黃思源?石雅倩?李鑫?盧敏?郭文禮?劉勇成?歐葉濤
【摘 要】目的 分析雷帕霉素通過(guò)調(diào)控腫瘤壞死因子相關(guān)蛋白1(TRAP1)影響三陰型乳腺癌細(xì)胞MDA-MB-231增殖的藥理過(guò)程,探討雷帕霉素抗乳腺癌的作用機(jī)制。方法 將MDA-MB-231隨機(jī)分為對(duì)照組和不同劑量的雷帕霉素組,隨后分別在24 h和48 h采用四氮唑藍(lán)比色實(shí)驗(yàn)檢測(cè)雷帕霉素對(duì)細(xì)胞增殖的影響。同時(shí)以半抑制濃度(IC50)為研究條件,采用流式細(xì)胞術(shù)檢測(cè)雷帕霉素對(duì)MDA-MB-231細(xì)胞周期的影響;采用蛋白免疫印跡法檢測(cè)雷帕霉素靶蛋白(mTOR)、p-mTOR、TRAP1的蛋白表達(dá);采用定量PCR檢測(cè)mTOR、TRAP1的mRNA;采用ATP試劑盒檢測(cè)ATP含量;采用乳酸試劑盒檢測(cè)乳酸的含量。結(jié)果雷帕霉素能抑制MDA-MB-231的增殖,在24 h時(shí),細(xì)胞增殖率開(kāi)始下降,48 h時(shí),細(xì)胞增殖率下降更明顯,并在10 μmol/L、48 h的條件下達(dá)到IC50,且呈劑量及時(shí)間依賴性(P < 0.01)。雷帕霉素可以造成細(xì)胞周期G1期阻滯(P < 0.01)。與對(duì)照組相比,加藥48 h雷帕霉素組TRAP1的mRNA表達(dá)下降(P < 0.05),p-mTOR和TRAP1蛋白表達(dá)也下降(P < 0.001),而mTOR的mRNA和總mTOR蛋白變化比較差異均無(wú)統(tǒng)計(jì)學(xué)意義(P均> 0.05),ATP含量上升(P< 0.001),乳酸含量下降(P< 0.001)。結(jié)論 雷帕霉素可調(diào)控三陰型乳腺癌細(xì)胞MDA-MB-231的代謝進(jìn)程而抑制細(xì)胞增殖,該過(guò)程與TRAP1的下降有關(guān)。
【關(guān)鍵詞】雷帕霉素;三陰型乳腺癌;腫瘤壞死因子相關(guān)蛋白1
Rapamycin affects the proliferation of triple-negative breast cancer cells by regulating TRAP1 Huang Siyuan△, Shi Yaqian, Li Xin, Lu Min, Guo Wenli, Liu? Yongcheng, Ou Yetao. △Guilin Medical University, Guilin 541004, China
Corresponding author, Ou Yetao, E-mail: ouyetao1972@163.com
【Abstract】Objective To investigate the pharmacological process of the effect of rapamycin upon the proliferation of triple-negative breast cancer MDA-MB-231 cells by regulating tumor necrosis factor receptor-associated protein 1 (TRAP1), and to unravel the anti-breast cancer mechanism of rapamycin. Methods MDA-MB-231 cells were randomly divided into the control group and different-dose rapamycin groups, and then the effect of rapamycin on cell proliferation was detected by MTT assay at 24 h and 48 h,?respectively. Meantime, the half-maximal inhibitory concentration (IC50) of rapamycin was considered as the research condition. The effect of rapamycin on MDA-MB-231 cell cycle was detected by flow cytometry. The expression levels of mammalian target of rapamycin (mTOR), p-mTOR and TRAP1 proteins were detected by Western blot. The expression levels of mTOR and TRAP1 mRNA were measured by qPCR. ATP content was detected by ATP kit. The amount of lactic acid was determined by lactate assay kit. Results Rapamycin inhibited the proliferation of MDA-MB-231 cells in a dose- and time-dependent manner (P < 0.01). The proliferation of MDA-MB-231 cells was decreased at 24 h and significantly decreased at 48 h after rapamycin treatment. IC50 was obtained at?10 μmol/L after 48 h. Rapamycin induced cell cycle arrest at G1 phase (P < 0.01). Compared with the control group, the expression level of TRAP1 mRNA was significantly down-regulated (P < 0.05), and the expression levels of p-mTOR and TRAP1 proteins were significantly down-regulated (both P < 0.001), whereas the expression levels of mTOR mRNA and total mTOR protein were not significantly changed (both P > 0.05), the content of ATP was significantly increased (P < 0.001), and the content of lactic acid was significantly decreased (P < 0.001) in the 48-h rapamycin group. Conclusion Rapamycin can inhibit the proliferation of MDA-MB-231 cells by regulating the metabolic process, which is related to the decrease of TRAP1.
【Key words】 Rapamycin; Triple negative-breast cancer; Tumor necrosis factor receptor-associated protein 1
乳腺癌是女性常見(jiàn)的惡性腫瘤之一,在我國(guó)乳腺癌的發(fā)病率增長(zhǎng)迅速,在女性原發(fā)腫瘤中所占比例高達(dá)15%,且呈明顯年輕化趨勢(shì)[1]。三陰型乳腺癌(TNBC)作為乳腺癌的特殊亞型,具有發(fā)病年齡偏小、分化程度低、侵襲性高、復(fù)發(fā)率高等特點(diǎn)[2]。雷帕霉素(Rapa)已經(jīng)被研究證實(shí)是哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)的別構(gòu)抑制劑,可以通過(guò)抑制mTOR的活性,對(duì)腫瘤、代謝類疾病以及神經(jīng)退行性疾病產(chǎn)生影響[3-5]。腫瘤壞死因子相關(guān)蛋白1(TRAP1)是熱休克蛋白90 (HSP90)伴侶家族的成員,主要存在于線粒體中。已有文獻(xiàn)報(bào)道,mTOR對(duì)于線粒體的活性起到了重要調(diào)節(jié)作用,而TRAP1作為線粒體呼吸的負(fù)調(diào)控因子,能夠影響腫瘤細(xì)胞的呼吸方式[6-7]。TRAP1被廣泛認(rèn)為是抗癌分子靶點(diǎn),雷帕霉素作為mTOR的別構(gòu)抑制劑可能通過(guò)TRAP1發(fā)揮藥理作用,目前尚沒(méi)有研究提及兩者之間的關(guān)系。本研究旨在探討雷帕霉素調(diào)控TRAP1影響乳腺癌細(xì)胞MDA-MB-231代謝功能的分子機(jī)制,從代謝角度探討雷帕霉素影響乳腺癌細(xì)胞增殖的作用,豐富雷帕霉素抗腫瘤的作用機(jī)制。
材料與方法
一、材 料
胎牛血清,蘇州依科賽生物科技股份有限公司;DMEM,美國(guó)Gibco公司;雷帕霉素,MCE公司;mTOR、p-mTOR抗體,CST公司;TRAP1抗體,美國(guó)Affinity公司;ATP檢測(cè)試劑盒,碧云天生物技術(shù)有限公司;乳酸測(cè)試盒,南京建成生物工程研究所。
二、細(xì)胞培養(yǎng)和分組
人三陰乳腺癌細(xì)胞MDA-MB-231(HTB-26)購(gòu)自美國(guó)ATCC細(xì)胞庫(kù)。細(xì)胞培養(yǎng)基由10%胎牛血清、1%青霉素/鏈霉素和DMEM構(gòu)成。將細(xì)胞接種在孔板中,24 h細(xì)胞貼壁后,將雷帕霉素加入細(xì)胞。設(shè)置100 nmol/L、500 nmol/L、1 μmol/L、10 μmol/L、20 μmol/L 的濃度梯度檢測(cè)雷帕霉素對(duì)乳腺癌細(xì)胞增殖的影響。同時(shí)測(cè)定雷帕霉素的半抑制濃度(IC50),并以IC50為雷帕霉素組研究條件,正常細(xì)胞作為對(duì)照組,進(jìn)一步研究雷帕霉素對(duì)MDA-MB-231細(xì)胞周期和能量代謝的影響。
三、方 法
1.四氮唑藍(lán)(MTT)比色實(shí)驗(yàn)
取對(duì)數(shù)生長(zhǎng)期的MDA-MB-231接種于96孔板中,種板后24 h使用不同劑量的雷帕霉素處理細(xì)胞,加入MTT,檢測(cè)各組在490 nm處的吸光度,計(jì)算藥物對(duì)細(xì)胞的抑制率。藥物對(duì)細(xì)胞的抑制率計(jì)算=1-(實(shí)驗(yàn)-空白)/(陰性-空白)×100%。
2. 蛋白免疫印跡法檢測(cè)蛋白表達(dá)
取對(duì)數(shù)生長(zhǎng)期的MDA-MB-231接種于滅菌培養(yǎng)皿中,24 h加藥,48 h提取總蛋白。用8%的SDS-聚丙烯酰胺凝膠電泳(SDS-PAGE)分離蛋白;300 mA、3 h轉(zhuǎn)膜至NC膜上,用5%脫脂牛奶封閉,加入一抗于4 ℃過(guò)夜;次日加入二抗孵育,洗膜成像。
3. 定量PCR(q-PCR)檢測(cè)基因表達(dá)
取對(duì)數(shù)生長(zhǎng)期的MDA-MB-231接種于滅菌培養(yǎng)皿中,24 h后加藥,加藥后48 h提取RNA,逆轉(zhuǎn)錄后上機(jī)檢測(cè),約2 h后收取樣本,分析結(jié)果。
4. 細(xì)胞周期檢測(cè)
取對(duì)數(shù)生長(zhǎng)期的MDA-MB-231接種于滅菌培養(yǎng)皿中,24 h后加藥,48 h消化離心后用70%乙醇溶液固定。隔日離心棄上清,用PBS清洗后將PI染色液加入細(xì)胞中,上機(jī)檢測(cè)。
5. ATP檢測(cè)試劑盒檢測(cè)ATP含量
取對(duì)數(shù)生長(zhǎng)期的MDA-MB-231接種于滅菌培養(yǎng)皿中,24 h后加藥,加入ATP裂解液,多功能酶標(biāo)儀檢測(cè)化學(xué)發(fā)光值。運(yùn)用BCA檢測(cè)法得出蛋白濃度,可計(jì)算出每毫克蛋白所擁有的ATP含量,即ATP濃度(nmol/mg)=測(cè)得ATP濃度/蛋白濃度。
6. 乳酸檢測(cè)試劑盒檢測(cè)乳酸含量
取對(duì)數(shù)生長(zhǎng)期的MDA-MB-231接種于滅菌培養(yǎng)皿中,24 h后加藥,48 h后取上清,使用多功能酶標(biāo)儀測(cè)得波長(zhǎng)為530 nm時(shí)的吸光度,計(jì)算樣本中乳酸的含量。上清中乳酸的含量(mmoL/L)=(樣本-空白)/(標(biāo)準(zhǔn)-空白)×3×4。
四、統(tǒng)計(jì)學(xué)處理
采用SPSS 25.0統(tǒng)計(jì)分析軟件,用進(jìn)行統(tǒng)計(jì)描述,不同劑量給藥組的生長(zhǎng)抑制率采用單因素方差分析,兩兩比較采用Dunnett-t檢驗(yàn)。組間比較采用獨(dú)立樣本t檢驗(yàn),P < 0.05時(shí)差異有統(tǒng)計(jì)學(xué)意義。
結(jié)果
一、雷帕霉素對(duì)MDA-MB-231增殖的影響
MTT比色實(shí)驗(yàn)結(jié)果顯示,經(jīng)過(guò)不同劑量的雷帕霉素處理后,24 h、48 h的細(xì)胞增殖活性均有所下降 (P < 0.05,P < 0.01,P < 0.001),雷帕霉素對(duì)乳腺癌細(xì)胞MDA-MB-231的增殖抑制作用呈時(shí)間依賴和劑量依賴趨勢(shì),見(jiàn)圖1。雷帕霉素處理細(xì)胞48 h的IC50約為10 μmoL/L,因此本研究選用10 μmoL/L、48 h為處理?xiàng)l件,進(jìn)行下一步的研究。
二、雷帕霉素對(duì)MDA-MB-231中mTOR的抑制作用
使用雷帕霉素10 μmoL/L處理細(xì)胞,48 h后提取RNA以及蛋白并進(jìn)行檢測(cè)。結(jié)果顯示,雷帕霉素組mTOR的mRNA變化差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05),mTOR磷酸化水平降低(P < 0.001),但總蛋白的變化差異無(wú)統(tǒng)計(jì)學(xué)意義(P > 0.05)。見(jiàn)圖2。
三、雷帕霉素對(duì)MDA-MB-231中TRAP1表達(dá)的影響
使用雷帕霉素10 μmoL/L處理細(xì)胞,48 h后提取RNA以及蛋白進(jìn)行檢測(cè)。結(jié)果顯示,與對(duì)照組相比,雷帕霉素組TRAP1的基因以及蛋白水平均下降(P < 0.05, P < 0.001)。見(jiàn)圖3。
四、雷帕霉素對(duì)MDA-MB-231細(xì)胞周期的影響
使用雷帕霉素10 μmoL/L處理細(xì)胞48 h,進(jìn)行PI染色后用流式細(xì)胞儀檢測(cè),結(jié)果顯示,對(duì)照組及雷帕霉素組G0/G1期的細(xì)胞百分率分別為 (41.79±2.07)%和(47.3±1.3)%,S期的細(xì)胞百分率分別為 (44.73±1.29)%和(42.42±2.3)%,G2/M期的細(xì)胞百分率分別為(13.48±1.78)%和(10.08±0.6)%。與對(duì)照組相比,雷帕霉素組細(xì)胞周期處于G0/G1期的細(xì)胞比例升高,且處于S期細(xì)胞和G2/M期的細(xì)胞比例減少(P < 0.05, P < 0.001),提示雷帕霉素可以阻止MDA-MB-231由G1期進(jìn)入S期,造成G1期阻滯。見(jiàn)圖4。
五、雷帕霉素對(duì)MDA-MB-231的ATP和乳酸的影響
使用雷帕霉素10 μmoL/L處理細(xì)胞,48 h后取上清測(cè)乳酸含量,于細(xì)胞中提取ATP檢測(cè)其含量。結(jié)果顯示,雷帕霉素組的ATP含量上升,乳酸的釋放量下降(P均 < 0.001)。見(jiàn)圖5。
討論
本研究顯示,使用雷帕霉素處理MDA-MB-231 48 h后其p-mTOR下降,提示雷帕霉素抑制了磷酸化mTOR的活化。雷帕霉素作為一種mTOR抑制劑,可以通過(guò)與細(xì)胞內(nèi)受體FK506結(jié)合蛋白12(FKBP12)結(jié)合抑制mTOR的活性,從而發(fā)揮抗腫瘤作用[8]。在本研究中,雷帕霉素抑制乳腺癌細(xì)胞的增殖呈劑量和時(shí)間依賴性,在48 h時(shí)、10 μmoL/L濃度條件下細(xì)胞增殖率下降,細(xì)胞抑制率接近IC50,并且雷帕霉素造成了G1期阻滯,這與Ozates等[9]的結(jié)果一致。這提示雷帕霉素可以通過(guò)抑制腫瘤細(xì)胞的增殖分化來(lái)發(fā)揮抗腫瘤作用。
腫瘤細(xì)胞生存和增殖離不開(kāi)能量,糖酵解是腫瘤細(xì)胞能量代謝的主要方式[10]。給予雷帕霉素之后的MDA-MB-231生成的ATP上升、乳酸下降,因此推斷雷帕霉素改變了MDA-MB-231的呼吸方式,使其更多地采用氧化磷酸化的呼吸方式進(jìn)行供能。
TRAP1是HSP90的線粒體同源物,現(xiàn)已被證實(shí)在腫瘤細(xì)胞的線粒體內(nèi)膜上廣泛表達(dá)[11-12]。Zhang等[13]證實(shí)TRAP1的過(guò)度表達(dá)顯著增加了它們對(duì)葡萄糖氧化酶的氧化應(yīng)激的抵抗力,促進(jìn)了Warburg效應(yīng),而敲除TRAP1能夠下調(diào)線粒體有氧呼吸,使細(xì)胞對(duì)致命刺激敏感,并抑制腫瘤發(fā)生;Agorreta等[14]下調(diào)TRAP1發(fā)現(xiàn)其降低了細(xì)胞增殖和存活能力,誘導(dǎo)細(xì)胞凋亡,并損害了線粒體功能。本研究提示雷帕霉素能抑制TRAP1的表達(dá),減緩線粒體功能的失調(diào)水平,腫瘤細(xì)胞的糖酵解水平被削弱。而ATP上升,乳酸下降,則抑制了MDA-MB-231的Warburg效應(yīng),促使乳腺癌細(xì)胞增殖水平下降[15-17]。
綜上所述,雷帕霉素可以通過(guò)抑制磷酸化mTOR的活化來(lái)降低TRAP1的表達(dá),進(jìn)而影響MDA-MB-231的ATP生成量和乳酸釋放量,從而抑制乳腺癌細(xì)胞的有氧糖酵解,降低細(xì)胞的增殖活性,這為雷帕霉素治療乳腺癌提供了新的理論依據(jù)。
參 考 文 獻(xiàn)
[1] 溫曉燕, 張維東. 乳腺癌癌前病變的病理學(xué)研究進(jìn)展. 實(shí)用癌癥雜志, 2006, 21(4): 437-439.
[2] 張密, 董倩. 三陰性乳腺癌免疫治療的研究進(jìn)展. 中國(guó)腫瘤, 2020, 29(8): 614-620.
[3] Rad E, Murray J T, Tee A R. Oncogenic signalling through mechanistic target of rapamycin (mTOR): a driver of metabolic transformation and cancer progression. Cancers, 2018, 10(1): 5.
[4] Lamming D W, Ye L, Katajisto P, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science, 2012, 335(6076): 1638-1643.
[5] 馬琳, 付廷飛, 劉香錕, 等. 雷帕霉素對(duì)帕金森病小鼠模型線粒體呼吸功能及跨膜電位的影響. 腦與神經(jīng)疾病雜志, 2017, 25(4): 212-215.
[6] Schieke S M, Phillips D, McCoy J P, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem, 2006, 281(37): 27643-27652.
[7] Yoshida S, Tsutsumi S, Muhlebach G, et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci USA, 2013, 110(17): E1604-E1612.
[8] Zoncu R, Efeyan A, Sabatini D M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol, 2011, 12(1): 21-35.
[9] Ozates N P, So?utlu F, Lermioglu Erciyas F, et al. Effects of rapamycin and AZD3463 combination on apoptosis, autophagy, and cell cycle for resistance control in breast cancer. Life Sci, 2021, 264: 118643.
[10] Yecies J L, Manning B D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res, 2011, 71(8): 2815-2820.
[11] Sciacovelli M, Guzzo G, Morello V, et al. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab, 2013, 17(6): 988-999.
[12] Kang B H. TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors. BMB Rep, 2012, 45(1): 1-6.
[13] Zhang B, Wang J, Huang Z, et al. Aberrantly upregulated TRAP1 is required for tumorigenesis of breast cancer. Oncotarget, 2015, 6(42): 44495-44508.
[14] Agorreta J, Hu J, Liu D, et al. TRAP1 regulates proliferation, mitochondrial function, and has prognostic significance in NSCLC. Mol Cancer Res, 2014, 12(5): 660-669.
[15] Liberti M V, Locasale J W. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci, 2016, 41(3): 211-218.
[16] 代新珍, 米賢軍, 鐘守軍, 等. 浸潤(rùn)性乳腺癌中FosB的表達(dá)與超聲征象及臨床病理的相關(guān)性. 中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2020, 41(1): 135-142.
[17] 陳進(jìn), 胡美雪, 權(quán)毅. 基于SEER數(shù)據(jù)庫(kù)傾向評(píng)分匹配分析術(shù)后治療方案對(duì)70歲以上三陰性乳腺癌患者的生存影響. 遵義醫(yī)科大學(xué)學(xué)報(bào), 2023, 46(3): 296-306.
(收稿日期:2022-11-04)
(本文編輯:洪悅民)