到明顯的氧化磨損和黏著磨損特征,磨削球與工件之間的高溫摩擦導(dǎo)致表面出現(xiàn)輕微黏著撕裂的現(xiàn)象。800 ℃時(shí)試樣的摩擦磨損形貌如圖7e所示,可以看到明顯的擠壓變形,磨痕較淺,犁溝基本消失,未發(fā)現(xiàn)撕裂的現(xiàn)象,這主要是表面高硬度氧化層和基體高溫軟化共同作用的結(jié)果。根據(jù)圖7d、圖7e和表2可以看出,磨損試樣表面磨損的擠壓變形明顯,這主要是由于TA15鈦合金的過(guò)度軟化使磨痕寬度大幅增大,從而導(dǎo)致比磨損率大幅增大。
對(duì)TA15合金摩擦磨損形貌進(jìn)行EDS分析,測(cè)點(diǎn)位置如圖8所示,EDS結(jié)果如表3所示。從圖8可以看出,表面分布有許多不同形狀的顆粒。所有試樣(點(diǎn)4、點(diǎn)6和點(diǎn)9)的主要元素都是Ti,但在這些點(diǎn)都檢測(cè)到N元素,這說(shuō)明無(wú)論測(cè)試溫度是多少,磨削球顆粒都嵌入在基體中。O元素含量隨著試驗(yàn)溫度的升高而增加,再加上Ti具有較高的化學(xué)活性,氧化現(xiàn)象不可避免。這進(jìn)一步證實(shí)了高溫條件下試樣表面的Ti元素容易氧化形成高硬度、高脆性的氧化物薄膜,并易在擠壓作用下脫落,裸露的表面又繼續(xù)生成新的氧化物薄膜而繼續(xù)發(fā)生氧化磨損,同時(shí)剝落的磨屑不及時(shí)排出會(huì)導(dǎo)致磨粒磨損。
圖7 不同工作溫度下磨損形貌的SEM圖像
圖8 TA15合金磨損形貌的EDS測(cè)點(diǎn)位置
表3 圖8中EDS分析的元素組成
Tab.3 Elemental composition of EDS analysis in Fig.8 wt.%
TA15合金具有較高的比強(qiáng)度和高溫強(qiáng)度,能服役于較高的溫度環(huán)境。高溫軟化和表面氧化是影響TA15合金高溫摩擦磨損性能的主要因素。在本試驗(yàn)中,600 ℃的高溫軟化效果普遍好于表面氧化引起的硬化效果,這導(dǎo)致了磨損量突然大幅升高。
不同的磨損溫度會(huì)導(dǎo)致不同的磨損質(zhì)量和磨損機(jī)理,如圖9所示。從RT到400 ℃,磨損機(jī)理以磨粒磨損和黏著磨損為主。隨著磨損溫度的升高,TA15合金輕微軟化導(dǎo)致分層,出現(xiàn)少量分布不均勻的顆粒。當(dāng)試驗(yàn)溫度為600 ℃時(shí),磨損試樣材質(zhì)較軟,摩擦磨損比較均勻,少數(shù)大顆粒導(dǎo)致磨損深度顯著增大。800 ℃的過(guò)度軟化雖然提高了塑性,增大了磨痕的寬度,但表面氧化層使硬度有所提升,導(dǎo)致試樣的磨痕深度大大降低。此外,磨削球與磨損試樣發(fā)生了明顯的高溫焊接和黏著磨損,并由于黏附,總質(zhì)量略有增大。
圖9 高溫磨損機(jī)理示意圖
通過(guò)不同溫度的摩擦磨損試驗(yàn),分析了TA15鈦合金的摩擦磨損性能。可以得出以下結(jié)論:
1)隨著試驗(yàn)溫度的升高,在RT~400 ℃下,TA15合金表面磨痕不斷變窄變淺,摩擦因數(shù)從0.279下降到0.224,磨損量有所減小,在400 ℃時(shí),磨損量和比磨損率均降到最低,表現(xiàn)出較高的耐磨損特性,而在600 ℃時(shí),試樣的比磨損率開(kāi)始增大,磨損量此時(shí)達(dá)到最大。
2)通過(guò)對(duì)比分析不同試樣的磨痕微觀形貌,發(fā)現(xiàn)TA15合金在常溫環(huán)境下的磨損形式以磨粒磨損和黏著磨損為主,而在高溫磨損環(huán)境下除了磨粒磨損和黏著磨損外,伴隨著明顯的氧化磨損。
3)600 ℃是TA15合金摩擦磨損性能的分界線。在600 ℃以下,磨損表面存在大量磨屑,磨痕不均勻,并伴有明顯的黏著撕裂特征。而在600 ℃時(shí),高溫軟化作用明顯,因此,磨痕寬度和形貌比較均勻。當(dāng)試驗(yàn)溫度為800 ℃時(shí),由于黏附和高溫焊接的作用,TA15合金的總質(zhì)量有所增大。
[1] SUN Q J, XIE X. Microstructure and Mechanical Properties of TA15 Alloy after Thermo-mechanical Processing[J]. Materials Science and Engineering A, 2018, 724: 493-501.
[2] ZHAO Jie, LYU Liang-xing, WANG Ke-huan, et al. Effects of Strain State and Slip Mode on the Texture Evolution of a Near-α TA15 Titanium Alloy during Hot Deformation Based on Crystal Plasticity Method[J]. Journal of Materials Science and Technology, 2020, 38: 125-134.
[3] WU Hui-li, SUN Zhi-chao, CAO Jing, et al. Formation and Evolution of Tri-modal Microstructure during Dual Heat Treatment for TA15 Ti-alloy[J]. Journal of Alloys and Compounds, 2019, 786: 894-905.
[4] LI Yan-xi, GAO Peng-fei, YU Jing-yue, et al. Mesoscale Deformation Mechanisms in Relation with Slip and Grain Boundary Sliding in TA15 Titanium Alloy during Tensile Deformation[J]. Journal of Materials Science and Tech-nology, 2022, 98: 72-86.
[5] JIANG X Q, FAN X G, ZHAN M, et al. Microstructure Dependent Strain Localization during Primary Hot Working of TA15 Titanium Alloy: Behavior and Mechanism[J]. Materials and Design, 2021, 203: 109589.
[6] XU Ye-lin, LIU Er-liang, WEI Shi-liang. Investigation on Tensile Fracture Properties of TA15 Specimen Formed by Selective Electron Beam Melting[J]. Materials Science and Engineering A, 2020, 773: 138826.
[7] JIANG Jun-jie, REN Zhi-chao, MA Zhi-bo, et al. Mechanical Properties and Microstructural Evolution of TA15 Ti Alloy Processed by Selective Laser Melting before and after Annealing[J]. Materials Science and Engineering A, 2020, 772: 138742.
[8] WANG Ke-huan, LIU Gang, TAO Wang, et al. Study on the Mixed Dynamic Recrystallization Mechanism during the Globularization Process of Laser-welded TA15 Ti- alloy Joint under Hot Tensile Deformation[J]. Materials Characterization, 2017, 126: 57-63.
[9] VO P, JAHAZI M, YUE S, et al. Flow Stress Prediction during Hot Working of Near-α Titanium Alloys[J]. Materials Science and Engineering A, 2007, 447(1/2): 99-110.
[10] YANG Lei, WANG Bao-yu, LIU Gang, et al. Hot Tensile Behavior and Self-consistent Constitutive Modeling of TA15 Titanium Alloy Sheets[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4647-4655.
[11] HAO Fang, XIAO Jun-feng, FENG Yong, et al. Tensile Deformation Behavior of a Near-Titanium Alloy Ti-6Al- 2Zr-1Mo-1V under a Wide Temperature Range[J]. Journal of Materials Research and Technology, 2020, 9(3): 2818-2831.
[12] ZHAO Jie, WANG Ke-huan, HUANG Ke, et al. Recrys-tallization Behavior during Hot Tensile Deformation of TA15 Titanium Alloy Sheet with Substantial Prior De-for-med Substructures[J]. Materials Characterization, 2019, 151: 429-435.
[13] ZHAO Hui-jun, WANG Bao-yu, JU Dong-ying, et al. Hot Tensile Deformation Behavior and Globularization Mechanism of Bimodal Microstructured Ti-6Al-2Zr-1Mo- 1V Alloy[J]. Transactions of Nonferrous Metals Society of China (English Edition), 2018, 28(12): 2449-2459.
[14] ZHAO Jie, LYU Liang-xing, LIU Gang, et al. Analysis of Deformation Inhomogeneity and Slip Mode of TA15 Titanium Alloy Sheets during the Hot Tensile Process Based on Crystal Plasticity Model[J]. Materials Science and Engineering A, 2017, 707: 30-39.
[15] LI Jiang, LI Fu-guo, CAI Jun. Constitutive Model Predic-tion and Flow Behavior Considering Strain Response in the Thermal Processing for the TA15 Titanium Alloy[J]. Materials, 2018, 11(10): 1985.
[16] FENG Yang-ju, CUI Guo-rong, ZHANG Wen-cong, et al. High Temperature Tensile Fracture Characteristics of the Oriented TiB Whisker Reinforced TA15 Matrix Composites Fabricated by Pre-sintering and Canned Extrusion[J]. Journal of Alloys and Compounds, 2018, 738: 164-172.
[17] FENG Yang-ju, ZHANG Wen-cong, ZENG Li, et al. Room- temperature and High-temperature Tensile Mechanical Properties of TA15 Titanium Alloy and TiB Whisker- reinforced TA15 Matrix Composites Fabricated by Vacuum Hot-pressing Sintering[J]. Materials, 2017, 10(4): 1-14.
[18] LI Jun-ling, WANG Bao-yu, HUANG He, et al. Beha-viour and Constitutive Modelling of Ductile Damage of Ti-6Al-1.5Cr-2.5Mo-0.5Fe-0.3Si Alloy under Hot Tensile Deformation[J]. Journal of Alloys and Compounds, 2019, 780: 284-292.
[19] ZHAO Jie, LYU Liang-xing, LIU Gang. Experimental and Simulated Analysis of Texture Evolution of TA15 Titanium Alloy Sheet during Hot Tensile Deformation at 750 ℃[J]. Procedia Engineering, 2017, 207: 2179-2184.
[20] LIU Gang, WANG Ke-huan, HE Bin-bin, et al. Mechanism of Saturated Flow Stress during Hot Tensile Deformation of a TA15 Ti Alloy[J]. Materials and Design, 2015, 86: 146-151.
[21] LU Hai-feng, MIAO Qiang, LIANG Wen-ping, et al. High-temperature Tribological Behaviors of a Cr-Si Co-alloyed Layer on TA15 Alloy[J]. Chinese Journal of Aeronautics, 2017, 30(2): 846-855.
Tribological Properties of TA15 Titanium Alloy at Different High Temperatures
1,1,1,1*2,3,1,1,1
(1. School of Mechanical Engineering, Jiangsu University, Jiangsu Zhenjiang 212013, China; 2. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China; 3. Innovation Research Institute, Shenyang Aircraft Corporation, Shenyang 110000, China)
To investigate the high-temperature wear resistance potential of the TA15 titanium alloy, its tribological properties were studied at various temperatures, ranging from room temperature to 800 ℃. The Rtec Universal Tribometer (Rtec, San Jose, USA) equipped with a high-temperature furnace capable of reaching 1 000 ℃, with a heating rate of 100 ℃/min, was used to conduct friction and wear property tests on the TA15 titanium alloy. The impact of temperature on the friction coefficient and wear rate was analyzed. The wear morphology, composition changes, and wear mechanism of the TA15 titanium alloy at different temperatures were analyzed with a laser confocal microscope, a JSM-7800F scanning electron microscope (SEM), energy dispersive spectrum (EDS), and X-ray diffraction (XRD). The study showed that there were no significant changes in the microstructure at different test temperatures, and the microstructure was primarily composed of equiaxed α and β phases. As the test temperature increased, the O element content on the surface of the TA15 titanium alloy continuously increased, and the oxidation wear phenomenon on the wear surface became more apparent. The wear width varied significantly at 200 ℃ and 400 ℃, owing to the small average width and depth at these temperatures. Although the wear width error was the smallest at 600 ℃, the wear depth error was the highest due to too deep partial scratches, indicating that abrasive wear was the primary factor. At 800 ℃, the specimen was extruded and deformed, resulting in a significantly increased wear width (about 2 300 μm). Furthermore, increased adhesive wear caused noticeable local tearing. At temperatures below the service temperature of 500 ℃, wear losses only slightly varied from 0.005 1 g to 0.004 3 g. However, at 600 ℃, the wear loss abruptly increased to 0.019 1 g, which was mainly due to TA15's excellent plasticity at that temperature. Additionally, the high temperature microhardness affected the wear loss and mechanism. Unexpectedly, at a test temperature of 800 ℃, the total mass increased by 0.019 4 g due to the softened TA15's compaction and obvious adhesive wear. The wear mechanism of TA15 at room temperature was primarily abrasive wear. At 200 ℃ and 400 ℃, the wear was mainly stripping wear and adhesive wear, accompanied by minor abrasive wear and oxidation wear. At 600 ℃, the wear was primarily oxidized, accompanied by abrasive wear and adhesive wear, with uniform surface wear morphology and width. At 800 ℃, the wear surface was mainly affected by adhesive wear and oxidation wear, accompanied by high temperature welding. At high temperatures, TA15's surface wear is mainly influenced by high temperature softening and surface oxidation. Worn surfaces are distributed with various particles of different morphologies, with Ti as the main element and N element detected at various spots, indicating that grinding ball particles are embedded in the substrate regardless of test temperature. Owing to Ti's high chemical activity, oxidation is inevitable, and the content of O element increases gradually with the rise in test temperature.
TA15 titanium alloy; high-temperature properties; wear mechanism; oxidation wear; friction coefficient
2022-09-15;
2023-03-31
TG147
A
1001-3660(2023)10-0151-09
10.16490/j.cnki.issn.1001-3660.2023.10.011
2022-09-15;
2023-03-31
國(guó)家科技重大專項(xiàng)(2017ZX04001001);江蘇省自然科學(xué)基金青年基金(BK20210758);中國(guó)博士后科學(xué)基金面上一等資助項(xiàng)目(2022M710060);航空動(dòng)力裝備振動(dòng)及控制教育部重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(VCAME202208);江蘇省研究生實(shí)踐創(chuàng)新計(jì)劃(SJCX22_1849,KYCX22_3626)
National Science and Technology Major Project (2017ZX04001001); Natural Science Foundation of Jiangsu Province (BK20210758); China Postdoctoral Science Foundation Funded Project (2022M710060); Open Fund for the Key Laboratory of Vibration and Control of Aviation Power Equipment, Ministry of Education (VCAME202208); Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX22_1849, KYCX22_3626)
劉彬, 李晟, 毛玉剛, 等. TA15鈦合金高溫摩擦磨損性能研究[J]. 表面技術(shù), 2023, 52(10): 151-159.
LIU Bin, LI Sheng, MAO Yu-gang, et al. Tribological Properties of TA15 Titanium Alloy at Different High Temperatures[J]. Surface Technology, 2023, 52(10): 151-159.
通信作者(Corresponding author)
責(zé)任編輯:蔣紅晨