王雅軒, 林雪, 戴重陽(yáng), 蒲小燕
甲狀腺激素T3抑制內(nèi)質(zhì)網(wǎng)應(yīng)激保護(hù)大鼠II型肺泡上皮細(xì)胞和減輕大鼠低氧性肺損傷*
王雅軒, 林雪, 戴重陽(yáng), 蒲小燕△
(青海大學(xué)醫(yī)學(xué)院基礎(chǔ)醫(yī)學(xué)部,青海 西寧 810016)
探討甲狀腺激素能否減輕高原低氧環(huán)境中大鼠II型肺泡上皮細(xì)胞與肺組織損傷,并探尋其作用機(jī)制。將20只SPF級(jí)別、8周周齡的雄性SD大鼠分為正常對(duì)照組與高原模型組,每組10只。高原模型大鼠置于模擬海拔6 000 m低氧環(huán)境的模擬艙內(nèi)構(gòu)建高原低氧模型,正常對(duì)照組大鼠生活海拔與當(dāng)?shù)匾恢?。造模結(jié)束后在正常海拔下收集兩組動(dòng)物血清與肺組織。電鏡和TUNEL染色法觀察大鼠肺組織細(xì)胞凋亡情況,使用RT-qPCR與Western blot檢測(cè)大鼠肺組織中葡萄糖調(diào)節(jié)蛋白78(GRP78)、肌醇需求酶1α(IRE1α)、蛋白激酶樣內(nèi)質(zhì)網(wǎng)激酶(PERK)和轉(zhuǎn)錄激活因子6(ATF6)mRNA與蛋白表達(dá)。甲狀腺濾泡上皮細(xì)胞分為常氧組與低氧組。常氧組正常條件培養(yǎng),低氧組缺氧培養(yǎng)24 h,用CCK-8試劑盒檢測(cè)細(xì)胞增殖率,用ELISA法檢測(cè)細(xì)胞乳酸脫氫酶(LDH)、甲狀腺激素T3和T4含量。大鼠II型肺泡上皮細(xì)胞分為常氧組、常氧+甲狀腺激素(T3)組、低氧組和低氧+T3組,按組別加入T3后進(jìn)行缺氧處理,CCK-8法檢測(cè)細(xì)胞增殖率,細(xì)胞染色觀察活死細(xì)胞比例,ELISA檢測(cè)細(xì)胞LDH含量,TUNEL染色觀察細(xì)胞凋亡,RT-qPCR與Western blot法檢測(cè)II型肺泡上皮細(xì)胞中GRP78、IRE1α、PERK和ATF6的mRNA與蛋白表達(dá),免疫熒光法對(duì)細(xì)胞GRP78、ATF6和Bax進(jìn)行共定位檢測(cè)。高原組大鼠肺組織凋亡細(xì)胞增加,GRP78、IRE1α、PERK和ATF6的mRNA與蛋白表達(dá)水平顯著升高(<0.01);甲狀腺細(xì)胞缺氧培養(yǎng)后細(xì)胞增殖率與T3、T4含量降低,LDH含量顯著升高(<0.01);與低氧組相比,低氧+T3組II型肺泡上皮細(xì)胞增殖率顯著升高,凋亡率與LDH含量顯著降低,GRP78、IRE1α、PERK和ATF6的mRNA與蛋白表達(dá)水平顯著降低(<0.01)。外源性甲狀腺激素可以減輕大鼠II型肺泡上皮細(xì)胞低氧性損傷,其機(jī)制可能與抑制肺泡上皮細(xì)胞中內(nèi)質(zhì)網(wǎng)應(yīng)激通路相關(guān)基因表達(dá)有關(guān)。
低氧性肺損傷;內(nèi)質(zhì)網(wǎng)應(yīng)激;甲狀腺激素;II型肺泡上皮細(xì)胞
高原低氧環(huán)境會(huì)對(duì)機(jī)體產(chǎn)生廣泛的影響,如氧化應(yīng)激損傷、臟器功能障礙等。近年來(lái),急性、間歇性或永久暴露在高海拔地區(qū)人群已大幅增加,隨著海拔的升高,氧分壓下降,生物體內(nèi)氧的生物利用度降低,肺血管結(jié)構(gòu)發(fā)生重塑、收縮[1-2],肺動(dòng)脈壓力與肺泡毛細(xì)血管通透性升高,進(jìn)一步誘發(fā)缺氧性肺血管收縮(hypoxic pulmonary vasoconstriction, HPV)和低氧血癥,造成肺損傷并誘發(fā)一系列高原肺部相關(guān)疾病[3-4],嚴(yán)重影響人們的日常生活。
內(nèi)質(zhì)網(wǎng)應(yīng)激源于未折疊蛋白反應(yīng)(unfolded protein response, UPR)的級(jí)聯(lián)反應(yīng),因內(nèi)質(zhì)網(wǎng)腔內(nèi)未折疊或錯(cuò)誤折疊蛋白的積累而被激活[5]。內(nèi)質(zhì)網(wǎng)應(yīng)激可誘發(fā)呼吸道疾病如肺癌、肺纖維化、肺部感染、哮喘等[6-7]。有學(xué)者通過(guò)動(dòng)物實(shí)驗(yàn)證實(shí)氧化應(yīng)激可誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激大鼠肺組織損傷[8],內(nèi)質(zhì)網(wǎng)抑制劑4-苯基丁酸(4-phenylbutyric acid, 4-PBA)在脂多糖(lipopolysaccharide, LPS)誘導(dǎo)的肺部炎癥中緩解展開(kāi)蛋白聚集和內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài)[9]。這些結(jié)果表明,內(nèi)質(zhì)網(wǎng)應(yīng)激和環(huán)境中氧氣含量可能是造成肺內(nèi)皮細(xì)胞損傷的關(guān)鍵,抑制內(nèi)質(zhì)網(wǎng)應(yīng)激有可能緩解因缺氧導(dǎo)致的肺損傷。
下丘腦-垂體-甲狀腺(hypothalamic-pituitary-thyroid, HPT)軸是人體主要的神經(jīng)內(nèi)分泌系統(tǒng),也是分泌包括T3和T4甲狀腺激素的重要系統(tǒng)。有研究證明在高海拔(>5 000 m)地區(qū)環(huán)境中大鼠甲狀腺激素釋放激素分泌受到抑制,導(dǎo)致T3和T4甲狀腺激素含量降低[10];還有研究證明內(nèi)質(zhì)網(wǎng)應(yīng)激途徑影響大鼠甲狀腺球蛋白分子的表達(dá)[11],這些研究提示在高海拔低氧環(huán)境下,甲狀腺激素分泌水平是引發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激的關(guān)鍵。因此,本研究主要探討在高原低氧環(huán)境下,大鼠甲狀腺激素對(duì)內(nèi)質(zhì)網(wǎng)應(yīng)激的影響,以及外源性甲狀腺激素能否通過(guò)抑制內(nèi)質(zhì)網(wǎng)應(yīng)激緩解大鼠低氧性肺損傷,保護(hù)肺泡上皮細(xì)胞,為研發(fā)相關(guān)藥物提供實(shí)驗(yàn)基礎(chǔ)。
健康SPF級(jí)別SD雄性大鼠20只,周齡為8周,體質(zhì)量200~300 g,購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,許可證號(hào)為SCXK(京)2021-0011。大鼠飼養(yǎng)于青海大學(xué)實(shí)驗(yàn)動(dòng)物房,飼養(yǎng)條件為溫度(25±2) ℃,濕度50%~60%,自由飲食、飲水,定期更換墊料、清理消毒鼠籠。本研究經(jīng)青海大學(xué)醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn),所有實(shí)驗(yàn)操作均嚴(yán)格按照還原、細(xì)化、替代的3R原則進(jìn)行。
本實(shí)驗(yàn)所用細(xì)胞為大鼠II型肺泡上皮細(xì)胞(CP-R003)與大鼠甲狀腺濾泡上皮細(xì)胞(CP-R022),均購(gòu)自武漢普諾賽生命科技有限公司。
2.1實(shí)驗(yàn)試劑T3甲狀腺激素購(gòu)自中國(guó)食品藥品檢定研究院;CCK-8試劑盒購(gòu)自北京蘭杰柯科技有限公司;乳酸脫氫酶(lactate dehydrogenase, LDH)、T3、T4 ELISA檢測(cè)試劑盒購(gòu)自上海茁彩生物科技有限公司;膜聯(lián)蛋白V(annexin V)-APC/碘化丙啶(propidium iodide, PI)雙染細(xì)胞凋亡檢測(cè)試劑盒購(gòu)自江蘇凱基生物技術(shù)股份有限公司;二喹啉甲酸法(bicinchoninic acid,BCA)蛋白濃度測(cè)定試劑盒購(gòu)自上海碧云天生物技術(shù)有限公司;轉(zhuǎn)錄激活因子6(activating transcription factor 6, ATF6)抗體和β-actin抗體購(gòu)自武漢愛(ài)博泰克生物科技有限公司;葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein 78, GRP78)抗體購(gòu)自北京博奧森生物技術(shù)有限公司;肌醇需求酶1α(inositol-requiring enzyme 1α, IRE1α)抗體和蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(protein kinase R-like endoplasmic reticulum kinase, PERK)抗體購(gòu)自武漢三鷹生物技術(shù)有限公司;總RNA分離提取試劑盒購(gòu)自成都福際生物技術(shù)有限公司;PrimeScript RT reagent Kit和TB GreenTMPremix Ex TaqTMII (Tli RNaseH Plus)為T(mén)aKaRa產(chǎn)品。
2.2實(shí)驗(yàn)儀器徠卡-2016轉(zhuǎn)輪式切片機(jī)、DMI1光學(xué)顯微鏡(Leica);SpectraMAX Plus384酶標(biāo)儀[美谷分子儀器(上海)有限公司];PIKO Red 96實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)儀(Thermo Fisher);IX73熒光顯微鏡(Olympus);全功能成像儀、蛋白質(zhì)電泳儀(Bio-Rad);Image-Pro 6.0軟件分析系統(tǒng)(MEDIA CYBERNETICS);Pannoramic 250數(shù)字切片掃描儀(3DHISTECH)。
3.1動(dòng)物分組與造模將大鼠分為正常對(duì)照組與高原模型組,每組10只。高原模型大鼠置于模擬海拔6 000 m低氧環(huán)境的模擬艙內(nèi)(大鼠進(jìn)艙后以10 m/s速度減壓上升,濕度維持在49%~55%之間,室內(nèi)溫度由中央空調(diào)統(tǒng)一控制,白天保持22~24 ℃,夜晚保持16~18 ℃)飼養(yǎng)72 h;正常對(duì)照組模擬艙內(nèi)與當(dāng)?shù)睾0我恢拢?0]。飼養(yǎng)結(jié)束后,將模擬艙內(nèi)的海拔降至與當(dāng)?shù)睾0我恢?,并在?shí)驗(yàn)艙進(jìn)行大鼠樣本取材,收集肺組織供后續(xù)檢測(cè)。
3.2細(xì)胞培養(yǎng)將完全復(fù)蘇的大鼠II型肺泡上皮細(xì)胞與大鼠甲狀腺濾泡上皮細(xì)胞置于配置好的完全培養(yǎng)液中進(jìn)行培養(yǎng),條件為37 ℃、5% CO2,待細(xì)胞生長(zhǎng)占至培養(yǎng)瓶底部約85%時(shí)進(jìn)行消化傳代,吸棄舊培養(yǎng)液,用磷酸緩沖鹽溶液(phosphate buffer saline,PBS)洗滌2次,吸棄液體,加入孵溫的胰酶消化細(xì)胞。將消化后的細(xì)胞以710×離心5 min,吸棄上清,加入新鮮培養(yǎng)液,以1∶3傳代培養(yǎng)備用。
3.3細(xì)胞分組與造模將大鼠甲狀腺濾泡上皮細(xì)胞分為2組:常氧組與低氧組;大鼠II型肺泡上皮細(xì)胞分為4組:常氧組、常氧+T3(甲狀腺激素)組、低氧組、低氧+T3組[11]。每組設(shè)置3個(gè)復(fù)孔。本實(shí)驗(yàn)常氧組培養(yǎng)條件為5% CO2,37 ℃。低氧組細(xì)胞置于密閉小室中,填充94% N2,5% CO2與1% O2,37 ℃。所有細(xì)胞培養(yǎng)周期均為24 h。甲狀腺激素T3的加入濃度為1 nmol/L[12],提前加入培養(yǎng)液后再進(jìn)行缺氧培養(yǎng)。
3.4細(xì)胞活性檢測(cè)
3.4.1CCK-8收集各組處理完畢的大鼠II型肺泡上皮細(xì)胞和大鼠甲狀腺濾泡上皮細(xì)胞制備單細(xì)胞懸液,調(diào)節(jié)細(xì)胞密度1×107/L,以每孔100 μL接種于96孔板中,37 ℃、5% CO2恒溫培養(yǎng)。待細(xì)胞貼壁后,按分組進(jìn)行相應(yīng)處理。處理完成24 h后,吸棄上清。無(wú)血清培養(yǎng)基1∶10稀釋CCK-8試劑,每孔加入已稀釋CCK-8工作液10 μL;并輕輕晃動(dòng)培養(yǎng)板數(shù)次,37 ℃、5% CO2恒溫繼續(xù)培養(yǎng)2 h,取出使用酶標(biāo)儀在450 nm波長(zhǎng)處測(cè)定各孔的吸光度()值。每組設(shè)置3個(gè)復(fù)孔。
3.4.2細(xì)胞染色收集各組處理完畢的大鼠II型肺泡上皮細(xì)胞和大鼠甲狀腺濾泡上皮細(xì)胞制備單細(xì)胞懸液,調(diào)節(jié)細(xì)胞密度1×107/L,以每孔100 μL接種于96孔板中,37℃、5% CO2恒溫培養(yǎng)。待細(xì)胞貼壁后,按分組進(jìn)行相應(yīng)處理。處理完畢后吸除上清液,PBS輕輕洗滌2次,在培養(yǎng)液中均勻滴加適量的Hoechst 33342細(xì)胞染色液(終濃度為1×)和PI(1∶100),在適宜于細(xì)胞培養(yǎng)的溫度孵育10 min。吸除含染料的培養(yǎng)液,用培養(yǎng)液或PBS洗滌2~3次即可在熒光顯微鏡下拍照觀察。每組設(shè)置3個(gè)復(fù)孔。
3.5細(xì)胞凋亡檢測(cè)
3.5.1流式細(xì)胞術(shù)收集各組處理完畢的大鼠II型肺泡上皮細(xì)胞和大鼠甲狀腺濾泡上皮細(xì)胞制備單細(xì)胞懸液,調(diào)節(jié)細(xì)胞密度2×108/L,以每孔2 mL接種于6孔板中,37 ℃、5% CO2恒溫培養(yǎng)。待細(xì)胞貼壁后,按分組進(jìn)行相應(yīng)處理。處理完畢后吸取上層清液于對(duì)應(yīng)編號(hào)的離心管中備用,PBS洗滌細(xì)胞1次,吸棄上清液。加入胰蛋白酶消化,710 ×離心5 min,吸棄上清液,加入適量PBS洗滌并將懸液轉(zhuǎn)移至1.5 mL尖底離心管中,710 ×離心5 min,吸棄上清液。用500 μL的試劑盒緩沖液重懸細(xì)胞后,加入5 μL Annexin V輕輕吹勻,再加入5 μL的PI混勻;室溫避光反應(yīng)15 min,上機(jī)檢測(cè)分析。
3.5.2TUNEL染色將大鼠肺組織按TUNEL標(biāo)準(zhǔn)化流程制備組織切片。采用3DHISTECH (Hungary)生產(chǎn)的Pannoramic 250數(shù)字切片掃描儀進(jìn)行掃描,然后進(jìn)行圖像采集,每張切片先于100倍下觀察全部組織,再根據(jù)組織大小采集3個(gè)區(qū)域9張400倍圖像,進(jìn)行凋亡細(xì)胞分析。
3.6ELISA檢測(cè)收集各組處理完畢的細(xì)胞上清液,按ELISA檢測(cè)試劑盒說(shuō)明書(shū)操作,在450 nm波長(zhǎng)處測(cè)定甲狀腺細(xì)胞上清中LDH、T3、T4含量和大鼠II型肺泡上皮細(xì)胞上清中LDH含量。
3.7RT-qPCR檢測(cè)收集各組處理完畢的細(xì)胞與肺組織,按照RNA提取試劑盒的說(shuō)明操作檢測(cè)并提取肺組織與細(xì)胞的RNA,用2%的瓊脂糖凝膠電泳檢測(cè)總RNA的完整性,并用核酸蛋白檢測(cè)儀檢測(cè)其純度,目的基因?yàn)?、、和。PCR條件為:95 ℃預(yù)變性30 s;95 ℃變性5 s,55 ℃退火30 s,72 ℃延伸30 s。使用Thermo Scientific PikoReal軟件分析PCR過(guò)程各檢測(cè)樣本的CT值。通過(guò)2-ΔΔCt法計(jì)算目的基因相對(duì)表達(dá)水平。所有序列與引物均由北京六合華大基因科技股份有限公司進(jìn)行合成提供。GRP78上游引物序列為5'-CGG AGG AGG AGG ACA AGA AGG AG-3',下游引物序列為5'-ATA CGA CGG TGT GAT GCG GTT G-3';IRE1Α上游引物序列為5'-GGA GAC CCT ACG CTA TTT GAC CT-3',下游引物序列為5'-CTT CGA GCA AAG GAA GAG TGC T-3';PERK上游引物序列為5'-TGG GAT GTC GCC GAT GGG ATA G-3',下游引物序列為5'-AAT TCC ACT TCT CAC TGC CGC TTC-3';ATF6上游引物序列為5'-GGA AGA GAA GCC TGT CAC TGG TC-3',下游引物序列為5'-TCT TGG GTG CTG CTG GAA GTA AC-3';β-actin上游引物序列為5'-GGG AAA TCG TGC GTG ACA TT-3',下游引物序列為5'-GCG GCA GTG GCC ATC TC-3'。
3.8Western blot檢測(cè)收集各組處理完畢的細(xì)胞與肺組織,在冰浴條件下進(jìn)行裂解與蛋白提取,4 ℃、1 150×離心15 min后收集上清液,使用BCA試劑盒進(jìn)行蛋白質(zhì)相對(duì)定量后進(jìn)行凝膠電泳,電泳后將蛋白轉(zhuǎn)移到聚偏氟乙烯膜上,放置于用TBST溶液室溫?fù)u床震動(dòng)封閉2 h,然后轉(zhuǎn)移至稀釋好的Ⅰ抗中,4 ℃冰箱內(nèi)過(guò)夜,稀釋倍數(shù)為:ATF6(1∶1 000)、IRE1α(1∶1 000)、PERK(1∶1 000)、GRP78(1∶1 000)及β-actin(1∶5 000),轉(zhuǎn)移至Ⅱ抗中室溫?fù)u床孵育2 h,使用增強(qiáng)型化學(xué)發(fā)光試劑進(jìn)行顯色處理,最后使用全功能成像儀拍照分析。
3.9免疫熒光檢測(cè)將各組處理好的細(xì)胞制備細(xì)胞爬片,使用PBS洗3次,每次5 min;接著浸入5% 破膜劑,室溫浸泡10 min,PBS洗3次,每次5 min;然后滴加山羊血清封閉液,室溫封閉20 min,往爬片上滴加Ⅰ抗,4 ℃過(guò)夜,Ⅰ抗稀釋倍數(shù)為Bax(1:100)、ATF6(1∶50)、GRP78(1∶100),PBS洗3次,每次5 min;滴加Ⅱ抗,稀釋倍數(shù)為1∶100,37 ℃ 孵育30 min,PBS洗3次,每次5 min;然后滴加DAPI,室溫孵育10 min;PBS洗3次,每次5 min;最后使用抗熒光衰減封片劑封片。使用顯微攝像系統(tǒng)對(duì)切片進(jìn)行圖像采集,每張切片先于100倍下觀察全部組織,再采集400倍顯微圖像,共采集2個(gè)視野。采用Image-J圖像分析系統(tǒng)測(cè)定所采集全部圖像的熒光強(qiáng)度(integrated density,IntDen)和面積(Area),并計(jì)算每張圖像的平均熒光強(qiáng)度。
用IBM SPSS Statistics 22.0軟件進(jìn)行統(tǒng)計(jì),使用單因素方差分析進(jìn)行比較分析。事后多重比較選擇LSD-檢驗(yàn)。所有計(jì)量數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
RT-qPCR與Western blot結(jié)果顯示,與正常對(duì)照組相比,高原模型組大鼠肺組織中GPR78的mRNA與蛋白表達(dá)水平顯著升高(P<0.01),IRE1α、PERK和ATF6的mRNA與蛋白表達(dá)水平顯著升高(<0.01);TUNEL染色結(jié)果顯示,高原模型組大鼠肺組織中細(xì)胞凋亡數(shù)量顯著增加(<0.01),見(jiàn)圖1。
Figure 1. Effects of high-altitude hypoxia on expression of endoplasmic reticulum stress related factors in lung tissue of rats. A: GRP78mRNAexpression in rat lung tissue; B: GRP78 protein expression in rat lung tissue; C: mRNA expression of IRE1α, PERK, ATF6 in rat lung tissue; D: expression of IRE1α, PERK, ATF6 protein in rat lung tissue; E: apoptotic cells in rat lung tissue, green is apoptotic cells. Mean±SD. n=6. **P<0.01 vs normoxia.
檢測(cè)甲狀腺細(xì)胞在低氧環(huán)境中的活性,與常氧組細(xì)胞相比,低氧組細(xì)胞活性顯著下降,細(xì)胞上清中LDH含量顯著增加,甲狀腺激素T3和T4含量均顯著減少(<0.01),見(jiàn)圖2。
Figure 2. Effects of hypoxic environment on thyroid cells. A: cell proliferation rates in the two groups; B: LDH content in two groups of cells; C: the contents of T3 and T4 in the two groups of cells. Mean±SD. n=3. **P<0.01 vs normoxia.
CCK-8結(jié)果顯示,與常氧組相比,低氧組細(xì)胞增殖率顯著降低,死亡率和LDH含量顯著升高(<0.01)。外源性甲狀腺激素T3在常氧環(huán)境下不會(huì)影響細(xì)胞正?;钚裕?0.05),但在低氧環(huán)境下會(huì)提高細(xì)胞增殖率,減少細(xì)胞死亡率與LDH含量,提高細(xì)胞與凋亡細(xì)胞的比例(<0.01),見(jiàn)圖3。
Figure 3. Effects of thyroid hormone on alveolar epithelial cells in hypoxic. A: cell proliferation rate in each group; B: cell mortality in each group; C: LDH content in cells of each group; D: cell death in each group (red is dead cells). Mean±SD. n=3. **P<0.01 vs normoxia;##P<0.01 vs hypoxia.
流式細(xì)胞術(shù)(圖4A)和RT-qPCR(圖4B)結(jié)果顯示,與常氧組相比,低氧組細(xì)胞凋亡率顯著升高,IRE1α、PERK和ATF6 mRNA表達(dá)顯著升高;外源性甲狀腺激素T3在常氧條件下對(duì)肺泡上皮細(xì)胞凋亡率、PERK mRNA和GRP78蛋白表達(dá)均沒(méi)有影響,但顯著增加ATF6和IRE1α mRNA表達(dá)水平。在低氧環(huán)境下,與低氧組相比,外源性T3顯著降低細(xì)胞凋亡率(<0.01),并顯著降低通路上IRE1α、PERK和ATF6 mRNA表達(dá)和GRP78蛋白表達(dá)(<0.05)。
Figure 4. Effect of thyroid hormone on rat type II alveolar epithelial cells in hypoxic. A: cell apoptosis rate in each group; B: the expression of IRE1α, PERK and ATF6 mRNA in each group. Mean±SD. n=3. *P<0.05,**P<0.01 vs normoxia;#P<0.05,##P<0.01 vs hypoxia.
熒光共定位結(jié)果顯示,在低氧環(huán)境下,無(wú)論是單光或者混合光,細(xì)胞中Bax、ATF6和GRP78蛋白陽(yáng)性顯著表達(dá),在甲狀腺激素T3的干預(yù)下,這三種蛋白陽(yáng)性表達(dá)均顯著降低(<0.01),見(jiàn)圖5。
Figure 5. Effect of thyroid hormone on endoplasmic network pathway in rat type II alveolar epithelial cells under hypoxia. A: GRP78 protein expression in cells of each group; B: GRP78 protein expression location in each group, green is positive expression protein; C: GRP78-ATF6 protein expression was colocalized in each group, with GRP78 in green and ATF6 in red; D: colocalization of Bax-ATF6 protein expression in cells of each group, Bax in green and ATF6 in red. Mean±SD. n=3. *P<0.05,**P<0.01 vs normoxia;#P<0.05,##P<0.01 vs hypoxia.
缺氧環(huán)境則是誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激的經(jīng)典條件[13],在急性內(nèi)質(zhì)網(wǎng)應(yīng)激情況下,促凋亡程序的激活導(dǎo)致細(xì)胞死亡[14]。內(nèi)質(zhì)網(wǎng)應(yīng)激后,ATF6會(huì)與GRP78進(jìn)入細(xì)胞核,產(chǎn)生前饋循環(huán),促進(jìn)子結(jié)合蛋白同源蛋白(C/EBP-homologous protein, CHOP)的表達(dá),進(jìn)一步激活內(nèi)質(zhì)網(wǎng)應(yīng)激[15-16]。我們結(jié)果均表明在高原缺氧的環(huán)境下,大鼠和肺泡上皮細(xì)胞均出現(xiàn)了由ATF6和GRP78表達(dá)增加而激活的內(nèi)質(zhì)網(wǎng)應(yīng)激,與上述研究結(jié)果是一致的,說(shuō)明高原低氧環(huán)境會(huì)刺激大鼠肺組織激活內(nèi)質(zhì)網(wǎng)應(yīng)激,造成肺泡上皮細(xì)胞凋亡,為誘發(fā)低氧性肺損傷的發(fā)生提供了條件。但是ATF6和GRP78涉及的內(nèi)質(zhì)網(wǎng)應(yīng)激通路網(wǎng)絡(luò)復(fù)雜,不利于針對(duì)性開(kāi)發(fā)藥物靶點(diǎn)。通過(guò)進(jìn)一步查閱文獻(xiàn)發(fā)現(xiàn),ATF6能激活I(lǐng)RE1α/XBP-1軸,促進(jìn)胚胎發(fā)展過(guò)程中錯(cuò)誤折疊蛋白的形成[17],IRE1α/XBP-1和ATF6均可以在缺氧環(huán)境下被誘導(dǎo)激活,內(nèi)質(zhì)網(wǎng)應(yīng)激傳感器之一的PERK蛋白也通過(guò)促進(jìn)ATF6合成并從內(nèi)質(zhì)網(wǎng)轉(zhuǎn)位到高爾基體[18],因此我們進(jìn)一步檢測(cè)大鼠肺組織與肺泡細(xì)胞中IRE1α和PERK mRNA及蛋白的表達(dá)水平,與目前的研究結(jié)果基本一致,ATF6通過(guò)激活I(lǐng)RE1α/XBP-1軸增加蛋白質(zhì)折疊和促進(jìn)內(nèi)質(zhì)網(wǎng)應(yīng)激通路中PERK mRNA表達(dá),上調(diào)了凋亡相關(guān)基因與蛋白如Bax的表達(dá)。由此,我們初步得出結(jié)論,ATF6介導(dǎo)的IRE1α/XBP-1軸是大鼠與肺泡細(xì)胞在低氧環(huán)境下內(nèi)質(zhì)網(wǎng)應(yīng)激激活的靶點(diǎn)通路,為接下來(lái)研究甲狀腺激素能否通過(guò)調(diào)節(jié)內(nèi)質(zhì)網(wǎng)應(yīng)激影響低氧性肺損傷打下了基礎(chǔ)。
高海拔低氧環(huán)境可激活HPT軸和下丘腦-垂體-腎上腺(hypothalamic-pituitary-adrenal axis, HPA)軸,促進(jìn)如甲狀腺激素、腎上腺激素等“應(yīng)激激素”分泌[19]。甲狀腺相關(guān)激素的分泌是由腺垂體釋放促甲狀腺激素調(diào)控的,體內(nèi)研究報(bào)道,雖然高海拔缺氧初期不會(huì)立即引起甲狀腺激素水平的變化,但血清T3和T4水平會(huì)升高,這是一種代償性保護(hù)現(xiàn)象[20]。我們通過(guò)體外細(xì)胞實(shí)驗(yàn)也證實(shí)了低氧條件會(huì)導(dǎo)致甲狀腺細(xì)胞損傷甚至死亡,從而減少甲狀腺激素T3和T4的分泌,導(dǎo)致肺泡細(xì)胞無(wú)法通過(guò)代償性的甲狀腺激素抵御低氧環(huán)境造成的損傷,而補(bǔ)充外源性甲狀腺激素能幫助肺泡上皮細(xì)胞在低氧環(huán)境下存活,由此說(shuō)明維持甲狀腺激素的正常分泌與水平是細(xì)胞在低氧環(huán)境下生存的關(guān)鍵。在前面的實(shí)驗(yàn)我們初步證明了低氧環(huán)境是內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)因素,在此基礎(chǔ)上主動(dòng)添加外源性甲狀腺激素T3后,肺泡上皮細(xì)胞高度激活的內(nèi)質(zhì)網(wǎng)應(yīng)激得到緩解。有研究表明,甲狀腺細(xì)胞對(duì)內(nèi)質(zhì)網(wǎng)應(yīng)激高度敏感,在內(nèi)質(zhì)網(wǎng)應(yīng)激時(shí)分泌功能受損[21],因此甲狀腺功能減退相關(guān)的不同甲狀腺疾病中都觀察到內(nèi)質(zhì)網(wǎng)應(yīng)激的誘導(dǎo)。我們的結(jié)果也表明這一點(diǎn),肺泡細(xì)胞低氧刺激導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激,外源性補(bǔ)充甲狀腺激素T3后,細(xì)胞內(nèi)GRP78與ATF6蛋白表達(dá)減少,內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài)緩解,凋亡蛋白Bax也隨之降低表達(dá)(圖6)。
Figure 6. Pathway diagram of thyroid hormone T3 alleviating hypoxic lung injury by inhibiting endoplasmic reticulum stress. GRP78: glucose-regulated protein 78; PERK: protein kinase R-like endoplasmic reticulum kinase; ATF6: activating transcription factor 6; eIF2α: eukaryotic initiation factor 2α; IRE1α: inositol-requiring enzyme 1α; XBP: X-Box binding protein; CHOP: C/EBP homologous protein; Bcl2: B-cell lymphoma 2.
綜上所述,甲狀腺激素在低氧環(huán)境下對(duì)大鼠II型肺泡上皮細(xì)胞是起保護(hù)作用的,能通過(guò)緩解細(xì)胞內(nèi)高度激活的內(nèi)質(zhì)網(wǎng)應(yīng)激狀態(tài),減少凋亡,從而減少與低氧性肺損傷相關(guān)的高原疾病發(fā)生。
[1] Aksel G, ?orbac?o?lu ?K, ?zen C. High-altitude illness: management approach[J]. Turk J Emerg Med, 2019, 19(4):121-126.
[2] Cai W, Liu S, Liu Z, et al. Downregulation of lung miR-203a-3p expression by high-altitude hypoxia enhances VEGF/Notch signaling[J]. Aging (Albany NY), 2020, 12(5):4247-4267.
[3] Pena E, El Alam S, Siques P, et al. Oxidative stress and diseases associated with high-altitude exposure[J]. Antioxidants (Basel), 2022, 11(2):267.
[4] Wang T, Hou J, Xiao W, et al. Chinese medicinal plants for the potential management of high-altitude pulmonary oedema and pulmonary hypertension[J]. Pharm Biol, 2020, 58(1):815-827.
[5] Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response[J]. Nature, 2008, 454(7203):455-462.
[6] Pao HP, Liao WI, Tang SE, et al. Suppression of endoplasmic reticulum stress by 4-PBA protects against hyperoxia-induced acute lung injury via up-regulating Claudin-4 expression[J]. Front Immunol, 2021, 12(1):674316.
[7]甘桂香,胡瑞成,譚雙香. 吸煙COPD模型大鼠肺組織內(nèi)質(zhì)網(wǎng)相關(guān)凋亡蛋白CHOP的表達(dá)[J]. 中國(guó)病理生理雜志, 2018, 34(2):314-320.
Gan GX, Hu RC, Tan SX. Expression of endoplasmic reticulum-associated apoptosis protein CHOP in lung tissues of COPD model rats[J]. Chin J Pathophysiol, 2018, 34(2):314-320.
[8] Delmotte P, Sieck GC. Endoplasmic reticulum stress and mitochondrial function in airway smooth muscle[J]. Front Cell Dev Biol, 2019, 7(1):374.
[9] Wei K, Luo J, Cao J, et al. Adiponectin protects obese rats from aggravated acute lung injury via suppression of endoplasmic reticulum stress[J]. Diabetes Metab Syndr Obes, 2020, 13(1):4179-4190.
[10] 羅曉紅,郭文靜,許瑞元,等. 模擬不同海拔低氧對(duì)大鼠下丘腦-垂體-甲狀腺軸及肺組織VEGF和HIF-1表達(dá)的影響[J]. 解放軍醫(yī)學(xué)院學(xué)報(bào), 2016, 37(8):864-868.
Luo XH, Guo WJ, Xu RY, et al. Effect of high altitude and hypoxia in simulated environment on HPT axis and expression of VEGF and HIF-1 in lung tissues of rats[J]. J PLA Med Coll, 2016, 37(8):864-868.
[11] Li P, Gao H, Dong L, et al. Perinatal low-dose PBDE-47 exposure hampered thyroglobulin turnover and induced thyroid cell apoptosis by triggering ER stress and lysosomal destabilization contributing to thyroid toxicity in adult female rats[J]. J Hazard Mater, 2020, 392(1):122265.
[12] Dekkers BG, Naeimi S, Bos IS, et al. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 308(3):L301-L306.
[13] Chang X, Zhang T, Meng Q, et al. Quercetin improves cardiomyocyte vulnerability to hypoxia by regulating SIRT1/TMBIM6-eelated mitophagy and endoplasmic reticulum stress[J]. Oxid Med Cell Longev, 2021, 2021:5529913.
[14] Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis[J]. Cancer Discov, 2015, 5(6):586-597.
[15] Schr?der M, Kaufman RJ. ER stress and the unfolded protein response[J]. Mutat Res, 2005, 569(1-2):29-63.
[16] Hetz C, Papa FR. The unfolded protein response and cell fate control[J]. Mol Cell, 2018, 69(2):169-181.
[17] Hillary RF, Fitzgerald U. A lifetime of stress: ATF6 in development and homeostasis[J]. J Biomed Sci, 2018, 25(1):48.
[18] Akman M, Belisario DC, Salaroglio IC, et al. Hypoxia, endoplasmic reticulum stress and chemoresistance: dangerous liaisons[J]. J Exp Clin Cancer Res, 2021, 40(1):28.
[19] 劉丹,李梅,王玉娥,等. 中等度高海拔低氧環(huán)境對(duì)健康成人血糖、血脂譜及甲狀腺激素水平的影響[J]. 中國(guó)病理生理雜志, 2019, 35(9):1683-1688.
Liu D, Li M, Wang YE, et al. Effects of moderate altitude on fasting blood glucose, lipid profile and thyroid hormones in healthy volunteers[J]. Chin J Pathophysiol, 2019, 35(9):1683-1688.
[20] Tani N, Ishikawa M, Watanabe M, et al. Thyroid-related hormones as potential markers of hypoxia/ischemia[J]. Hum Cell, 2020, 33(3):545-558.
[21] Wen G, Eder K, Ringseis R. Resveratrol alleviates the inhibitory effect of tunicamycin-induced endoplasmic reticulum stress on expression of genes involved in thyroid hormone synthesis in FRTL-5 thyrocytes[J]. Int J Mol Sci, 2021, 22(9):4373.
Thyroid hormone T3 protects type II alveolar epithelial cells and alleviates hypoxia-induced lung injury in rats by inhibiting endoplasmic reticulum stress
WANG Yaxuan, LIN Xue, DAI Chongyang, PU Xiaoyan△
(,,810016,)
To investigate whether thyroid hormone can reduce the damage of type II alveolar epithelial cells and lung tissue in rats under high-altitude hypoxic environment, and to explore its mechanism.Eight-week-old male SPF SD rats were divided into a normal control group and a plateau model group, with 10 rats in each group. The former group lived at an altitude consistent with local area,while the latter group was placed in a cabin that simulated the hypoxic environment at an altitude of 6 000 m to establish a plateau hypoxia model. After modeling, the serum and lung tissue samples of two-group animals were collected at normal altitudes. Apoptosis of rat lung tissue cells was observed with electron microscopy and TUNEL staining method. The expression levels of glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), protein kinase R-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6) in rat lung tissues were detected by RT-qPCR and Western blot. The thyroid follicular epithelial cells were divided into a normoxic group and a hypoxic group, and cultured in normoxic or hypoxia condition for 24 h, respectively. The cell proliferation rate was detected using the CCK-8 method. The content of lactate dehydrogenase (LDH), T3 and T4 were detected using ELISA. Rat type II alveolar epithelial cells were divided into normoxic group, normoxia+thyroid hormone (T3) group, hypoxic group, and hypoxia+T3 group, before hypoxia treatment was carried out. The cell proliferation rate was detected using CCK-8 method. The proportion of living and dead cells was observed using cell staining. The LDH content of the cells was detected using ELISA. Apoptosis was observed using TUNEL staining. The expression ofGRP78, IRE1α, PERK and ATF6mRNA and proteins in rat lung tissues were detected by RT-qPCR and Western blot. GRP78, ATF6 and Bax were detected using immunofluorescence.The number of apoptotic cells in lung tissue of rats in the plateau model group increased, and their expression of GRP78, IRE1α, PERK and ATF6 mRNA and proteins was significantly increased (<0.01). After hypoxic culture, the proliferation rate and the contents of T3 and T4 decreased, while the LDH content significantly increased (<0.01). Compared with the hypoxic group, the cell proliferation rate of hypoxia+T3 group was significantly increased, while the apoptosis rate and LDH content significantly decreased, and the expression of GRP78, IRE1α, PERK and ATF6 mRNA and proteins was significantly decreased (<0.01).Exogenous thyroid hormones can alleviate hypoxia-induced type II alveolar epithelial cells injury in rats, possibly by inhibiting the mRNA and proteins of the endoplasmic reticulum stress pathway in alveolar epithelial cells.
hypoxic lung injury; endoplasmic reticulum stress; thyroid hormone; alveolar epithelial cells
R329.21; R363.2
A
10.3969/j.issn.1000-4718.2023.09.008
1000-4718(2023)09-1596-09
2023-04-23
2023-07-11
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 82160322);青海省科學(xué)技術(shù)廳應(yīng)用基礎(chǔ)研究計(jì)劃項(xiàng)目(No. 2023-ZJ-746)
Tel: 13897189261; E-mail: puxiaoyan1975@163.com
(責(zé)任編輯:余小慧,李淑媛)