亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        脫落酸調(diào)控果實(shí)成熟的分子及信號轉(zhuǎn)導(dǎo)機(jī)制研究進(jìn)展

        2023-10-04 03:27:34李翠侯柄竹
        果樹學(xué)報(bào) 2023年5期

        李翠 侯柄竹

        摘要:脫落酸(abscisic acid,ABA)作為一種重要的植物激素,不僅涉及許多植物發(fā)育過程和逆境脅迫,而且在果實(shí)成熟,尤其是非呼吸躍變型果實(shí)成熟中發(fā)揮關(guān)鍵作用。隨著植物中ABA合成、代謝和作用機(jī)制的解析及其受體識別和核心信號轉(zhuǎn)導(dǎo)模型的建立,極大地推動(dòng)了ABA在果實(shí)成熟和品質(zhì)形成中的研究。一般來講,褪綠和著色是果實(shí)成熟過程中普遍存在的現(xiàn)象,這一過程涉及了ABA早期信號和多種激素的協(xié)同作用并組成了復(fù)雜的網(wǎng)絡(luò)調(diào)控機(jī)制??傊?,ABA是調(diào)控果實(shí)成熟的核心機(jī)制,其中存在著乙烯依賴(呼吸躍變型)和不依賴(非呼吸躍變型)類型。綜述了ABA在植物體內(nèi)的合成、代謝及作用的分子機(jī)制,構(gòu)建了ABA調(diào)控果實(shí)成熟的分子網(wǎng)絡(luò)模型,為果實(shí)的品質(zhì)改善和保鮮奠定理論基礎(chǔ)。

        關(guān)鍵詞:果實(shí)成熟;脫落酸;(非)呼吸躍變型;乙烯;生長素;信號轉(zhuǎn)導(dǎo)

        中圖分類號:S66 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2023)05-0988-12

        果實(shí)成熟是指果實(shí)發(fā)育后期完成生長膨大后內(nèi)部發(fā)生的一系列生理生化反應(yīng),包括果皮褪綠、葉綠素降解、花色苷及類胡蘿卜素合成、香氣合成及果實(shí)變軟等典型特征,這其中涉及一系列復(fù)雜的代謝過程,并伴隨著多種次生物質(zhì)的產(chǎn)生。在自然界中,成熟過程不僅有助于食用水果的動(dòng)物散播種子,而且在人類的營養(yǎng)和健康中發(fā)揮重要作用,還有利于控制果實(shí)衰老進(jìn)程,減輕水果在運(yùn)輸和保鮮中的腐爛變質(zhì)。

        激素是調(diào)節(jié)果實(shí)成熟的重要因子,可以顯著影響果實(shí)發(fā)育和成熟的進(jìn)程。根據(jù)果實(shí)成熟過程中呼吸強(qiáng)度及乙烯釋放速率的生理特點(diǎn),果實(shí)主要分為兩種類型:呼吸躍變型及非呼吸躍變型[1-2]。在躍變型果實(shí)(如番茄和香蕉)中呼吸和乙烯水平均在成熟期達(dá)到峰值;而非呼吸躍變型果實(shí)(如葡萄和草莓)中沒有出現(xiàn)此類峰值,其成熟受脫落酸(ABA)以不依賴乙烯的方式控制[1-2]。另外,脫落酸還參與了種子成熟和休眠及逆境脅迫響應(yīng),在調(diào)控營養(yǎng)生長和生殖生長平衡中發(fā)揮關(guān)鍵作用[3-5]。因此,ABA在非呼吸躍變型和呼吸躍變型果實(shí)成熟過程中都發(fā)揮著重要作用[6-7]。綜述了果實(shí)發(fā)育中ABA合成、代謝及作用的分子機(jī)制,并提出了ABA調(diào)控果實(shí)成熟的分子網(wǎng)絡(luò)模型,以期為果實(shí)成熟、品質(zhì)形成和采后保鮮奠定基礎(chǔ)。

        1 ABA 在果實(shí)成熟過程中發(fā)揮重要作用

        ABA是果實(shí)發(fā)育和成熟過程中重要的內(nèi)源激素之一[8-10]。與乙烯相比,ABA在非呼吸躍變型果實(shí)成熟和衰老過程中起著更為重要的作用[11]。外源施加ABA能夠促進(jìn)果實(shí)的成熟進(jìn)程,主要體現(xiàn)在果實(shí)的糖酸比提高、硬度下降、可溶性固形物和糖類的積累、果實(shí)色澤的形成等方面。草莓是一種典型的非呼吸躍變型果實(shí),它的成熟和衰老涉及基因表達(dá)和代謝變化,是一個(gè)基因編程的復(fù)雜過程[12-13]。在果實(shí)成熟過程中,草莓花托中ABA含量會(huì)呈現(xiàn)上升趨勢,這是成熟果實(shí)中ABA生物合成的增加和氧化作用的降低共同作用的結(jié)果[13]。檢測不同西瓜品種成熟過程中游離態(tài)及結(jié)合態(tài)ABA的含量發(fā)現(xiàn),西瓜果實(shí)的成熟及品質(zhì)進(jìn)化過程也與ABA含量高度相關(guān)[14]。

        果實(shí)硬度下降是果實(shí)成熟的重要標(biāo)志。施加外源ABA可加速果實(shí)硬度的下降,這可能是ABA增強(qiáng)了細(xì)胞壁降解酶、果膠甲酯酶和多聚半乳糖醛酸酶等能夠改變果實(shí)細(xì)胞壁結(jié)構(gòu)的酶的活性,最終促使果實(shí)軟化[15]。外源ABA 可以促進(jìn)葡萄[16- 18]、草莓[19]、無花果[20]等多種果實(shí)的軟化和品質(zhì)提升。

        ABA對果實(shí)著色發(fā)揮重要作用。果實(shí)成熟過程中的顏色變化是通過葉綠素降解和次生顏色代謝產(chǎn)物如類胡蘿卜素和花色苷的生物合成實(shí)現(xiàn)的,而果皮顏色是果品商品價(jià)值的重要品質(zhì)指標(biāo)[21]。如施用ABA 迅速啟動(dòng)荔枝果實(shí)葉綠素分解,ABA 濃度峰值與隨后合成的花青素水平一致,證明ABA對荔枝果實(shí)成熟起重要作用[22]。內(nèi)源ABA通過上調(diào)乙烯的產(chǎn)生和苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL)的活性,提升草莓的花色苷和酚類含量,促進(jìn)草莓果實(shí)著色[9]。同樣。外源ABA也可以促進(jìn)葡萄、荔枝和甜櫻桃等非呼吸躍變型果實(shí)成熟過程中花色苷的生物合成及果實(shí)著色[23-25]。

        糖類的積累也是決定果實(shí)品質(zhì)和消費(fèi)的一個(gè)核心要素。葡萄果實(shí)成熟啟動(dòng)(花青素積累開始)與糖積累密切相關(guān),并伴隨著ABA濃度的顯著增加[26]。

        例如,外源ABA處理后,植物果實(shí)的總淀粉量和直鏈淀粉量均可增加,表明ABA可能調(diào)控淀粉合成基因的表達(dá)[14]。同時(shí),ABA還參與呼吸躍變型果實(shí)的膨大、軟化和糖分積累等[6,27]。外源ABA 能夠通過增強(qiáng)庫容的方式使葉片中的光合產(chǎn)物向蘋果果實(shí)運(yùn)輸,從而提高果實(shí)中可溶性糖的積累[28];而抑制ABA合成關(guān)鍵酶9-順環(huán)氧類胡蘿卜素雙加氧酶(9-cis-epoxycarotenoiddioxygenase,NCED)的表達(dá),會(huì)導(dǎo)致果膠在成熟過程中的積累,減緩番茄的軟化過程[28]。

        總之,ABA參與果實(shí)成熟調(diào)控涉及一系列復(fù)雜的生理變化,如色素合成、糖分積累和果實(shí)軟化等;大量的研究證實(shí),ABA在調(diào)控非呼吸躍變型和呼吸躍變型果實(shí)成熟及品質(zhì)形成中都發(fā)揮著重要作用。

        2 果實(shí)中ABA的代謝及作用機(jī)制

        2.1 ABA生物合成及代謝

        細(xì)胞內(nèi)ABA生物合成和分解代謝涉及了前饋和反饋調(diào)控。反饋和前饋與抑制FveCYP707A4a 表達(dá)(cytochrome P450,ABA 降解的關(guān)鍵)和促進(jìn)FveNCED表達(dá)(ABA生物合成的關(guān)鍵)密切相關(guān),并涉及草莓果實(shí)成熟的起始[29]。ABA 從生物合成到信號轉(zhuǎn)導(dǎo)的協(xié)同調(diào)控是植物生長發(fā)育和果實(shí)成熟的核心機(jī)制。

        ABA的生物合成始于質(zhì)體,止于細(xì)胞質(zhì),其水平通過不同的途徑進(jìn)行調(diào)節(jié)。近年來,ABA在高等植物中的合成及其調(diào)控機(jī)制得到了廣泛的關(guān)注[30]。

        在高等植物中,“合成-降解”“結(jié)合-解離”途徑協(xié)同調(diào)控ABA 的水平,NCED 為ABA 生物合成的限制酶[31-33]。在草莓果實(shí)發(fā)育整個(gè)過程中,ABA水平和FaNCED1 的表達(dá)呈相同的變化趨勢,暗示FaNCED1 是決定草莓果實(shí)中ABA水平的關(guān)鍵酶。

        這一結(jié)論通過瞬時(shí)轉(zhuǎn)基因體系調(diào)低FaNCED1 表達(dá)量抑制成熟得到證實(shí)。同時(shí),通過瞬時(shí)轉(zhuǎn)基因體系調(diào)低ABA受體基因FaABAR表達(dá)量也抑制成熟,尤其外源ABA 可以恢復(fù)FaNCED1-RNAi 果實(shí)著色,但不能恢復(fù)FaCHLH/ABAR-RNAi 果實(shí)著色,證實(shí)ABA 在調(diào)控草莓果實(shí)成熟中發(fā)揮重要作用[34]。值得關(guān)注的是,在早熟柑橘成熟過程中,ABA具有類似乙烯合成系統(tǒng)Ⅱ的反饋調(diào)節(jié)機(jī)制,能夠在轉(zhuǎn)錄水平和翻譯水平誘導(dǎo)自身的生物合成[35-36]。目前這一結(jié)論在呼吸躍變型和非呼吸躍變型果實(shí),如鱷梨[37]、柿子[38]、草莓[39]上都得到證實(shí)。8-羥基化是ABA氧化分解代謝的主要途徑,P450 單加氧酶CYP707A是其中的關(guān)鍵酶;糖基轉(zhuǎn)移酶(UDP-glucosyltransferase,GTs)能夠催化ABA 形成ABA-葡萄糖基酯(ABA glucosyl ester,ABA-GE);而β-葡萄糖苷酶(β-glucosidases,BGs)能夠催化ABA-葡萄糖基酯解離為游離的ABA[40]。植物依靠這種“結(jié)合-解離”代謝快速模式,與從頭合成相比,能迅速改變內(nèi)源ABA水平,以便快速適應(yīng)環(huán)境和果實(shí)發(fā)育的變化。

        過去大量的研究證實(shí),ABA是調(diào)節(jié)非呼吸躍變型果實(shí)成熟的關(guān)鍵激素。在越橘(Vaccinium myrtillus)果實(shí)的成熟過程中,ABA 生物合成關(guān)鍵酶NCED 發(fā)揮重要作用[41]。黃瓜ABA 從頭合成基因(CsNCEDs)、分解代謝基因(CsCYP707A1)和解離基因(CsBGs)均在果肉中高表達(dá),協(xié)同調(diào)節(jié)ABA含量及果實(shí)成熟進(jìn)程[42]。從綠熟期開始,ABA在草莓果實(shí)中快速合成,其含量受到合成基因FaNCED2和FaNCED1 及代謝基因FaCYP707A1 的調(diào)控[33-34, 39, 43]。草莓中FaBG3 的表達(dá)與ABA含量的變化基本一致,均在成熟階段出現(xiàn)高峰,經(jīng)過FaBG3-RNAi 處理的草莓果實(shí)中FaBG3 的表達(dá)量顯著降低,ABA含量低于對照,說明其在轉(zhuǎn)錄水平上參與了果實(shí)的成熟過程[44]。另外,通過對草莓中葡萄糖苷酶1(BG1)的酶活性表明分析,其能催化ABA糖基酯(ABA-GE)水解,釋放具有生物活性的游離ABA。進(jìn)一步研究發(fā)現(xiàn),草莓果實(shí)著色的開始伴隨著FaBG1 表達(dá)的急劇升高,而FaBG1 的下調(diào)導(dǎo)致內(nèi)源性ABA 的顯著下降,從而抑制果實(shí)成熟[45]??傊琋CED、UGT71、CYP707A 和BG 在草莓成熟過程中發(fā)揮了重要的作用[34,46-47],揭示了ABA是調(diào)控果實(shí)成熟的關(guān)鍵激素。

        2.2 ABA調(diào)控非呼吸躍變型果實(shí)成熟分子機(jī)制

        近十年來,模式植物擬南芥ABA核心信號轉(zhuǎn)導(dǎo)分子機(jī)制的闡明[48]極大地促進(jìn)了非呼吸躍變型果實(shí)成熟的機(jī)制研究,拓展了ABA的生物學(xué)功能。擬南芥中ABA 受體蛋白為PYR1/PYLs/RCAR(pyrabactinresistance/pyr1- like/regulatory components ofABA receptor),大量研究揭示了“ABA-PYR1/PYLs/RCAR- PP2C(type 2C protein phosphatase)- SnRK2(sucrose non-fermenting 1-related protein kinase 2)”

        核心信號轉(zhuǎn)導(dǎo)機(jī)制[49-50]。受體PYR與ABA結(jié)合能促進(jìn)形成“ABA-PYR-PP2C”信號復(fù)合體,抑制PP2Cs活性并依次激活蛋白激酶SnRK2、轉(zhuǎn)錄因子ABF(ABRE binding factors)及一系列下游應(yīng)答基因,最終激活A(yù)BA的多種生理反應(yīng)[51]。因此,在ABA信號轉(zhuǎn)導(dǎo)過程中,ABA受體介導(dǎo)的信號感知過程發(fā)揮了核心作用,蛋白可逆磷酸化發(fā)揮著關(guān)鍵作用[52]。

        植物中蛋白可逆磷酸化涉及了蛋白激酶和蛋白磷酸酶:激酶包括CDPKs(Ca2+-dependent protein kinases,鈣依賴的蛋白激酶)、SnRKs(SNF1-related kinases,SNF1 相關(guān)蛋白激酶)、MAPKs(mitogen-activatedprotein kinases,絲裂原活化蛋白激酶)、RPKs(receptor-type kinases,受體蛋白激酶);磷酸酶主要為PP2Cs(protein phosphatase 2C,PP2Cs 蛋白磷酸酶)[4]。SnRK2 和ABI1(ABA insensitive1)涉及的蛋白可逆磷酸化是ABA信號轉(zhuǎn)導(dǎo)的核心機(jī)制[49],在草莓果實(shí)成熟調(diào)控中存在保守性[53]。例如,蛋白激酶FaSnRK2.6 能夠與蛋白磷酸酶FaABI1 發(fā)生相互作用,在草莓果實(shí)成熟中發(fā)揮負(fù)調(diào)控作用[54]?!癙P2CSnRK2核心信號組分”是調(diào)控草莓果實(shí)成熟的關(guān)鍵環(huán)節(jié)[55]。在缺乏ABA 的情況下,PP2C 家族成員如ABI1、ABI2 和HAB1(hypersensitive to ABA1)負(fù)調(diào)控SnRK2 激酶家族的成員如SnRK2.6、SnRK2.2 和SnRK2.3 的激活。而當(dāng)ABA受體與ABA結(jié)合后,其疏水表面暴露,PP2Cs 的活性受到ABA 受體的抑制。被PP2Cs 抑制的SnRK2.6、SnRK2.2 和SnRK2.3可以重新激活下游ABA響應(yīng)元件SLAC1(slow anionchannel-associated 1),打開S 型陰離子通道[56]。

        另外,草莓果實(shí)中FaMRLK47,作為一種FERONIAlike受體激酶,在草莓果實(shí)成熟過程中發(fā)揮著至關(guān)重要的作用[56]??傊?,F(xiàn)aPYR1 與果實(shí)成熟啟動(dòng)及品質(zhì)形成密切相關(guān)[57-58],“PYR1-PP2C-SnRK2”是調(diào)節(jié)果實(shí)成熟的核心信號轉(zhuǎn)導(dǎo)機(jī)制[59-60]。

        在草莓FaPYR/PYLs 和FaPP2C家族成員中,只有FaPYL2/4/9/11 和FaABI1/FaPP2C16 相互作用,F(xiàn)aPYL2 與FaABI1 的相互作用可能在草莓果實(shí)成熟過程中發(fā)揮作用[51]。值得注意的是,SnRK2.6 蛋白在擬南芥保衛(wèi)細(xì)胞中充當(dāng)CHLH/ABAR(Mg-chelataseH subunit/ABA receptor)和PYR/PYL/RCAR 之間的耦合因子[61]。因此,草莓果實(shí)成熟過程中ABAR 與PYR/PYL/RCAR 的關(guān)系有待進(jìn)一步研究。CHLH/ABAR 具有多種生物學(xué)功能,涉及了葉綠素合成、質(zhì)核逆向信號及ABA 信號轉(zhuǎn)導(dǎo)[61]。例如,在擬南芥中,CHLH/ABAR 通過ABA-ABARWRKY40-ABI5/ABI4 以不同的途徑調(diào)節(jié)氣孔運(yùn)動(dòng)、種子萌發(fā)和幼苗生長[62]。為了進(jìn)一步探索FaABAR在草莓果實(shí)成熟中的作用機(jī)制,通過酵母雙雜交技術(shù)鑒定到了一個(gè)與FaABAR 互作的富含亮氨酸重復(fù)序列(LRR)受體類激酶,即成熟調(diào)控蛋白激酶FaRIPK1(red- initial protein kinase 1)[63]。FaRIPK1作為FaABAR 的共受體,協(xié)同調(diào)控草莓果實(shí)的成熟,即FaRIPK1 參與草莓果實(shí)成熟的啟動(dòng)并調(diào)控了果實(shí)的成熟,證實(shí)了FaABAR/CHLH 是果實(shí)成熟的正向調(diào)節(jié)因子。FaMYB10(R2R3 MYB)是一個(gè)重要的轉(zhuǎn)錄因子,它介導(dǎo)ABAR 感知下游的信號轉(zhuǎn)導(dǎo),從而刺激草莓果實(shí)成熟期間花青素的生物合成,F(xiàn)aMYB10 和FaGAMYB 參與了成熟多種生理過程調(diào)控,如著色、軟化和香氣,其中涉及重要轉(zhuǎn)錄因子FaABI4 和FaABI5 [39,64-68]。

        另外,在其他非呼吸躍變型果實(shí)上ABA核心信號轉(zhuǎn)導(dǎo)機(jī)制的研究也取得重要進(jìn)展。在對柑橘研究中,CsPYL4 和CsPYL5 在成熟過程中表達(dá)模式與ABA 積累相反,而CsPP2CA 和CsSnRK2 的表達(dá)在成熟過程中持續(xù)下降[69]。在黃瓜果實(shí)發(fā)育中,Cs-PYL2 及CsPP2C2 表達(dá)量較高并在花后27 d 達(dá)到峰值,變化趨勢與ABA 水平一致,表明CsPYL2 及CsPP2C2 可能在黃瓜成熟過程中發(fā)揮重要作用,揭示了ABA參與黃瓜果實(shí)的成熟調(diào)控[70]。在甜櫻桃中,ABA處理顯著促進(jìn)果實(shí)中花青素的積累,發(fā)現(xiàn)PacPP2C1 與6 個(gè)PacSnRK2s 相互作用[25]。受ABA誘導(dǎo)的荔枝LcASR 蛋白定位于細(xì)胞核中并參與了果實(shí)的成熟調(diào)控[71]。

        總之,“ABA-PYR1-PP2C-SnRK2”核心信號組分是ABA 調(diào)控果實(shí)成熟的保守機(jī)制[72- 73];同時(shí)“ABA-ABAR-RIPK1-ABI4”是調(diào)控草莓果實(shí)的成熟新機(jī)制[35, 62, 74],表明ABA作用機(jī)制的復(fù)雜性、保守性和多樣性。

        2.3 ABA通過多種協(xié)同機(jī)制調(diào)控非呼吸躍變型果實(shí)成熟

        在草莓果實(shí)成熟過程中,ABA 和生長素(indoleaceticacid,IAA)是重要的協(xié)同調(diào)控激素,乙烯和赤霉素的作用較弱[75]。在果實(shí)發(fā)育過程中,IAA和赤霉素GA4(gibberellic acid 4)含量均以小綠時(shí)期的草莓果實(shí)最高,并隨著發(fā)育過程逐漸降低;ABA含量隨果實(shí)成熟迅速增加,與著色變化趨勢一致;茉莉酸甲酯濃度隨時(shí)間變化不明顯,水楊酸含量逐漸增加;茉莉酸(jasmonic acid,JA)和乙烯含量太低,無法量化[39]。IAA 主要在瘦果中產(chǎn)生,而ABA、乙烯、細(xì)胞分裂素(cytokinin,CTK)和赤霉素主要在花托中合成;赤霉素在一定程度上延緩了成熟,而細(xì)胞分裂素和乙烯似乎參與了成熟的后期調(diào)控[13]。隨著草莓果實(shí)成熟的開始,ABA、乙烯和多胺的作用增強(qiáng),而GA和IAA的作用減弱[76]。此外,JA 參與果實(shí)花青素積累、細(xì)胞壁軟化及乙烯的生物合成,最終加速了草莓果實(shí)的成熟[77]??傊?,非呼吸躍變型果實(shí)成熟的調(diào)控是一個(gè)復(fù)雜的過程,涉及了多種激素的協(xié)同調(diào)控。

        2.3.1 ABA 與乙烯的相互作用 盡管乙烯是躍變型果實(shí)成熟的關(guān)鍵調(diào)節(jié)因子[78],但這種氣體分子也通過與ABA的相互作用參與非呼吸躍變型果實(shí)成熟[79-80]。在采后草莓果實(shí)中,乙烯促進(jìn)ABA在花托組織中的積累,但不影響ABA分解代謝[80]。乙烯反應(yīng)調(diào)節(jié)因子FveERF 的超表達(dá)激活草莓果實(shí)成熟期間的?;D(zhuǎn)移酶(alcohol acyltransferase,AAT)基因的轉(zhuǎn)錄和酯積累[79]。呼吸躍變型李果實(shí)及其非呼吸躍變型突變體果實(shí)的ACS1(ACC synthase1)啟動(dòng)子區(qū)序列差異較??;然而ABI5 在非呼吸躍變型突變體李果實(shí)成熟期間的表達(dá)低于呼吸躍變型李果實(shí),表明ABA在乙烯合成中起著至關(guān)重要的作用[81]。黃瓜MADS-box 蛋白CsSHP 通過ABA 介導(dǎo)CsSEPs(SEPARALATA)調(diào)控[59]。ABA 和乙烯相關(guān)基因在葡萄漿果成熟過程中受到一組轉(zhuǎn)錄因子的差異調(diào)控,包括MADS-box、MYB、NAC、AP2/ERF、bHLH和ZIP[82]。因此,ABA與乙烯的相互作用在非呼吸躍變型果實(shí)成熟過程中起著重要作用。

        2.3.2 ABA 與IAA 的相互作用 在葡萄果實(shí)發(fā)育過程中,乙烯和IAA 之間存在“拮抗調(diào)控作用”,ABA和IAA之間存在“協(xié)同調(diào)控作用”,在激素生物合成和信號轉(zhuǎn)導(dǎo)水平上形成一個(gè)精確的調(diào)控分子網(wǎng)絡(luò)[83]。在果實(shí)成熟前期,葡萄果實(shí)種子中的IAA 含量比果皮中高出多倍,種子/果實(shí)鮮質(zhì)量比率高的果皮具有較高的IAA/ABA 水平,而比率低的漿果中NCED和MYB表達(dá)量顯著升高[84]。在葡果實(shí)中發(fā)現(xiàn)了GH3.1,它編碼一個(gè)生長素-氨基酸合成酶(IAAaminosynthetase),能使IAA-氨基酸結(jié)合并導(dǎo)致游離生長素含量降低,最終促進(jìn)成熟,這種調(diào)控機(jī)制在呼吸躍變型及非呼吸躍變型果實(shí)中普遍存在[85]。

        在草莓果實(shí)發(fā)育過程中,IAA和ABA是主導(dǎo)激素并以協(xié)同或獨(dú)立的方式發(fā)揮作用:IAA 決定花托發(fā)育而ABA 決定成熟;乙烯和GA 基本不起作用[76, 86]。高水平的生長素促進(jìn)了種子組織的發(fā)育,生長素響應(yīng)因子基因的轉(zhuǎn)錄產(chǎn)物在果皮組織中積累;而在成熟后期,生長素作用減弱,ABA作用逐步增強(qiáng),表明生長期間IAA/ABA 比率較高,成熟期間比率較低[87]。草莓瘦果中IAA含量的降低可加速成熟進(jìn)度[88]。ABA 及IAA 在瘦果中的含量顯著高于花托,協(xié)同調(diào)控了種子及果肉的生理成熟[86, 89]。

        發(fā)育的瘦果中IAA 和ABA的積累量大于花托中IAA和ABA的積累量,這可以表明這兩種激素調(diào)控草莓果實(shí)成熟的機(jī)制是復(fù)雜的[86]。研究發(fā)現(xiàn),花托中IAA 依賴于瘦果中輸出的IAA,后期果實(shí)的膨大依賴于多種植物激素的協(xié)同調(diào)控,包括GA、ABA和乙烯等[90]。IAA和ABA在果實(shí)成熟中的重要作用涉及了多種生理過程[91-92],如FaRGlyase1(鼠李糖半乳糖醛酸裂解酶基因)[93],F(xiàn)aSHP(一種C-type MADSbox基因)[94],F(xiàn)aβGal4(β-半乳糖苷酶基因)[95]和Fa-NIP1;1(質(zhì)膜水通道蛋白基因)[96],這些基因在草莓果實(shí)成熟期間受到ABA的正調(diào)控與生長素的負(fù)調(diào)控。

        此外,膜聯(lián)蛋白FaAnn5 和FaAnn8 可能通過鈣信號,參與草莓果實(shí)生長和成熟過程中ABA和IAA 的協(xié)同調(diào)節(jié);受體激酶和泛素連接酶對IAA和ABA都有反應(yīng),并可能在兩種激素的互作中發(fā)揮關(guān)鍵作用[92]。

        綜上所述,IAA和ABA是草莓果實(shí)成熟的關(guān)鍵調(diào)控因子,ABA和IAA通過一個(gè)復(fù)雜的分子網(wǎng)絡(luò)在非呼吸躍變型果實(shí)成熟調(diào)控中發(fā)揮核心作用[97]。

        2.3.3 ABA 與糖的相互作用 糖在果實(shí)成熟和品質(zhì)調(diào)控中發(fā)揮重要作用,因?yàn)樘堑拇x和積累對風(fēng)味有很大的影響。蔗糖能夠作為一種信號,通過刺激ABA的產(chǎn)生和積累促進(jìn)草莓果實(shí)成熟[34, 53]。ABA和蔗糖都能誘導(dǎo)葡萄漿果成熟,蔗糖以ABA依賴和非依賴兩種方式發(fā)揮作用[56]。葡萄漿果在沒有外源脫落酸的情況下,2%蔗糖顯著促進(jìn)花色苷的積累[98]。糖-ABA信號轉(zhuǎn)導(dǎo)耦合因子,如PP2C及轉(zhuǎn)錄因子WRKY和HOMEOBOX,是葡萄果實(shí)成熟的核心組分[26]。

        另外,研究還發(fā)現(xiàn)蔗糖通過ABA調(diào)控果實(shí)的成熟[34, 53]。如用蔗糖處理大綠果草莓果實(shí)會(huì)促進(jìn)ABA合成并誘導(dǎo)成熟,且這種誘導(dǎo)在采后儲(chǔ)存的第一天最為明顯[99]。ABA和蔗糖會(huì)抑制糖酵解,并促進(jìn)草莓果實(shí)成熟,表明ABA與蔗糖的相互作用是通過抑制糖酵解而影響成熟的[100]。此外,糖酵解關(guān)鍵酶FaGAPC2(胞質(zhì)甘油醛-3-磷酸脫氫酶)/ FaGAPCp1(質(zhì)體甘油醛-3-磷酸脫氫酶)對草莓果實(shí)中ABA和蔗糖介導(dǎo)的成熟具有負(fù)調(diào)控作用[100]。轉(zhuǎn)錄因子ABA-stress-ripening(ASR)參與ABA和蔗糖信號轉(zhuǎn)導(dǎo)[101-102],ASR通過ABA和蔗糖之間的耦合調(diào)節(jié)草莓果實(shí)的成熟[102]。因此,ABA與糖的相互作用在非呼吸躍變型果實(shí)成熟過程中發(fā)揮至關(guān)重要的作用。

        2.3.4 ABA 與多胺的相互作用 在草莓果實(shí)成熟期間,多胺(ployamines,PA),尤其是精胺(spermine,Spm),以ABA為主導(dǎo)的和IAA-乙烯協(xié)同參與的方式調(diào)控草莓果實(shí)的成熟[89]。在草莓果實(shí)成熟開始時(shí)期,NCED3 轉(zhuǎn)錄促進(jìn)ABA的快速積累,從而抑制多胺氧化酶FaPAO5 的表達(dá),導(dǎo)致精胺和亞精胺的積累[103]。有趣的是,精胺和亞精胺(spermidine,Spd)含量的增加觸發(fā)了SAM脫羧酶SAMDC、亞精胺合酶SPDS和精胺合酶SPMS基因的表達(dá),進(jìn)一步加速了精胺和亞精胺的積累和果實(shí)成熟[103]。以上研究揭示了ABA和多胺的相互作用在草莓果實(shí)成熟調(diào)控中發(fā)揮重要作用。總之,F(xiàn)aPAO5 介導(dǎo)的多胺代謝Spd/Spm 產(chǎn)生H2O2,與ABA、乙烯、NO、Ca2+構(gòu)成復(fù)雜網(wǎng)絡(luò):Put 和乙烯在果實(shí)成熟過程中形成負(fù)協(xié)調(diào)環(huán),Spd/Spm 和ABA 組成了一個(gè)正調(diào)控環(huán),揭示了ABA 和多胺的相互作用在草莓果實(shí)成熟調(diào)控中產(chǎn)生重要影響[104]。

        3 結(jié)論和展望

        果實(shí)的發(fā)育過程包括早期的細(xì)胞分裂和膨大,隨后葉綠素降解、細(xì)胞壁軟化,以及成熟過程中苯丙酸、類黃酮、淀粉/蔗糖和類胡蘿卜素代謝的變化。這些過程受植物激素嚴(yán)格控制,主要包括乙烯在呼吸躍變型果實(shí)成熟中的作用、ABA在非呼吸躍變型果實(shí)成熟中的作用以及二者的相互作用[105-107]。在中間成熟類型無花果中的研究表明,ABA能促進(jìn)乙烯的積累及果實(shí)的成熟啟動(dòng),而乙烯調(diào)控果實(shí)的成熟依賴于ABA受體識別,ABA的作用方式與乙烯的系統(tǒng)Ⅰ/Ⅱ密切相關(guān)[108]。綜上所述,筆者提出了脫落酸調(diào)控果實(shí)成熟的分子機(jī)制(圖1)。隨著果實(shí)啟動(dòng)成熟,糖、NO、Ca2+等發(fā)育信號及光等環(huán)境信號導(dǎo)致ROS積累,進(jìn)而觸發(fā)ABA合成及積累,同時(shí)協(xié)同抑制GA、IAA 和CTK 的合成和作用,并協(xié)同促進(jìn)乙烯、JA,PA及BR(油菜素內(nèi)酯)的合成及作用。這些激素組成了復(fù)雜的調(diào)控網(wǎng)絡(luò),其中ABA是調(diào)控果實(shí)成熟的核心機(jī)制,存在著乙烯依賴(呼吸躍變型)和不依賴(非呼吸躍變型)類型??傊?,ABA、乙烯和IAA 的協(xié)同調(diào)控主要表現(xiàn)為非呼吸躍變型果實(shí)中ABA-IAA 互作、呼吸躍變型果實(shí)中的乙烯-IAA 互作以及兩類果實(shí)中的ABA-乙烯互作,他們在果實(shí)成熟中協(xié)同發(fā)揮關(guān)鍵的調(diào)控作用。

        總之,近十年來,我國植物分子生物學(xué)研究取得了較大的進(jìn)展,并且已開始從模式植物向果樹木本植物轉(zhuǎn)變,但果樹栽培周期長及遺傳轉(zhuǎn)化體系瓶頸限制了果樹分子生物學(xué)發(fā)展。未來,結(jié)合基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白組學(xué)、代謝組學(xué)和表觀遺產(chǎn)學(xué)的發(fā)展及基因敲除CRISPR/Cas9 等最新技術(shù)的應(yīng)用,深入剖析果實(shí)成熟激素調(diào)控分子機(jī)制的共性和特異性,及種子和果肉的協(xié)同調(diào)控分子機(jī)制是未來重要的研究方向。

        參考文獻(xiàn)References:

        [1] KUMAR R,KHURANA A,SHARMA A K. Role of plant hormones

        and their interplay in development and ripening of fleshy

        fruits[J]. Journal of Experimental Botany,2014,65(16):4561-

        4575.

        [2] SHEN Y Y,ROSE J K C. ABA metabolism and signaling in

        fleshy fruits[M]//ZHANG D P. Abscisic Acid:Metabolism,

        Transport and Signaling. Dordrecht:Springer,2014:271-286.

        [3] FINKELSTEIN R R,ROCK C D. Abscisic acid biosynthesis

        and response[J]. The Arabidopsis Book,2002,(1):e0058.

        [4] HIRAYAMA T,SHINOZAKI K. Perception and transduction of

        abscisic acid signals:keys to the function of the versatile plant

        hormone ABA[J]. Trends in Plant Science,2007,12(8):343-351.

        [5] WANG X F,ZHANG D P. Abscisic acid receptors:multiple signal-

        perception sites[J]. Annals of Botany,2008,101(3):311-317.

        [6] LENG P,YUAN B,GUO Y D. The role of abscisic acid in fruit

        ripening and responses to abiotic stress[J]. Journal of Experimental

        Botany,2014,65(16):4577-4588.

        [7] LI C L,JIA H F,CHAI Y M,SHEN Y Y. Abscisic acid perception

        and signaling transduction in strawberry:a model for nonclimacteric

        fruit ripening[J]. Plant Signaling & Behavior,2011,6

        (12):1950-1953.

        [8] GIRIBALDI M,G?NY L,DELROT S,SCHUBERT A. Proteomic

        analysis of the effects of ABA treatments on ripening Vitis

        vinifera berries[J]. Journal of Experimental Botany,2010,61

        (9):2447-2458.

        [9] JIANG Y M,JOYCE D C. ABA effects on ethylene production,

        PAL activity,anthocyanin and phenolic contents of strawberry

        fruit[J]. Plant Growth Regulation,2003,39(2):171-174.

        [10] KOYAMA K,SADAMATSU K,GOTO-YAMAMOTO N. Abscisic

        acid stimulated ripening and gene expression in berry

        skins of the Cabernet Sauvignon grape[J]. Functional & Integrative

        Genomics,2010,10(3):367-381.

        [11] CHEN P,SUN Y F,KAI W B,LIANG B,ZHANG Y S,ZHAI

        X W,JIANG L,DU Y W,LENG P. Interactions of ABA signaling

        core components (SlPYLs,SlPP2Cs,and SlSnRK2s) in tomato

        (Solanum lycopersicon) [J]. Journal of Plant Physiology,

        2016,205:67-74.

        [12] MCATEE P,KARIM S,SCHAFFER R,DAVID K. A dynamic

        interplay between phytohormones is required for fruit development,

        maturation,and ripening[J]. Frontiers in Plant Science,

        2013,4:79.

        [13] GU T T,JIA S F,HUANG X R,WANG L,F(xiàn)U W M,HUO G

        T,GAN L J,DING J,LI Y. Transcriptome and hormone analyses

        provide insights into hormonal regulation in strawberry ripening[

        J]. Planta,2019,250(1):145-162.

        [14] 王晉芳,許勇,王艷萍,郭紹貴,田守蔚,張潔,任毅,孫宏賀,宮

        國義,張海英.脫落酸途徑調(diào)控西瓜果實(shí)成熟及品質(zhì)進(jìn)化[J].

        中國瓜菜,2019,32(8):215-216.

        WANG Jinfang,XU Yong,WANG Yanping,GUO Shaogui,

        TIAN Shouwei,ZHANG Jie,REN Yi,SUN Honghe,GONG

        Guoyi,ZHANG Haiying. Abscisic acid pathway involved in the

        requlation of watermelon fruit ripening and quality trait evolution[

        J]. China Cucurbits and Vegetables,2019,32(8):215-216.

        [15] 王鵬洋,曲姍姍. ABA 對果實(shí)品質(zhì)的影響研究進(jìn)展[J]. 現(xiàn)代農(nóng)

        業(yè)科技,2019(7):198.

        WANG Pengyang,QU Shanshan. Research progress on the effect

        of ABA on fruit quality[J]. Modern Agricultural Science and

        Technology,2019(7):198.

        [16] PEPPI M C,F(xiàn)IDELIBUS M W,DOKOOZLIAN N K. Application

        timing and concentration of abscisic acid affect the quality

        of‘Redglobegrapes[J]. The Journal of Horticultural Science

        and Biotechnology,2007,82(2):304-310.

        [17] 王世明. 外源激素ABA 和EBR 處理有助于葡萄果實(shí)品質(zhì)提

        升[J]. 中國果業(yè)信息,2020,37(2):52-53.

        WANG Shiming. Exogenous hormones ABA and EBR are helpful

        to improve the quality of grape fruit[J]. China Fruit News,

        2020,37(2):52-53.

        [18] 王西成,王壯偉,吳偉民,趙密珍,錢亞明. 植物生長調(diào)節(jié)劑對

        葡萄果實(shí)品質(zhì)影響的研究進(jìn)展[J]. 中外葡萄與葡萄酒,2018

        (4):103-107.

        WANG Xicheng,WANG Zhuangwei,WU Weimin,ZHAO Mizhen,

        QIAN Yaming. Research progress on effect of plant

        growth regulators of grape quality[J]. Sino- overseas Grapevine

        &Wine,2018(4):103-107.

        [19] LI D D,LUO Z S,MOU W S,WANG Y S,YING T J,MAO L

        C. ABA and UV-C effects on quality,antioxidant capacity and

        anthocyanin contents of strawberry fruit (Fragaria ananassa

        Duch.)[J]. Postharvest Biology and Technology,2014,90:56-62.

        [20] LAMA K,MODI A,PEER R,IZHAKI Y,F(xiàn)LAISHMAN M A.

        On-tree ABA application synchronizes fruit ripening and maintains

        keeping quality of figs (Ficus carica L.)[J]. Scientia Horticulturae,

        2019,253:405-411.

        [21] SINGH S P,SAINI M K,SINGH J,PONGENER A,SIDHU G

        S. Preharvest application of abscisic acid promotes anthocyanins

        accumulation in pericarp of litchi fruit without adversely affecting

        postharvest quality[J]. Postharvest Biology and Technology,

        2014,96:14-22.

        [22] HU B,LAI B,WANG D,LI J Q,CHEN L H,QIN Y Q,WANG

        H C,QIN Y H,HU G B,ZHAO J T. Three LcABFs are involved

        in the regulation of chlorophyll degradation and anthocy-

        anin biosynthesis during fruit ripening in Litchi chinensis[J].

        Plant and Cell Physiology,2019,60(2):448-461.

        [23] HU B,LI J Q,WANG D,WANG H C,QIN Y H,HU G B,

        ZHAO J T. Transcriptome profiling of Litchi chinensis pericarp

        in response to exogenous cytokinins and abscisic acid[J]. Plant

        Growth Regulation,2018,84(3):437-450.

        [24] JEONG S T,GOTO-YAMAMOTO N,KOBAYASHI S,ESAKA

        M. Effects of plant hormones and shading on the accumulation

        of anthocyanins and the expression of anthocyanin biosynthetic

        genes in grape berry skins[J]. Plant Science,2004,167(2):

        247-252.

        [25] SHEN X J,GUO X,ZHAO D,ZHANG Q,JIANG Y Z,WANG

        Y T,PENG X,WEI Y,ZHAI Z F,ZHAO W,LI T H. Cloning

        and expression profiling of the PacSnRK2 and PacPP2C gene

        families during fruit development,ABA treatment,and dehydration

        stress in sweet cherry[J]. Plant Physiology and Biochemistry,

        2017,119:275-285.

        [26] GAMBETTA G A,MATTHEWS M A,SHAGHASI T H,

        MCELRONE A J,CASTELLARIN S D. Sugar and abscisic acid

        signaling orthologs are activated at the onset of ripening in

        grape[J]. Planta,2010,232(1):219-234.

        [27] SUN L,SUN Y F,ZHANG M,WANG L,REN J,CUI M M,

        WANG Y P,JI K,LI P,LI Q,CHEN P,DAI S J,DUAN C R,

        WU Y,LENG P. Suppression of 9- cis- epoxycarotenoid dioxygenase,

        which encodes a key enzyme in abscisic acid biosynthesis,

        alters fruit texture in transgenic tomato[J]. Plant Physiology,

        2012,158(1):283-298.

        [28] 王世明. 外源ABA 提高蘋果成熟期果實(shí)可溶性糖含量[J]. 中

        國果業(yè)信息,2019,36(7):53.

        WANG Shiming. Exogenous ABA improves soluble sugar content

        in mature apple fruit[J]. China Fruit News,2019,36(7):53.

        [29] LIAO X,LI M S,LIU B,YAN M L,YU X M,ZI H L,LIU R

        Y,YAMAMURO C. Interlinked regulatory loops of ABA catabolism

        and biosynthesis coordinate fruit growth and ripening in

        woodland strawberry[J]. Proceedings of the National Academy

        of Sciences of the United States of America,2018,115(49):

        e11542-e11550.

        [30] NAMBARA E,MARION-POLL A. Abscisic acid biosynthesis

        and catabolism[J]. Annual Review of Plant Biology,2005,56:

        165-185.

        [31] LEFEBVRE V,NORTH H,F(xiàn)REY A,SOTTA B,SEO M,OKAMOTO

        M,NAMBARA E,MARION-POLL A. Functional analysis

        of Arabidopsis NCED6 and NCED9 genes indicates that

        ABA synthesized in the endosperm is involved in the induction

        of seed dormancy[J]. The Plant Journal:for Cell and Molecular

        Biology,2006,45(3):309-319.

        [32] QIN X Q,ZEEVAART J A D. The 9-cis-epoxycarotenoid cleavage

        reaction is the key regulatory step of abscisic acid biosynthesis

        in water-stressed bean[J]. Proceedings of the National Academy

        of Sciences of the United States of America,1999,96(26):

        15354-15361.

        [33] QIN X Q,ZEEVAART J A D. Overexpression of a 9-cis-epoxycarotenoid

        dioxygenase gene in Nicotiana plumbaginifolia increases

        abscisic acid and phaseic acid levels and enhances

        drought tolerance[J]. Plant Physiology,2002,128(2):544-551.

        [34] JIA H F,CHAI Y M,LI C L,LU D,LUO J J,QIN L,SHEN Y Y.

        Abscisic acid plays an important role in the regulation of strawberry

        fruit ripening[J]. Plant Physiology,2011,157(1):188-199.

        [35] CHERNYS J T,ZEEVAART J A D. Characterization of the 9-

        Cis- epoxycarotenoid dioxygenase gene family and the regulation

        of abscisic acid biosynthesis in avocado[J]. Plant Physiology,

        2000,124(1):343-354.

        [36] ZHANG L C,MA G,KATO M,YAMAWAKI K,TAKAGI T,

        KIRIIWA Y,IKOMA Y,MATSUMOTO H,YOSHIOKA T,

        NESUMI H. Regulation of carotenoid accumulation and the expression

        of carotenoid metabolic genes in citrus juice sacs in vitro[

        J]. Journal of Experimental Botany,2012,63(2):871-886.

        [37] BEHNAM B,IUCHI S,F(xiàn)UJITA M,F(xiàn)UJITA Y,TAKASAKI H,

        OSAKABE Y,YAMAGUCHI- SHINOZAKI K,KOBAYASHI

        M,SHINOZAKI K. Characterization of the promoter region of

        an Arabidopsis gene for 9- cis-epoxycarotenoid dioxygenase involved

        in dehydration- inducible transcription[J]. DNA Research,

        2013,20(4):315-324.

        [38] LENG P,ZHANG G L,LI X X,WANG L H,ZHENG Z M. Cloning

        of 9- cis- epoxycarotenoid dioxygenase (NCED) gene encoding

        a key enzyme during abscisic acid (ABA) biosynthesis and

        ABA- regulated ethylene production in detached young persimmon

        calyx[J]. Chinese Science Bulletin,2009,54(16):2830-2838.

        [39] KIM J,LEE J G,HONG Y,LEE E J. Analysis of eight phytohormone

        concentrations,expression levels of ABA biosynthesis

        genes,and ripening-related transcription factors during fruit development

        in strawberry[J]. Journal of Plant Physiology,2019,

        239:52-60.

        [40] 祝軍,柴璐,侯柄竹,沈元月,郭家選. 果實(shí)中脫落酸的研究進(jìn)

        展與展望[J]. 園藝學(xué)報(bào),42(9):1664-1672.

        ZHU Jun ,CHAI Lu ,HOU Bingzhu ,SHEN Yuanyue ,GUO

        Jiaxuan. Research advances and prospects of ABA in fleshy

        fruit[J]. Acta Horticulturae Sinica,2015,42(9):1664-1672.

        [41] KARPPINEN K,HIRVEL? E,NEVALA T,SIPARI N,SUOKAS

        M,JAAKOLA L. Changes in the abscisic acid levels and

        related gene expression during fruit development and ripening in

        bilberry (Vaccinium myrtillus L.) [J]. Phytochemistry,2013,95:

        127-134.

        [42] DWANGYP,WANGY,JI K,DAI S J,HUY,SUN L,LI Q,CHEN

        P,SUN Y F,DUAN C R,WU Y,LUO H,ZHANG D,GUO Y D,

        LENG P. The role of abscisic acid in regulating cucumber fruit

        development and ripening and its transcriptional regulation[J].

        Plant Physiology and Biochemistry,2013,64:70-79.

        [43] JI K,CHEN P,SUN L,WANG Y P,DAI S J,LI Q,LI P,SUN

        Y F,WU Y,DUAN C R,LENG P. Non-climacteric ripening

        in strawberry fruit is linked to ABA,F(xiàn)aNCED2 and FaCYP707A1[

        J]. Functional Plant Biology,2012,39(4):351-357.

        [44] LI Q,JI K,SUN Y F,LUO H,WANG H Q,LENG P. The role

        of FaBG3 in fruit ripening and B. cinerea fungal infection of

        strawberry[J]. The Plant Journal:for Cell and Molecular Biology,

        2013,76(1):24-35.

        [45] ZHANG S H,SUN J H,DONG Y H,SHEN Y Y,LI C L,LI Y

        Z,GUO J X. Enzymatic and functional analysis of β- glucosidase

        FaBG1 during strawberry fruit ripening[J]. The Journal of

        Horticultural Science and Biotechnology,2014,89(6):733-739.

        [46] SONG C K,GU L,LIU J Y,ZHAO S,HONG X T,SCHULENBURG

        K,SCHWAB W. Functional characterization and substrate

        promiscuity of UGT71 glycosyltransferases from strawberry

        (Fragaria × ananassa)[J]. Plant & Cell Physiology,2015,

        56(12):2478-2493.

        [47] WANG Y,DING G Q,GU T T,DING J,LI Y. Bioinformatic and

        expression analyses on carotenoid dioxygenase genes in fruit development

        and abiotic stress responses in Fragaria vesca[J].

        Molecular Genetics and Genomics,2017,292(4):895-907.

        [48] FUJII H,CHINNUSAMY V,RODRIGUES A,RUBIO S,ANTONI

        R,PARK S Y,CUTLER S R,SHEEN J,RODRIGUEZ P

        L,ZHU J K. In vitro reconstitution of an abscisic acid signalling

        pathway[J]. Nature,2009,462(7273):660-664.

        [49] MA Y,SZOSTKIEWICZ I,KORTE A,MOES D,AYANG Y,

        CHRISTMANN A,GRILL E. Regulators of PP2C phosphatase

        activity function as abscisic acid sensors[J]. Science,2009,324

        (5930):1064-1068.

        [50] PARK S Y,F(xiàn)UNG P,NISHIMURA N,JENSEN D R,F(xiàn)UJII H,

        ZHAO Y,LUMBA S,SANTIAGO J,RODRIGUES A,CHOW T

        F F,ALFRED S E,BONETTA D,F(xiàn)INKELSTEIN R,PROVART

        N J,DESVEAUX D,RODRIGUEZ P L,MCCOURT P,ZHU J K,

        SCHROEDER J I,VOLKMAN B F,CUTLER S R. Abscisic acid

        inhibits type 2C protein phosphatases via the PYR/PYL family

        of START proteins[J]. Science,2009,324(5930):1068-1071.

        [51] HOU B Z,CHEN X H,SHEN Y Y. Interactions between strawberry

        ABA receptor PYR/PYLs and protein phosphatase PP2Cs

        on basis of transcriptome and yeast two-hybrid analyses[J]. Journal

        of Plant Growth Regulation,2021,40(2):594-602.

        [52] GONZALEZ-GUZMAN M,PIZZIO G A,ANTONI R,VERASIRERA

        F,MERILO E,BASSEL G W,F(xiàn)ERN?NDEZ M A,

        HOLDSWORTH M J,PEREZ-AMADOR M A,KOLLIST H,

        RODRIGUEZ P L. Arabidopsis PYR/PYL/RCAR receptors

        play a major role in quantitative regulation of stomatal aperture

        and transcriptional response to abscisic acid[J]. The Plant cell,

        2012,24(6):2483-2496.

        [53] JIA H F,WANG Y H,SUN M Z,LI B B,HAN Y,ZHAO Y X,LI

        X L,DING N,LI C,JIWL,JIAWS. Sucrose functions as a signal

        involved in the regulation of strawberry fruit development

        and ripening[J]. The New Phytologist,2013,198(2):453-465.

        [54] HAN Y,DANG R H,LI J X,JIANG J Z,ZHANG N,JIA M R,

        WEI L Z,LI Z Q,LI B B,JIAWS. SUCROSE NONFERMENTING1-

        RELATED PROTEIN KINASE2.6,an ortholog of OPEN

        STOMATA1,is a negative regulator of strawberry fruit development

        and ripening[J]. Plant Physiology,2015,167(3):915-930.

        [55] QI L T,ZHENG Y G,WANG PY,SONG J N,JING S S,XU L J,

        ZHOU X Y,HAO Z Q,YAN Y P,LIU Z. Overexpression of a

        sour jujube gene ZjPYR1,encoding a putative abscisic acid receptor,

        increases sensitivity of the stomata and roots to ABA in Arabidopsis

        thaliana[J]. Gene Expression Patterns,2020,36:119117.

        [56] JIA M R,DING N,ZHANG Q,XING S N,WEI L Z,ZHAO Y

        Y,DU P,MAO W W,LI J Z,LI B B,JIA W S. A FERONIAlike

        receptor kinase regulates strawberry (Fragaria × ananassa)

        fruit ripening and quality formation[J]. Frontiers in Plant Science,

        2017,8:1099.

        [57] CHAI Y M,JIA H F,LI C L,DONG Q H,SHEN Y Y. FaPYR1

        is involved in strawberry fruit ripening[J]. Journal of Experimental

        Botany,2011,62(14):5079-5089.

        [58] AYUB R A,BOSETTO L,GALV?O C W,ETTO R M,INABA

        J,LOPES P Z. Abscisic acid involvement on expression of related

        gene and phytochemicals during ripening in strawberry fruit

        Fragaria×ananassa cv. Camino Real[J]. Scientia Horticulturae,

        2016,203:178-184.

        [59] CHENG Z H,ZHUO S B,LIU X F,CHE G,WANG Z Y,GU

        R,SHEN J J,SONG W Y,ZHOU Z Y,HAN D G,ZHANG X

        L. The MADS-box gene CsSHP participates in fruit maturation

        and floral organ development in cucumber[J]. Frontiers in Plant

        Science,2020,10:1781.

        [60] GUPTA M K,LENKA S K,GUPTA S,RAWAL R K. Agonist,

        antagonist and signaling modulators of ABA receptor for agronomic

        and post- harvest management[J]. Plant Physiology and

        Biochemistry,2020,148:10-25.

        [61] LIANG S,LU K,WU Z,JIANG S C,YU Y T,BI C,XIN Q,

        WANG X F,ZHANG D P. A link between magnesium-chelatase

        H subunit and sucrose nonfermenting 1 (SNF1)- related protein

        kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response

        to abscisic acid[J]. Journal of Experimental Botany,

        2015,66(20):6355-6369.

        [62] SHANG Y,YAN L,LIU Z Q,CAO Z,MEI C,XIN Q,WU F Q,

        WANG X F,DU S Y,JIANG T,ZHANG X F,ZHAO R,SUN

        H L,LIU R,YU Y T,ZHANG D P. The Mg-chelatase H subunit

        of Arabidopsis antagonizes a group of WRKY transcription repressors

        to relieve ABA-responsive genes of inhibition[J]. The

        Plant Cell,2010,22(6):1909-1935.

        [63] HOU B Z,XU C,SHEN Y Y. A leu-rich repeat receptor-like protein

        kinase,F(xiàn)aRIPK1,interacts with the ABA receptor,F(xiàn)aABAR,

        to regulate fruit ripening in strawberry[J]. Journal of Experimental

        Botany,2018,69(7):1569-1582.

        [64] MEDINA-PUCHE L,MOLINA-HIDALGO F J,BOERSMAM,

        SCHUURINK R C,L?PEZ-VIDRIERO I,SOLANO R,F(xiàn)RANCO-

        ZORRILLA J M,CABALLERO J L,BLANCO- PORTALES

        R,MU?OZ-BLANCO J. An R2R3-MYB transcription

        factor regulates eugenol production in ripe strawberry fruit receptacles[

        J]. Plant Physiology,2015,168(2):598-614.

        [65] KADOMURA-ISHIKAWAY,MIYAWAKI K,TAKAHASHI A,

        MASUDA T,NOJI S. Light and abscisic acid independently regulated

        FaMYB10 in Fragaria×ananassa fruit[J]. Planta,2015,

        241(4):953-965.

        [66] MEDINA-PUCHE L,CUMPLIDO-LASO G,AMIL-RUIZ F,

        HOFFMANN T,RING L,RODR?GUEZ-FRANCO A,CABALLERO

        J L,SCHWAB W,MU?OZ- BLANCO J,BLANCOPORTALES

        R.MYB10 plays a major role in the regulation of

        flavonoid/phenylpropanoid metabolism during ripening of

        Fragaria × ananassa fruits[J]. Journal of Experimental Botany,

        2014,65(2):401-417.

        [67] CHAI L,SHEN Y Y. FaABI4 is involved in strawberry fruit ripening[

        J]. Scientia Horticulturae,2016,210:34-40.

        [68] LI D D,MOU W S,LUO Z S,LI L,LIMWACHIRANON J,

        MAO L C,YING T J. Developmental and stress regulation on

        expression of a novel miRNA,F(xiàn)an-miR73,and its target ABI5

        in strawberry[J]. Scientific Reports,2016,6(1):1-11.

        [69] ROMERO P,LAFUENTE M T,RODRIGO M J. The Citrus

        ABA signalosome:identification and transcriptional regulation

        during sweet orange fruit ripening and leaf dehydration[J]. Journal

        of Experimental Botany,2012,63(13):4931-4945.

        [70] WANG Y P,WU Y,DUAN C R,CHEN P,LI Q,DAI S J,SUN

        L,JI K,SUN Y F,XU W,WANG C L,LUO H,WANG Y,

        LENG P. The expression profiling of the CsPYL,CsPP2C and

        CsSnRK2 gene families during fruit development and drought

        stress in cucumber[J]. Journal of Plant Physiology,2012,169

        (18):1874-1882.

        [71] LIU J H,JIA C H,DONG F Y,WANG J B,ZHANG J B,XU Y,

        XU B Y,JIN Z Q. Isolation of an abscisic acid senescence and

        ripening inducible gene from litchi and functional characterization

        under water stress[J]. Planta,2013,237(4):1025-1036.

        [72] HU W,YAN Y,SHI H T,LIU J H,MIAO H X,TIE W W,

        DING Z H,DING X P,WU C L,LIU Y,WANG J S,XU B Y,

        JIN Z Q. The core regulatory network of the abscisic acid pathway

        in banana:genome-wide identification and expression analyses

        during development,ripening,and abiotic stress[J]. BMC

        Plant Biology,2017,17(1):145.

        [73] JIA H F,LU D,SUN J H,LI C L,XING Y,QIN L,SHEN Y Y.

        Type 2C protein phosphatase ABI1 is a negative regulator of

        strawberry fruit ripening[J]. Journal of Experimental Botany,

        2013,64(6):1677-1687.

        [74] ZHANG S H,HOU B Z,CHAI L,YANGAZ,YU XY,SHENYY.

        Sigma factor FaSigE positively regulates strawberry fruit ripening

        by ABA[J]. Plant Growth Regulation,2017,83(3):417-427.

        [75] MEDINA-PUCHE L,BLANCO-PORTALES R,MOLINA-HIDALGO

        F J,CUMPLIDO-LASO G,GARC?A-CAPARR?S N,

        MOYANO- CA?ETE E,CABALLERO- REPULLO J L,

        MU?OZ- BLANCO J,RODR?GUEZ- FRANCO A. Extensive

        transcriptomic studies on the roles played by abscisic acid and

        auxins in the development and ripening of strawberry fruits[J].

        Functional & Integrative Genomics,2016,16(6):671-692.

        [76] WANG Q H,ZHAO C,ZHANG M,LI Y Z,SHEN Y Y,GUO J

        X. Transcriptome analysis around the onset of strawberry fruit

        ripening uncovers an important role of oxidative phosphorylation

        in ripening[J]. Scientific Reports,2017,7:41477.

        [77] CONCHA C M,F(xiàn)IGUEROA N E,POBLETE LA,O?ATE F A,

        SCHWAB W,F(xiàn)IGUEROA C R. Methyl jasmonate treatment induces

        changes in fruit ripening by modifying the expression of

        several ripening genes in Fragaria chiloensis fruit[J]. Plant

        Physiology and Biochemistry,2013,70:433-444.

        [78] LIU M C,PIRRELLO J,CHERVIN C,ROUSTAN J P,BOUZAYEN

        M. Ethylene control of fruit ripening:revisiting the

        complex network of transcriptional regulation[J]. Plant Physiology,

        2015,169(4):2380-2390.

        [79] LI Z K,WANG Z N,WANG K J,LIU Y,HONG Y H,CHEN C

        M,GUAN X Y,CHEN Q X. Co- expression network analysis

        uncovers key candidate genes related to the regulation of volatile

        esters accumulation in Woodland strawberry[J]. Planta,

        2020,252(4):55.

        [80] TOSETTI R,ELMI F,PRADAS I,COOLS K,TERRY L A.

        Continuous exposure to ethylene differentially affects senescence

        in receptacle and achene tissues in strawberry fruit[J].

        Frontiers in Plant Science,2020,11:174.

        [81] SADKA A,QIN Q P,F(xiàn)ENG J R,F(xiàn)ARCUH M,SHLIZERMAN

        L,ZHANG Y T,TOUBIANA D,BLUMWALD E. Ethylene response

        of plum ACC synthase 1 (ACS1) promoter is mediated

        through the binding site of abscisic acid insensitive 5 (ABI5) [J].

        Plants (Basel,Switzerland),2019,8(5):117.

        [82] WONG D C J,GUTIERREZ R L,DIMOPOULOS N,GAMBETTA

        G A,CASTELLARIN S D. Combined physiological,

        transcriptome,and cis- regulatory element analyses indicate that

        key aspects of ripening,metabolism,and transcriptional program

        in grapes (Vitis vinifera L.) are differentially modulated accordingly

        to fruit size[J]. BMC Genomics,2016,17:416.

        [83] ZILIOTTO F,CORSO M,RIZZINI F M,RASORI A,BOTTON

        A,BONGHI C. Grape berry ripening delay induced by a prevéraison

        NAA treatment is paralleled by a shift in the expression

        pattern of auxin- and ethylene-related genes[J]. BMC Plant Biology,

        2012,12:185.

        [84] GOUTHU S,DELUC L G. Timing of ripening initiation in

        grape berries and its relationship to seed content and pericarp

        auxin levels[J]. BMC Plant Biology,2015,15(1):1-6.

        [85] B?TTCHER C,KEYZERS R A,BOSS P K,DAVIES C. Sequestration

        of auxin by the indole- 3- acetic acid- amido synthetase

        GH3- 1 in grape berry (Vitis vinifera L.) and the proposed

        role of auxin conjugation during ripening[J]. Journal of Experimental

        Botany,2010,61(13):3615-3625.

        [86] SYMONS G M,CHUA Y J,ROSS J J,QUITTENDEN L J,DAVIES

        N W,REID J B. Hormonal changes during non-climacteric

        ripening in strawberry[J]. Journal of Experimental Botany,

        2012,63(13):4741-4750.

        [87] GUO J X,WANG S F,YU X Y,DONG R,LI Y Z,MEI X R,

        SHEN Y Y. Polyamines regulate strawberry fruit ripening by ab-

        scisic acid,auxin,and ethylene[J]. Plant Physiology,2018,177

        (1):339-351.

        [88] GIVEN N K,VENIS M A,GIERSON D. Hormonal regulation

        of ripening in the strawberry,a non-climacteric fruit[J]. Planta,

        1988,174(3):402-406.

        [89] ARA?JO W L,TOHGE T,OSORIO S,LOHSE M,BALBO I,

        KRAHNERT I,SIENKIEWICZ-PORZUCEK A,USADEL B,

        NUNES-NESI A,F(xiàn)ERNIE A R. Antisense inhibition of the 2-oxoglutarate

        dehydrogenase complex in tomato demonstrates its

        importance for plant respiration and during leaf senescence and

        fruit maturation[J]. The Plant Cell,2012,24(6):2328-2351.

        [90] ESTRADA-JOHNSON E,CSUKASI F,PIZARRO C M,VALLARINO

        J G,KIRYAKOVA Y,VIOQUE A,BRUMOS J,MEDINA-

        ESCOBAR N,BOTELLA M A,ALONSO J M,F(xiàn)ERNIE

        A R,S?NCHEZ-SEVILLA J F,OSORIO S,VALPUESTA V.

        Transcriptomic analysis in strawberry fruits reveals active auxin

        biosynthesis and signaling in the ripe receptacle[J]. Frontiers in

        Plant Science,2017,8:889.

        [91] CASTILLEJO C,DE LA FUENTE J I,IANNETTA P,BOTELLA

        M ?,VALPUESTA V. Pectin esterase gene family in strawberry

        fruit:study of FaPE1,a ripening-specific isoform[J]. Journal

        of Experimental Botany,2004,55(398):909-918.

        [92] CHEN J X,MAO L C,LU W J,YING T J,LUO Z S. Transcriptome

        profiling of postharvest strawberry fruit in response to exogenous

        auxin and abscisic acid[J]. Planta,2016,243(1):183-197.

        [93] MOLINA-HIDALGO F J,F(xiàn)RANCO A R,VILLATORO C,MEDINA-

        PUCHE L,MERCADO J A,HIDALGO M A,MONFORT

        A,CABALLERO J L,MU?OZ-BLANCO J,BLANCOPORTALES

        R. The strawberry (Fragaria×ananassa) fruit-specific

        rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes

        an enzyme involved in the degradation of cell-wall middle lamellae[

        J]. Journal of Experimental Botany,2013,64(6):1471-1483.

        [94] DAMINATO M,GUZZO F,CASADORO G. A SHATTERPROOF-

        like gene controls ripening in non-climacteric strawberries,

        and auxin and abscisic acid antagonistically affect its expression[

        J]. Journal of Experimental Botany,2013,64(12):

        3775-3786.

        [95] PANIAGUA C,BLANCO-PORTALES R,BARCEL?-MU?OZ

        M,GARC?A-GAGO J A,WALDRON K W,QUESADA M A,

        MU?OZ-BLANCO J,MERCADO J A. Antisense down-regulation

        of the strawberry β- galactosidase gene FaβGal4 increases

        cell wall galactose levels and reduces fruit softening[J]. Journal

        of Experimental Botany,2016,67(3):619-631.

        [96] MOLINA- HIDALGO F J ,MEDINA- PUCHE L,GELIS S,

        RAMOS J ,SABIR F,SOVERAL G,PRISTA C,IGLESIASFERN?NDEZ

        R,CABALLERO J L,MU?OZ-BLANCO J ,

        BLANCO- PORTALES R. Functional characterization of Fa-

        NIP1;1 gene ,a ripening- related and receptacle- specific aquaporin

        in strawberry fruit[J]. Plant Science,2015,238:198-211.

        [97] CORSO M,VANNOZZI A,ZILIOTTO F,ZOUINE M,MAZA

        E,NICOLATO T,VITULO N,MEGGIO F,VALLE G,BOUZAYEN

        M,M?LLER M,MUNN?-BOSCH S,LUCCHIN M,

        BONGHI C. Grapevine rootstocks differentially affect the rate

        of ripening and modulate auxin-related genes in Cabernet sauvignon

        berries[J]. Frontiers in Plant Science,2016,7:69.

        [98] DAI Z W,MEDDAR M,RENAUD C,MERLIN I,HILBERT

        G,DELROT S,GOM?S E. Long-term in vitro culture of grape

        berries and its application to assess the effects of sugar supply

        on anthocyanin accumulation[J]. Journal of Experimental Botany,

        2014,65(16):4665-4677.

        [99] SIEBENEICHLER T J,CRIZEL R L,CAMOZATTO G H,

        PAIM B T,DA SILVA MESSIAS R,ROMBALDI C V,GALLI

        V. The postharvest ripening of strawberry fruits induced by abscisic

        acid and sucrose differs from their in vivo ripening[J].

        Food Chemistry,2020,317:126407.

        [100] LUO Y,GE C,LING Y J,MO F,YANG M,JIANG L Y,CHEN

        Q,LIN Y X,SUN B,ZHANG Y,WANG Y,LI M Y,WANG X

        R,TANG H R. ABA and sucrose co-regulate strawberry fruit ripening

        and show inhibition of glycolysis[J]. Molecular Genetics

        and Genomics,2020,295(2):421-438.

        [101] BREITEL D A,CHAPPELL-MAOR L,MEIR S,PANIZEL I,

        PUIG C P,HAO Y W,YIFHAR T,YASUOR H,ZOUINE M,

        BOUZAYEN M,GRANELL RICHART A,ROGACHEV I,

        AHARONI A. AUXIN RESPONSE FACTOR 2 intersects hormonal

        signals in the regulation of tomato fruit ripening[J]. PLoS

        Genetics,2016,12(3):e1005903.

        [102] JIA H F,JIU S T,ZHANG C,WANG C,TARIQ P,LIU Z J,

        WANG B J,CUI LW,F(xiàn)ANG J G. Abscisic acid and sucrose regulate

        tomato and strawberry fruit ripening through the abscisic

        acid- stress- ripening transcription factor[J]. Plant Biotechnology

        Journal,2016,14(10):2045-2065.

        [103] MO A W,XU T,BAI Q,SHEN Y Y,GAO F,GUO J X.

        FaPAO5 regulates Spm/Spd levels as a signaling during strawberry

        fruit ripening[J]. Plant Direct,2020,4(5):e00217.

        [104] GAO F,MEI X R,LI Y Z,GUO J X,SHEN Y Y. Update on the

        roles of polyamines in fleshy fruit ripening,senescence,and

        quality[J]. Frontiers in Plant Science,2021,12:610313.

        [105] FORLANI S,MASIERO S,MIZZOTTI C. Fruit ripening:the

        role of hormones,cell wall modifications,and their relationship

        with pathogens[J]. Journal of Experimental Botany,2019,70

        (11):2993-3006.

        [106] GARC?A-G?MEZ B E,RUIZ D,SALAZAR J A,RUBIO M,

        MART?NEZ-GARC?A P J,MART?NEZ-G?MEZ P. Analysis of

        metabolites and gene expression changes relative to apricot

        (Prunus armeniaca L.) fruit quality during development and ripening[

        J]. Frontiers in Plant Science,2020,11:1269.

        [107] JIAO B Z,MENG Q W,L? W. Roles of stay-green (SGR) homologs

        during chlorophyll degradation in green plants[J]. Botanical

        Studies,2020,61(1):25.

        [108] QIAO H,ZHANG H,WANG Z,SHEN Y Y. Fig fruit ripening

        is regulated by the interaction between ethylene and abscisic acid[

        J]. Journal of Integrative Plant Biology,2021,63(3):553-569.

        日韩精品免费一区二区三区观看 | 高清亚洲成av人片乱码色午夜| 日本一区二区三区不卡在线| 日本少妇浓毛bbwbbwbbw| 精品国产三级在线观看| 亚洲国产成a人v在线观看| 亚洲一区二区三区在线高清中文| 欧美疯狂性受xxxxx喷水| 又粗又硬又黄又爽的免费视频| 国内久久婷婷精品人双人| 亚洲av第二区国产精品| 久久综合九色欧美综合狠狠| 国产精品无码av一区二区三区| 老熟妇Av| 极品精品视频在线观看| 日本边添边摸边做边爱喷水| 国产精品美女久久久久久久久| 中文字幕久久精品波多野结百度| 国产一区二区白浆在线观看| 国产精品无码人妻在线| 国产福利姬喷水福利在线观看| 玩弄人妻奶水无码AV在线| 美女被黑人巨大入侵的的视频| 亚洲综合网站久久久| 激情亚洲一区国产精品| 日本啪啪一区二区三区| 精品人妻一区二区三区在线观看| 国产精品美女久久久久久| 免费av在线国模| 国产一区二区美女主播| 日本精品久久久久中文字幕| 国产无遮挡a片又黄又爽| 国产人禽杂交18禁网站| 91精品国产一区国产二区久久| 无码人妻久久一区二区三区app| 国产精品一区二区韩国AV| 久久婷婷国产色一区二区三区| 午夜不卡无码中文字幕影院| 亚洲熟妇无码av不卡在线播放 | 久久国产精品偷任你爽任你| 亚洲一区爱区精品无码|