王錦錦,李佳,孫斐,傅茂潤,楊曉穎,韓聰
氣調(diào)包裝技術(shù)在食用菌中的研究進(jìn)展
王錦錦,李佳,孫斐,傅茂潤,楊曉穎,韓聰
(齊魯工業(yè)大學(xué)(山東省科學(xué)院) 食品科學(xué)與工程學(xué)院,濟(jì)南 250300)
概述氣調(diào)包裝技術(shù)(MAP)在食用菌中的應(yīng)用和研究現(xiàn)狀,開拓氣調(diào)包裝技術(shù)的研究思路,為其發(fā)展方向提供參考。從氣調(diào)包裝結(jié)合不同保鮮技術(shù)及使用不同包裝材料的氣調(diào)包裝技術(shù)在食用菌中的應(yīng)用這2個方面介紹其研究進(jìn)展,探討食用菌在采后貯藏過程中的生理及其他品質(zhì)的變化。各種氣調(diào)包裝技術(shù)均對食用菌的保鮮具有一定的積極作用。對各種包裝技術(shù)進(jìn)行了概括和總結(jié),并對食用菌保鮮技術(shù)的發(fā)展方向進(jìn)行了展望。
氣調(diào)包裝;食用菌;研究;進(jìn)展
近年來,我國食用菌產(chǎn)業(yè)發(fā)展迅速,產(chǎn)量已從1978年的不足10萬t發(fā)展到2019年的3 934萬t,這使其成為我國第五大栽培業(yè)[1]。目前,我國在食用菌的生產(chǎn)、消費、出口等方面處于世界領(lǐng)先地位[2]。食用菌富含蛋白質(zhì)、膳食纖維等物質(zhì),具有很高的營養(yǎng)價值。如果采收后的新鮮食用菌表面缺少有效保護(hù),其組織的含水量較高,代謝水平較高,則易出現(xiàn)衰老、失水、褐變、機(jī)械損傷和微生物感染等問題[3],因此減少食用菌損失,延長其保質(zhì)期及貨架期,對于食用菌產(chǎn)業(yè)和消費者都具有重要意義。氣調(diào)包裝技術(shù)(MAP)具有綠色安全、保鮮效果好等特點,被廣泛應(yīng)用于果蔬保鮮中[4-5],它是一種通過改變產(chǎn)品周圍環(huán)境中O2和CO2的濃度,有效抑制其呼吸作用,防止果蔬腐敗變質(zhì),延長新鮮產(chǎn)品的保質(zhì)期,降低果蔬質(zhì)量損失率和腐爛率的技術(shù)[6]。MAP主要包括主動氣調(diào)和被動氣調(diào)2種類型,主動氣調(diào)是人工按照氣體比例將其填充到包裝袋內(nèi),實現(xiàn)對密封環(huán)境中氣體含量的調(diào)節(jié);被動氣調(diào)包裝一般不進(jìn)行人工氣體比例填充,主要利用食品自身的呼吸作用和塑料薄膜的透氣性能自行調(diào)節(jié)氣體含量,從而延長食品的貯藏期。MAP的效果取決于許多因素,如產(chǎn)品類型、包裝膜類型、氣體濃度和儲存溫度等[7-8],這些都是氣調(diào)包裝需要深入探討的問題,也是提升MAP技術(shù)的突破口。單一的氣調(diào)包裝往往不能達(dá)到理想效果,通常需要結(jié)合其他方式進(jìn)行處理。例如,MAP+殺菌劑、MAP+物理保鮮等氣調(diào)包裝結(jié)合其他處理方式的保鮮技術(shù)已經(jīng)在果蔬保鮮方面得到廣泛應(yīng)用[9-11],這里綜述MAP保鮮技術(shù)的主要研究方向。
目前,將MAP與其他方式相結(jié)合的技術(shù)在多種果蔬保鮮中得到廣泛應(yīng)用[12-17],具體保鮮技術(shù)及效果見表1。許多研究表明,在使用化學(xué)消毒劑處理后,MAP對降低新鮮農(nóng)產(chǎn)品在儲存期間的食源性病原體水平具有明顯效果[18-26]。為了研究具體條件對食用菌理化指標(biāo)及其他特性的影響,越來越多的學(xué)者參與到食用菌MAP研究中。
輻照處理包括γ射線、電子束和紫外線照射等方式。其中,低劑量γ輻射能更好地延長許多新鮮水果和蔬菜的采后壽命[27];電子束照射可減少微生物腐敗,提高食品的衛(wèi)生質(zhì)量,此種輻照的處理時間短、不產(chǎn)生放射性廢物,并能消滅主要的致病性食源性細(xì)菌;紫外線可誘導(dǎo)植物的生物脅迫和植物組織的防御機(jī)制,從而產(chǎn)生植物抗毒素化合物。
Jiang等[28]研究了聚丙烯袋結(jié)合不同劑量的γ輻照對香菇保鮮效果的影響,發(fā)現(xiàn)與單獨采用MAP相比,γ射線+MAP處理對冷藏香菇具有更加明顯的抑制衰老作用,可將香菇的貯藏壽命延長至20 d。Rivera等[29]先采用2.5 kGy電子束對夏松露進(jìn)行處理,然后將其放置在4 ℃的氣調(diào)包裝內(nèi)貯藏,發(fā)現(xiàn)電子束處理對松露的感官特性并無不良影響,使夏松露的貨架期延長至42 d,而未經(jīng)處理的樣品貨架期為21 d。Jiang等[30]將香菇置于紫外光下輻射,然后儲存于氣調(diào)包裝中15 d,經(jīng)UV-C處理的香菇仍保持高水平的緊致性,并有較高的抗氧化酶活性。
由于臭氧具有很強(qiáng)的氧化作用,所以它在抑制微生物活性方面非常有效,適當(dāng)暴露在臭氧中可以限制微生物的生長,抑制產(chǎn)品的腐爛,同時能夠保留其有益化合物和抗氧化活性。此外,臭氧能迅速分解為氧氣,在熏蒸后的產(chǎn)品上不會留下有害的副產(chǎn)品或殘留物。
Liu等[31]對香菇進(jìn)行了臭氧處理,并將其在4 ℃下儲存14 d,這可使多酚氧化酶(PPO)失活,從而抑制了香菇的褐變,減少了游離氨基酸的積累。Yang等[32]將香菇經(jīng)臭氧處理后置于4 ℃下儲存25 d后也觀察到類似結(jié)果,臭氧抑制了香菇表面的褐變,且成品的感官質(zhì)量優(yōu)于未經(jīng)處理的產(chǎn)品。Wang等[33]研究發(fā)現(xiàn),臭氧熏蒸可有效延緩雙孢菇采后貯藏過程中品質(zhì)的惡化,抑制活性氧的積累,可將雙孢蘑菇的貨架期延長10 d。寧明岸等[34]采用2.47 mg/L臭氧熏蒸結(jié)合低溫MAP處理平菇,結(jié)果表明,與未經(jīng)臭氧處理的MAP樣品相比,通過臭氧處理有效保持了平菇細(xì)胞組織的完整性,并且很好地抑制了平菇表面的褐變。孫達(dá)鋒等[35]對蘭茂牛肝菌進(jìn)行臭氧殺菌處理后將其置于氣體成分為O2(體積分?jǐn)?shù)6%)+CO2(體積分?jǐn)?shù)10%)、溫度為5 ℃的氣調(diào)箱內(nèi),可使蘭茂牛肝菌的保鮮期延長10 d以上,在貯藏25 d后蘭茂牛肝菌的呈味物質(zhì)仍保持良好。
表1 MAP結(jié)合不同技術(shù)在食用菌中的應(yīng)用
Tab.1 Application of MAP combined with other technologies in edible fungi
延緩蔬菜和水果等食品成熟進(jìn)程的另一個策略是在其表面覆蓋一層穩(wěn)定、無毒的半透膜。殼聚糖無毒、可生物降解,且能限制許多細(xì)菌的生長[36]。殼聚糖的生物降解性、抗菌活性和成膜性能良好,逐漸成為合成塑料聚合物的一種具有吸引力的替代品。
Huang等[37]將殼聚糖(質(zhì)量分?jǐn)?shù)1%)+瓜爾膠(質(zhì)量分?jǐn)?shù)15%)涂敷在香菇上,并儲存在4 ℃下持續(xù)16 d,不僅保持了香菇的硬度,而且抑制了香菇蛋白質(zhì)、抗壞血酸含量等的惡化。Jiang等[38]配制了殼聚糖(質(zhì)量分?jǐn)?shù)為1%)?葡萄糖(質(zhì)量分?jǐn)?shù)為1%)復(fù)合物(CGC),并在4 ℃下對香菇的質(zhì)量進(jìn)行了16 d的研究,發(fā)現(xiàn)與單獨的殼聚糖、葡萄糖或未涂層對照品相比,CGC涂層在儲存期間能很好地保持香菇的硬度、可溶性固形物含量和抗壞血酸含量,抑制其呼吸速率,從而形成保鮮的良性涂層。Kumar等[39]制備了殼聚糖基納米復(fù)合薄膜和涂層,用于延長農(nóng)產(chǎn)品及肉類制品的貨架期。Ban等[40]采用殼聚糖和CaCl2對雙孢菇進(jìn)行涂膜處理,然后將香菇分別用PVC和PE薄膜包裝,并在12 ℃下貯藏,結(jié)果表明PE包裝有效降低了香菇的成熟度指數(shù)。Gholami等[41]研究了殼聚糖涂層、納米包裝和氣調(diào)包裝對延長雙孢菇保質(zhì)期和提高其質(zhì)量的效果,氣調(diào)包裝內(nèi)含有O2(體積分?jǐn)?shù)10%)和CO2(體積分?jǐn)?shù)10%),這種組合對雙孢菇貯藏期間的物理、化學(xué)和力學(xué)性能有著積極影響,并且可以將其保質(zhì)期延長至15 d。
剛收獲的食用菌上有土壤、污垢、微生物及其他雜質(zhì),可以用水很容易地去除這些雜質(zhì)。然而,僅用水會增加食用菌表面的含水量,加速微生物侵蝕和腐敗,因此在洗滌用水中添加氯化物/次氯酸鈉和檸檬酸等抗菌化學(xué)品,或者添加褐變抑制劑,可以抑制食用菌表面褐變。
Sindhu[42]研究了偏亞硫酸鈉、檸檬酸和過氧化氫對香菇的影響,發(fā)現(xiàn)化學(xué)處理并不影響香菇干的總體可接受性。Ozturk等[43]將檸檬酸與MAP結(jié)合對新鮮雞油菌進(jìn)行了12 d保鮮試驗,結(jié)果表明,添加檸檬酸后的 MAP處理顯著減少了新鮮雞油菌的質(zhì)量損失率和腐爛率。Xiao等[44]采用不同濃度溶液(質(zhì)量分?jǐn)?shù),山梨醇0.05%,CaCl21%,檸檬酸3%)相結(jié)合來浸泡平菇,然后用O2(體積分?jǐn)?shù)1.5%)和CO2(體積分?jǐn)?shù)20%)的混合氣體將樣品包裝在MAP袋中進(jìn)行貯存,此種處理使平菇的保質(zhì)期從4 d延長到6 d,且對平菇的質(zhì)量損失率和細(xì)胞通透性具有明顯的抑制作用。Jafri等[45]用山梨醇(質(zhì)量分?jǐn)?shù)為0.05%)、檸檬酸(質(zhì)量分?jǐn)?shù)為3%)和CaCl2(質(zhì)量分?jǐn)?shù)為1%)溶液處理平菇,然后采用O2(體積分?jǐn)?shù)10%)和CO2(體積分?jǐn)?shù)5%)的MAP包裝,評估樣品在4 ℃下保存25 d后的理化、質(zhì)地和感官特性,經(jīng)過處理后樣品的質(zhì)量損失率、pH和TSS的變化最小。
市場上常見的氣調(diào)包裝材料以聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、雙向拉伸聚丙烯薄膜(BOPP)等為主[46]。采用單一包裝材料的保鮮效果存在一定局限性,通常需添加一些其他成分來改變包裝膜的成分和結(jié)構(gòu),以延長果蔬的貨架期。在目前已有的研究中,通常將MAP與單一活性劑(如防腐劑、吸濕劑、化學(xué)試劑)結(jié)合使用,如何有效地結(jié)合多重作用,將有助于提高活性包裝和MAP的綜合效率,科研工作者對此展開了很多研究,使用不同包裝材料的食用菌的MAP保鮮效果見表2。
表2 不同包裝材料的MAP在食用菌中的應(yīng)用
Tab.2 Application of MAP with different packaging materials in edible fungi
PE膜是目前包裝袋中使用量最大的一種保鮮膜,主要優(yōu)點在于其加工成型方便、韌性強(qiáng)、防潮性良好、熱封性能良好等,并能通過調(diào)節(jié)果實的微環(huán)境氣體條件實現(xiàn)自發(fā)氣調(diào),以增強(qiáng)保鮮效果。PE膜具有操作簡單、價格低廉、易于推廣等優(yōu)勢,在果蔬保鮮中得到廣泛應(yīng)用。
Wei等[47]評價了硅窗(SW)和聚乙烯(PE)包裝材料對松茸質(zhì)感、成熟度、褐變和氣味的影響,并對其機(jī)理進(jìn)行了研究,結(jié)果表明,PE有效延緩了松茸的衰老和褐變,并將松茸的貯藏期延長至15 d。Ban等[40]將雙孢菇分別用PVC、PE膜包裝,然后在12 ℃下保存7 d,結(jié)果表明,采用PE膜包裝的雙孢菇能保持較高的新鮮度,并能被大多數(shù)消費者所接受。Lyn等[48]將明膠和石榴皮粉分別或共同包覆在PE膜上,然后采用不同條件對平菇進(jìn)行氣調(diào)包裝,發(fā)現(xiàn)二者都添加的PE袋成功地將平菇的貨架期延長至11 d。Fang等[49]制備了一種含有納米?銀、納米?二氧化鈦、納米?二氧化硅和凹凸棒土的PE包裝材料,并用于金針菇的保鮮,在貯藏14 d后,納米復(fù)合包裝減少了金針菇的質(zhì)量損失率,并且抑制了微生物的生長。Fang等[50]分析了此種復(fù)合包裝材料對金針菇采后21 d的理化特性和抗氧化能力的影響,試驗表明此種材料更好地保留了金針菇的營養(yǎng)物質(zhì)。
PP膜具有良好的加工性能,以及良好的物理、力學(xué)、化學(xué)、耐磨、耐熱等性能,應(yīng)用廣泛。PP膜的絕緣性較好,在電氣絕緣方面應(yīng)用廣泛,且其材質(zhì)較軟,可用于吸塑托盤的制作,也是具有發(fā)展前途的熱塑性塑料之一。
Sangerlaub等[51]研制了一種含有質(zhì)量分?jǐn)?shù)為6%的分散NaCl晶體的熱成型發(fā)泡單層PP膜,這種薄膜能以更高的速率吸收水蒸氣,并能結(jié)合更多的由固體鹽晶體通過水蒸氣吸收形成的鹽溶液,所以此種膜在含有較高水分活度的新鮮農(nóng)產(chǎn)品保鮮中具有廣闊的市場前景。張克宏[52]將納米SiO2涂覆到PP膜上,制備出SiO2/PP復(fù)合保鮮薄膜,并對復(fù)合薄膜的物理性能和保鮮性能進(jìn)行了研究,發(fā)現(xiàn)該復(fù)合薄膜大大提高了果蔬的保鮮度。雙孢菇具有較高的蒸騰作用和呼吸作用,Gux等[53]研究了雙孢菇在不同貯藏溫度(4、12、20 ℃)和相對濕度(76%、86%、96%、100%)組合下儲存于PP托盤中6 d的蒸騰行為,與對照組相比,PP托盤吸收了更多的水蒸氣,更好地保持了雙孢菇的品質(zhì)。
PVC具有良好的耐酸堿性,可以廣泛應(yīng)用于各領(lǐng)域。部分不良生產(chǎn)商為了牟取利益,隨意在食品級PVC中違規(guī)添加有毒的增塑劑、防老化劑等,使PVC常被誤解為有毒材料。PVC處于較高溫度時會慢慢分解,因此不適合包裝需高溫加熱的食品,但適合于需要低溫貯藏的果蔬保鮮包裝。
Gonzalez-Fandos等[54]采用PVC薄膜包裝切片雙孢菇,并在3 ℃和9 ℃下保存,研究了貯藏期結(jié)束后切片雙孢菇的感官和微生物品質(zhì),發(fā)現(xiàn)PVC產(chǎn)生的空氣可抑制好氧微生物的生長,在3 ℃下切片雙孢菇的保質(zhì)期約為13 d。Simon等[55]將洗凈的雙孢菇切片(厚度4 mm)置于PVC托盤上包裝,然后放在5 ℃下儲存17 d,發(fā)現(xiàn)經(jīng)PVC處理后,雙孢菇保持了較好的感官品質(zhì),且微生物數(shù)量顯著減少。Li等[56]采用不同厚度(0.03、0.05 mm)的PVC和PE包裝雙孢菇,在4 ℃下保存28 d,結(jié)果表明,與0.03 mm膜相比,0.05 mm PVC膜可有效降低雙孢菇的呼吸速率和電解質(zhì)泄漏,延緩其衰老。
BOPP是一種重要的軟包裝材料,具有無色、無味、無毒、抗菌、穩(wěn)定性好、拉伸強(qiáng)度好、透明、防霧等特點。BOPP薄膜的表面能較低,在涂膠或印刷前需進(jìn)行電暈處理,經(jīng)電暈處理后BOPP薄膜具有良好的印刷適應(yīng)性,可以通過套色印刷得到精美的外觀,因而常用作復(fù)合薄膜的面層材料,近年來開始廣泛應(yīng)用于食品包裝。
Jiang等[57]將雙孢菇在二乙胺中浸泡10 min,然后裝入BOPP袋中,經(jīng)熱封后在4 ℃下儲存16 d,結(jié)果表明,雙孢菇保持了較高的硬度,延緩了其褐變和開帽進(jìn)程,促進(jìn)了酚類物質(zhì)和抗壞血酸的積累,降低了H2O2含量的增加。Jiang等[30]將香菇置于紫外光下輻射后貯藏于BOPP袋中,在儲存15 d后香菇仍保持了高水平的緊致性,并有較高的抗氧化酶活性。
近年來,人們逐漸意識到健康、平衡飲食的重要性,食用菌的消費量也有所增加。受到季節(jié)、經(jīng)濟(jì)、政策和市場的影響,食用菌的價格隨之波動(夏季高價、冬季低價),這勢必影響食用菌企業(yè)和菇農(nóng)的經(jīng)濟(jì)效益,對產(chǎn)品供應(yīng)體系及居民的生產(chǎn)生活的影響也不可小覷,存在“菇價貴傷市民,賤則傷菇農(nóng)”的現(xiàn)象,所以需要研發(fā)一種能夠大幅度延長食用菌貯藏期的保鮮技術(shù)。
在流通過程中食用菌的包裝具有隨意性,通常將其直接放在泡沫箱或塑料筐里,表面覆蓋一層保鮮膜,基本無保鮮措施。由于新鮮食用菌的含水量高達(dá)85%~90%,采后呼吸代謝旺盛,特別容易出現(xiàn)失水、開傘、褐變、后生長、腐爛等現(xiàn)象,導(dǎo)致在流通過程中其損失率達(dá)到10%~30%,因此需要研發(fā)合適的保鮮技術(shù)來保障農(nóng)貿(mào)市場、商超等市場上食用菌的正常流通。
食用菌一般直接食用,按照國標(biāo)要求不能也不適宜通過化學(xué)保鮮劑等方式進(jìn)行保鮮。另外,精油類的天然殺菌劑等會使以鮮為主的食用菌的味道改變,因此很多果蔬的保鮮劑并不適用于食用菌。氣調(diào)包裝通過改變氣體組分來抑制呼吸作用,所以它在食用菌保鮮上具有廣闊的發(fā)展前景。
自然界中有2 000多種食用菌,大約有200種采用商業(yè)或?qū)嶒炘耘?,其中?0種已工業(yè)化栽培,如平菇、香菇、雙孢菇、黑木耳、金針菇、草菇等。由于食用菌的多樣性、生長環(huán)境的多樣性和采摘期的不同等因素,導(dǎo)致采摘后的食用菌所需的氣體環(huán)境差異很大,因此研究食用菌的保鮮能為MAP提供更加精準(zhǔn)的理論支持。
氣調(diào)保鮮技術(shù)主要靠高分子材料的特性來實現(xiàn),因此氣調(diào)包裝材料是重要的研究方向。市場上常見的氣調(diào)包裝材料有PE、PP、PVC、BOPP等,基于前人的研究發(fā)現(xiàn),不同種類的食用菌在不同材質(zhì)包裝袋中的保鮮期有區(qū)別,所以針對不同種類的食用菌需要研究不同的包裝材料。
目前常見的氣調(diào)設(shè)備主要以氣調(diào)庫、氣調(diào)箱為主,實際運輸過程中在考慮生產(chǎn)成本的前提下,可根據(jù)不同需求開發(fā)不同類型的氣調(diào)裝置,例如簡易氣調(diào)箱、氣調(diào)袋、低成本簡易主動氣調(diào)裝置等。
很多學(xué)者研究了微環(huán)境包裝(例如涂膜類的可食用材料)的抑菌效果,實際上這些涂膜也改變了食用菌周圍的氣體微環(huán)境,但這些微環(huán)境的影響機(jī)制目前尚不清楚。有必要開發(fā)一種可調(diào)節(jié)氣體組分、可與其他技術(shù)(如催熟、殺菌、除濕等)相結(jié)合的簡易氣調(diào)裝置,為未來食用菌和農(nóng)產(chǎn)品的保鮮和貯藏運輸提供便利和技術(shù)支持。
食用菌的衰老是一個氧化過程,涉及細(xì)胞和亞細(xì)胞結(jié)構(gòu)及大分子降解?;钚匝踉诩?xì)胞膜脂質(zhì)過氧化、膜損傷和蛋白質(zhì)氧化中起著重要作用,最終導(dǎo)致食用菌的衰老,所以大多數(shù)科研工作者專注于PPO活性、還原糖含量及質(zhì)量損失率等指標(biāo)的研究。保鮮技術(shù)更應(yīng)注重果蔬和食用菌的口感、食品安全性等問題,目前人們對食用菌氣調(diào)保鮮技術(shù)的研究大多停留在小包裝層面,這無疑增加了包裝成本,且在食用菌的采后保鮮和貯藏運輸方面存在一定局限性。
[1] 趙靜, 王延鋒, 盛春鴿, 等. 我國食用菌工廠化生產(chǎn)現(xiàn)狀與發(fā)展趨勢[J]. 中國林副特產(chǎn), 2021(5): 68-71.
ZHAO Jing, WANG Yan-feng, SHENG Chun-ge, et al. The Production Status and Development Trend of Edible Fungi Factory in China[J]. Forest by-Product and Speciality in China, 2021(5): 68-71.
[2] 賀國強(qiáng), 魏金康, 胡曉艷, 等. 我國食用菌產(chǎn)業(yè)發(fā)展現(xiàn)狀及展望[J]. 蔬菜, 2022(4): 40-46.
HE Guo-qiang, WEI Jin-kang, HU Xiao-yan, et al. Present Situation and Prospect of Edible Fungi Industry Development in China[J]. Vegetables, 2022(4): 40-46.
[3] SONG Yuan, HU Qiu-hui, WU Yuan-yue, et al. Storage Time Assessment and Shelf-Life Prediction Models for Postharvest[J]. LWT, 2019, 101: 360-365.
[4] KURUBAS M S, MALTAS A S, DOGAN A, et al. Comparison of Organically and Conventionally Produced Batavia Type Lettuce Stored in Modified Atmosphere Packaging for Postharvest Quality and Nutritional Parameters[J]. Journal of the Science of Food and Agriculture, 2019, 99(1): 226-234.
[5] 潘玉軍, 付秋瑩. 氣調(diào)包裝延長果蔬貯存期的研究進(jìn)展[J]. 今日印刷, 2018(10): 61-64.
PAN Yu-jun, FU Qiu-ying. Research Progress on Extending Storage Life of Fruits and Vegetables by Modified Atmosphere Packaging[J]. Intelligent Printing, 2018(10): 61-64.
[6] 李福后, 王偉霞, 孫強(qiáng), 等. 食用菌保鮮技術(shù)的研究進(jìn)展[J]. 食品研究與開發(fā), 2018, 39(15): 205-210.
LI Fu-hou, WANG Wei-xia, SUN Qiang, et al. Research Progress in Preservation Technology of Edible Fungi[J]. Food Research and Development, 2018, 39(15): 205-210.
[7] SANDHYA. Modified Atmosphere Packaging of Fresh Produce: Current Status and Future Needs[J]. LWT - Food Science and Technology, 2010, 43(3): 381-392.
[8] LI Jing-yan, SONG Wei, BARTH M M, et al. Effect of Modified Atmosphere Packaging (MAP) on the Quality of Sea Buckthorn Berry Fruits during Postharvest Storage[J]. Journal of Food Quality, 2015, 38(1): 13-20.
[9] WAGHMARE R B, ANNAPURE U S. Combined Effect of Chemical Treatment and/or Modified Atmosphere Packaging (MAP) on Quality of Fresh-Cut Papaya[J]. Postharvest Biology and Technology, 2013, 85: 147-153.
[10] ZHANG Xiao-tian, ZHANG Min, DEVAHASTIN S, et al. Effect of Combined Ultrasonication and Modified Atmosphere Packaging on Storage Quality of Pakchoi (Brassica Chinensis L)[J]. Food and Bioprocess Technology, 2019, 12(9): 1573-1583.
[11] WAGHMARE R B, ANNAPURE U S. Integrated Effect of Sodium Hypochlorite and Modified Atmosphere Packaging on Quality and Shelf Life of Fresh-Cut Cilantro[J]. Food Packaging and Shelf Life, 2015, 3: 62-69.
[12] NAKATA Y, IZUMI H. Microbiological and Quality Responses of Strawberry Fruit to High CO2Controlled Atmosphere and Modified Atmosphere Storage[J]. HortScience, 2020, 55(3): 386-391.
[13] KHAN M R, CHINSIRIKUL W, SANE A, et al. Combined Effects of Natural Substances and Modified Atmosphere Packaging on Reducing Enzymatic Browning and Postharvest Decay of Longan Fruit[J]. International Journal of Food Science & Technology, 2020, 55(2): 500-508.
[14] ?ANDIR E, ?ZDEM?R A E, AKSOY M C. Effects of Modified Atmosphere Packaging on the Storage and Shelf Life of Hicaznar Pomegranate Fruits[J]. Turkish Journal of Agriculture and Forestry, 2019, 43(2): 241-253.
[15] ZHAO Qian-xi, JIN Mi-jing, GUO Le-yin, et al. Modified Atmosphere Packaging and 1-Methylcyclopropene Alleviate Chilling Injury of 'Youhou' Sweet Persimmon during Cold Storage[J]. Food Packaging and Shelf Life, 2020, 24: 100479.
[16] DOROSTKAR M, MORADINEZHAD F, ANSARIFAR E. Influence of Active Modified Atmosphere Packaging Pre-Treatment on Shelf Life and Quality Attributes of Cold Stored Apricot Fruit[J]. International Journal of Fruit Science, 2022, 22(1): 402-413.
[17] TEIXEIRA G H A, CUNHA L C. Quality of Guava (Psidium Guajava L cv Pedro Sato) Fruit Stored in Low O2Controlled Atmospheres is Negatively Affected by Increasing Levels of CO2[J]. Postharvest Biology and Technology, 2016, 111: 62–68.
[18] KAHRAMANOGLU ?. Effects of Lemongrass Oil Application and Modified Atmosphere Packaging on the Postharvest Life and Quality of Strawberry Fruits[J]. Scientia Horticulturae, 2019, 256: 108527.
[19] SIDDIQ R, AURAS R, SIDDIQ M, et al. Effect of Modified Atmosphere Packaging (MAP) and NatureSeal? Treatment on the Physico-Chemical, Microbiological, and Sensory Quality of Fresh-Cut d'Anjou Pears[J]. Food Packaging and Shelf Life, 2020, 23: 100454.
[20] RICO-LONDO?O J F, BUITRAGO-PATI?O D J, AGUDELO-LAVERDE L M. Combination of Methods as Alternative to Maintain the Physical-Chemical Properties and Microbiological Content of Hass Avocado Pulp during Storage[J]. Food Bioscience, 2021, 44: 101372.
[21] PAGE N, GONZáLEZ-BUESA J, RYSER E T, et al. Interactions between Sanitizers and Packaging Gas Compositions and Their Effects on the Safety and Quality of Fresh-Cut Onions (L)[J]. International Journal of Food Microbiology, 2016, 218: 105-113.
[22] ?Z A T, AKYOL B. Effects of Calcium Chloride Plus Coating Inmodified-Atmosphere Packaging Storage on Whole-Radish Postharvest Quality[J]. Journal of the Science of Food and Agriculture, 2020, 100(10): 3942-3949.
[23] YILDIZ G, IZLI G, AADIL R M. Comparison of Chemical, Physical, and Ultrasound Treatments on the Shelf Life of Fresh-Cut Quince Fruit (Mill.)[J]. Journal of Food Processing and Preservation, 2020, 44(3): e14366.
[24] LEILA A, NAFISEH Z, SAMIRA N, et al. Evaluation of the Shelf Life of Minimally Processed Lettuce Packed in Modified Atmosphere Packaging Treated with Calcium Lactate and Heat Shock, Cysteine and Ascorbic Acid and Sodium Hypochlorite[J]. Journal of Food Measurement and Characterization, 2021, 15(5): 4438-4445.
[25] NUNES F R, STEFFENS C A, HEINZEN A S, et al. Ethanol Vapor Treatment of 'Laetitia' Plums Stored under Modified Atmosphere[J]. Revista Brasileira De Fruticultura, 2019, 41(5): e143.
[26] DE CARVALHO F A L, MUNEKATA P E S, LOPES DE OLIVEIRA A, et al. Turmeric (L) Extract on Oxidative Stability, Physicochemical and Sensory Properties of Fresh Lamb Sausage with Fat Replacement by Tiger Nut (L) Oil[J]. Food Research International, 2020, 136: 109487.
[27] WAGHMARE R B, ANNAPURE U S. Integrated Effect of Radiation Processing and Modified Atmosphere Packaging (MAP) on Shelf Life of Fresh Fig[J]. Journal of Food Science and Technology, 2018, 55(6): 1993-2002.
[28] JIANG Tian-jia, LUO Sha-sha, CHEN Qiu-ping, et al. Effect of Integrated Application of Gamma Irradiation and Modified Atmosphere Packaging on Physicochemical and Microbiological Properties of Shiitake Mushroom ()[J]. Food Chemistry, 2010, 122(3): 761-767.
[29] RIVERA C S, BLANCO D, MARCO P, et al. Effects of Electron-Beam Irradiation on the Shelf Life, Microbial Populations and Sensory Characteristics of Summer Truffles () Packaged under Modified Atmospheres[J]. Food Microbiology, 2011, 28(1): 141-148.
[30] JIANG Tian-jia, JAHANGIR M M, JIANG Zhen-hui, et al. Influence of UV-C Treatment on Antioxidant Capacity, Antioxidant Enzyme Activity and Texture of Postharvest Shiitake () Mushrooms during Storage[J]. Postharvest Biology and Technology, 2010, 56(3): 209-215.
[31] LIU Jing, CHANG Ming-chang, MENG Jun-long, et al. Effect of Ozone Treatment on the Quality and Enzyme Activity ofduring Cold Storage[J]. Journal of Food Processing and Preservation, 2020, 44(8): e14557.
[32] YANG Jin-heng, GAO Hai-yan, ZHOU Yong-jun, et al. Effect of Ozone Treatment on Postharvest Quality and Physiology Indexes of Shiitake Mushroom[J]. Acta Agriculturae Zhejiangensis, 2017, 29(7): 1201–1207.
[33] WANG Ting, YUN Jian-min, ZHANG Yu, et al. Effects of Ozone Fumigation Combined with Nano-Film Packaging on the Postharvest Storage Quality and Antioxidant Capacity of Button Mushrooms ()[J]. Postharvest Biology and Technology, 2021, 176: 111501.
[34] 寧明岸, 史君彥, 王清, 等. 臭氧結(jié)合低溫自發(fā)氣調(diào)包裝對平菇貯藏品質(zhì)的影響[J]. 北方園藝, 2020(21): 80-85.
NING Ming-an, SHI Jun-yan, WANG Qing, et al. Effects of Ozone Combined Low Temperature and Modified Atmosphere Packaging on Postharvest Storage Quality of Pleurotus Ostreatus[J]. Northern Horticulture, 2020(21): 80-85.
[35] 孫達(dá)鋒, 胡小松, 張沙沙. 氣調(diào)貯藏對蘭茂牛肝菌呈味物質(zhì)的影響[J]. 食用菌學(xué)報, 2021, 28(6): 150-158.
SUN Da-feng, HU Xiao-song, ZHANG Sha-sha. Effects of Controlled Atmosphere Storage on Flavor Substances in Lanmao Asiatica Fruiting Body[J]. Acta Edulis Fungi, 2021, 28(6): 150-158.
[36] LIU Jun, LIU Shuang, ZHANG Xin, et al. Effect of Gallic Acid Grafted Chitosan Film Packaging on the Postharvest Quality of White Button Mushroom ()[J]. Postharvest Biology and Technology, 2019, 147: 39-47.
[37] HUANG Qi-hui, QIAN Xiao-chen, JIANG Tian-jia, et al. Effect of Chitosan and Guar Gum Based Composite Edible Coating on Quality of Mushroom () during Postharvest Storage[J]. Scientia Horticulturae, 2019, 253: 382-389.
[38] JIANG Tian-jia, FENG Li-fang, LI Jian-rong. Changes in Microbial and Postharvest Quality of Shiitake Mushroom () Treated with Chitosan-Glucose Complex Coating under Cold Storage[J]. Food Chemistry, 2012, 131(3): 780-786.
[39] KUMAR S, MUKHERJEE A, DUTTA J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives[J]. Trends in Food Science & Technology, 2020, 97: 196-209.
[40] BAN Zhao-jun, LI Li, GUAN Jun-feng, et al. Modified Atmosphere Packaging (MAP) and Coating for Improving Preservation of Whole and Sliced[J]. Journal of Food Science and Technology, 2014, 51(12): 3894-3901.
[41] GHOLAMI R, AHMADI E, AHMADI S. Investigating the Effect of Chitosan, Nanopackaging, and Modified Atmosphere Packaging on Physical, Chemical, and Mechanical Properties of Button Mushroom during Storage[J]. Food Science & Nutrition, 2020, 8(1): 224-236.
[42] SINDHU S C. Development and Nutritional Evaluation of Value Added Products from Shiitake (Lentinus Edodus) Mushroom[D]. HISAR: CCS Haryana Agricultural University, 2015: 4665.
[43] OZTURK B, HAVSUT E, YILDIZ K. Delaying the Postharvest Quality Modifications ofMushroom by Applying Citric Acid and Modified Atmosphere Packaging[J]. LWT, 2021, 138: 110639.
[44] XIAO Gong-nian, ZHANG Min, SHAN Liang, et al. Extension of the Shelf-Life of Fresh Oyster Mushrooms (Pleurotus Ostreatus) by Modified Atmosphere Packaging with Chemical Treatments[J]. African Journal of Biotechnology, 2011, 10(46): 9509-9517.
[45] JAFRI M, JHA A, BUNKAR D S, et al. Quality Retention of Oyster Mushrooms () by a Combination of Chemical Treatments and Modified Atmosphere Packaging[J]. Postharvest Biology and Technology, 2013, 76: 112-118.
[46] POPOVI? S, HROMI? N, ?UPUT D, et al. Pumpkin Seed Oil Cake/Polyethylene Film as New Food Packaging Material, with Perspective for Packing under Modified Atmosphere[J]. Packaging Technology and Science, 2021, 34(1): 25-33.
[47] WEI Wen-wen, LV Ping, XIA Qiao-ping, et al. Fresh-Keeping Effects of Three Types of Modified Atmosphere Packaging of Pine-Mushrooms[J]. Postharvest Biology and Technology, 2017, 132: 62-70.
[48] LYN F H, MARYAM A Z A, NOR-KHAIZURA M A R, et al. Application of Modified Atmosphere and Active Packaging for Oyster Mushroom ()[J]. Food Packaging and Shelf Life, 2020, 23: 100451.
[49] FANG Dong-lu, YANG Wen-jian, KIMATU B M, et al. Effect of Nanocomposite-Based Packaging on Storage Stability of Mushrooms ()[J]. Innovative Food Science & Emerging Technologies, 2016, 33: 489-497.
[50] FANG Dong-lu, YANG Wen-jian, KIMATU B M, et al. Effect of Nanocomposite Packaging on Postharvest Quality and Reactive Oxygen Species Metabolism of Mushrooms ()[J]. Postharvest Biology and Technology, 2016, 119: 49-57.
[51] S?NGERLAUB S, LEHMANN E, MüLLER K, et al. Porosity, Thickness Distribution and Water Vapour Sorption of Thermoformed Foamed PP Films with Dispersed Sodium Chloride for Humidity Regulation[J]. Food Packaging and Shelf Life, 2020, 24: 100482.
[52] 張克宏. 納米SiO2/PP復(fù)合保鮮膜的制備與性能研究[J]. 塑料工業(yè), 2011, 39(2): 104-109.
ZHANG Ke-hong. Study on Preparation and Properties Study of Nano-SiO2/PP Composite Fresh-Keeping Film[J]. China Plastics Industry, 2011, 39(2): 104-109.
[53] RUX G, MAHAJAN P V, GEYER M, et al. Application of Humidity-Regulating Tray for Packaging of Mushrooms[J]. Postharvest Biology and Technology, 2015, 108: 102-110.
[54] GONZáLEZ-FANDOS E, SIMON JIMENES A, TOBAR PARDO V. Quality and Shelf Life of Packaged Fresh Sliced Mushrooms Stored at Two Different Temperatures[J]. Agricultural and Food Science, 2008, 15(4): 414.
[55] SIMóN A, GONZáLEZ-FANDOS E, VáZQUEZ M. Effect of Washing with Citric Acid and Packaging in Modified Atmosphere on the Sensory and Microbiological Quality of Sliced Mushrooms (L)[J]. Food Control, 2010, 21(6): 851-856.
[56] LI Xi-hong, XUE Ting, LI Yuan-yuan, et al. Effect of Different Packaging Films on Senescence of Pleurotus Nebrodensis Auto MAP[J]. Advanced Materials Research, 2011, 201/203: 2615-2618.
[57] JIANG Tian-jia, ZHENG Xiao-lin, LI Jian-rong, et al. Integrated Application of Nitric Oxide and Modified Atmosphere Packaging to Improve Quality Retention of Button Mushroom ()[J]. Food Chemistry, 2011, 126(4): 1693-1699.
Research Progress of Modified Atmosphere Packaging Technology in Edible Fungi
WANG Jin-jin, LI Jia, SUN Fei, FU Mao-run, YANG Xiao-ying, HAN Cong
(College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China)
The work aims to summarizethe application and research status of modified atmosphere packaging (MAP) technology in edible fungi and expend the research ideas of MAP technology to provide reference for its development direction. The research progress of MAP combined with other technologies and the application of modified atmosphere packaging technology with different packaging materials in edible fungi were introduced, and the physiological and other quality changes of edible fungi during postharvest storage were discussed. All kinds of MAP technologies have a certain positive effect on the preservation of edible fungi. Various packaging technologies are reviewed and summarized and the development direction of the preservation technology of edible fungi in the future is prospected.
modified atmosphere packaging; edible fungi; research; progress
TS255.36
A
1001-3563(2023)15-0068-08
10.19554/j.cnki.1001-3563.2023.15.010
2022?08?05
山東省自然科學(xué)基金(ZR2020MC150);山東省重點研發(fā)計劃(2019GNC106117);齊魯工業(yè)大學(xué)(山東省科學(xué)院)科教產(chǎn)融合創(chuàng)新試點工程項目(2022JBZ01-08)
王錦錦(1995—),女,碩士,主要研究方向為農(nóng)產(chǎn)品加工與果蔬保鮮。
孫斐(1986—),男,教授,博士,主要研究方向為農(nóng)產(chǎn)品加工及貯藏工程。
責(zé)任編輯:彭颋