肖峰 竇崢
摘要 無(wú)人艇通常以編隊(duì)協(xié)同的方式進(jìn)行作業(yè),并通過(guò)自組網(wǎng)進(jìn)行數(shù)據(jù)交換.因海浪等因素影響,海上自組網(wǎng)的信道傳輸損耗通常處于動(dòng)態(tài)變化中,現(xiàn)有MAC協(xié)議的退避算法在動(dòng)態(tài)海上環(huán)境下無(wú)法區(qū)分分組碰撞和分組丟失,會(huì)出現(xiàn)可靠性和穩(wěn)定性下降的問(wèn)題.為此,本文提出一種基于信道監(jiān)聽(tīng)的自適應(yīng)最小競(jìng)爭(zhēng)窗口退避算法,該算法通過(guò)感知鄰近競(jìng)爭(zhēng)節(jié)點(diǎn)數(shù)目來(lái)估計(jì)信道狀態(tài),降低信道沖突概率和重傳次數(shù),提升了網(wǎng)絡(luò)整體的可靠性和穩(wěn)定性.仿真結(jié)果表明,與經(jīng)典BEB算法相比,改進(jìn)算法的吞吐量和公平性分別最大提高28.67%和62.00%,端到端延時(shí)和丟包率分別最大降低2.84%和15.10%.關(guān)鍵詞 退避算法;海上通信;自組網(wǎng);信道監(jiān)聽(tīng);自適應(yīng);最小競(jìng)爭(zhēng)窗口
中圖分類(lèi)號(hào)TN929.5
文獻(xiàn)標(biāo)志碼A
0 引言
海上自組網(wǎng)是海上通信網(wǎng)絡(luò)的一種組網(wǎng)形式.由于海面環(huán)境復(fù)雜、海面粗糙度多變以及天氣頻繁變化等因素[1-2],海上通信網(wǎng)絡(luò)經(jīng)常發(fā)生分組丟失和傳輸中斷[3-4].因此,如何提升海上自組網(wǎng)的穩(wěn)定性和可靠性成為了一個(gè)不可忽視的問(wèn)題.
在無(wú)線(xiàn)自組網(wǎng)中,媒體接入控制(Medium Access Control,MAC)層與網(wǎng)絡(luò)傳輸?shù)姆€(wěn)定性和可靠性直接相關(guān).與現(xiàn)有的無(wú)線(xiàn)移動(dòng)自組網(wǎng)一樣,海上無(wú)線(xiàn)自組網(wǎng)的MAC層面臨的主要挑戰(zhàn)之一就是退避算法.作為協(xié)議體系中較為底層的算法,退避算法為網(wǎng)絡(luò)中的所有節(jié)點(diǎn)提供可靠的信道接入時(shí)機(jī),在保證和平衡節(jié)點(diǎn)的數(shù)據(jù)傳輸速率、端到端時(shí)延、分組成功率和公平性上起到了至關(guān)重要的作用.但與現(xiàn)有無(wú)線(xiàn)自組網(wǎng)不同的是,海上無(wú)線(xiàn)自組網(wǎng)MAC層的退避算法必須能夠抵抗多樣的海上信道干擾和隨機(jī)變化的傳輸損耗對(duì)于網(wǎng)絡(luò)性能的影響[5-6].因此,對(duì)于海上自組網(wǎng)的MAC協(xié)議退避算法的研究是非常必要的.
針對(duì)海上自組網(wǎng)的MAC協(xié)議退避算法的研究進(jìn)展緩慢,現(xiàn)有的海上網(wǎng)絡(luò)依舊使用無(wú)線(xiàn)移動(dòng)自組網(wǎng)的退避算法.其中最為經(jīng)典的是二進(jìn)制指數(shù)退避(Binary Exponential Backoff,BEB)[7]算法,其對(duì)于競(jìng)爭(zhēng)窗口的調(diào)整方法是指數(shù)增加、定值縮小.因BEB算法存在節(jié)點(diǎn)競(jìng)爭(zhēng)不公平和吞吐量受限等缺陷,所以提出改進(jìn)的退避算法[8-9],大致可以分為兩種類(lèi)型:基于競(jìng)爭(zhēng)窗口變化方式的退避算法和基于網(wǎng)絡(luò)狀態(tài)估計(jì)的退避算法.
基于競(jìng)爭(zhēng)窗口變化方式的退避算法的設(shè)計(jì)思路是更新競(jìng)爭(zhēng)窗口的變化規(guī)則.目前大多改進(jìn)算法屬于這一類(lèi),例如,旨在提升網(wǎng)絡(luò)收斂速度的指數(shù)增加指數(shù)減少(Exponential Increase Exponential Decrease,EIED)[10]的退避算法和能夠兼顧所有負(fù)載情況下網(wǎng)絡(luò)性能要求的乘性增加、乘性/線(xiàn)性減少(Multiplicative Increase Multiplicate/ Linear Decrease,MIMLD)[11]的退避算法等.這些算法機(jī)制簡(jiǎn)單,沒(méi)有額外開(kāi)銷(xiāo),但是由于其僅通過(guò)信道競(jìng)爭(zhēng)調(diào)整退避窗口,無(wú)法區(qū)分分組碰撞和丟失,且窗口變化的參數(shù)固定,無(wú)法針對(duì)海上動(dòng)態(tài)信道環(huán)境進(jìn)行自適應(yīng)調(diào)整,其網(wǎng)絡(luò)性能仍存在很大的提升空間.
基于網(wǎng)絡(luò)狀態(tài)估計(jì)的退避算法的設(shè)計(jì)思路是讓節(jié)點(diǎn)通過(guò)信道信息估測(cè)網(wǎng)絡(luò)負(fù)載變化,對(duì)窗口變化因子進(jìn)行自適應(yīng)調(diào)整.例如,基于碰撞的自適應(yīng)退避算法(Collision-Aware Backoff Mechanism,CABM)[12]通過(guò)統(tǒng)計(jì)固定周期內(nèi)的發(fā)送失敗次數(shù)和發(fā)送總數(shù)來(lái)計(jì)算自己的碰撞概率,進(jìn)而調(diào)整自身競(jìng)爭(zhēng)窗口變化策略.該類(lèi)算法相較于基于競(jìng)爭(zhēng)窗口變化方式的算法,其理論性能更加優(yōu)秀.但由于需要一定時(shí)間和周期采集計(jì)算網(wǎng)絡(luò)信息,該類(lèi)算法收斂速度更慢,且會(huì)誤判海上信道的分組丟失為分組碰撞,錯(cuò)誤估計(jì)網(wǎng)絡(luò)負(fù)載狀態(tài),造成節(jié)點(diǎn)出現(xiàn)不必要的等待,導(dǎo)致網(wǎng)絡(luò)延遲增加,所以該類(lèi)算法對(duì)變化迅速的海上環(huán)境適應(yīng)性較差.
為了解決當(dāng)前自組網(wǎng)退避算法在海上信道性能表現(xiàn)不佳的問(wèn)題,本文提出一種新的MAC的退避算法,為海上無(wú)人艇節(jié)點(diǎn)間提供可靠通信傳輸,其設(shè)計(jì)思路是通過(guò)偵聽(tīng)機(jī)制對(duì)鄰近活躍節(jié)點(diǎn)數(shù)目進(jìn)行感知,估計(jì)信道實(shí)際負(fù)載狀態(tài),自適應(yīng)調(diào)整競(jìng)爭(zhēng)窗口,使其能夠在海上組網(wǎng)中保持良好的網(wǎng)絡(luò)性能.
1 系統(tǒng)模型
2 理論建模與ALBI退避算法設(shè)計(jì)由于海洋信道是快速隨機(jī)變化的,無(wú)法迅速適應(yīng)海洋信道的網(wǎng)絡(luò)會(huì)因?yàn)樾诺罌_突和重傳而導(dǎo)致網(wǎng)絡(luò)整體的可靠性和穩(wěn)定性下降.本節(jié)首先利用數(shù)學(xué)建模分析最小沖突概率與鄰居節(jié)點(diǎn)數(shù)目關(guān)系,進(jìn)而得到最佳競(jìng)爭(zhēng)窗口的計(jì)算方法,最后提出基于偵聽(tīng)機(jī)制的對(duì)數(shù)退避算法(Adaptive Logarithm Backoff based on Interception,ALBI).
2.1 自組網(wǎng)MAC層傳輸過(guò)程建模
2.2 基于偵聽(tīng)機(jī)制的對(duì)數(shù)自適應(yīng)退避算法
3 仿真條件與性能分析為了驗(yàn)證基于偵聽(tīng)機(jī)制的自適應(yīng)對(duì)數(shù)退避(ALBI)算法的有效性,本節(jié)利用OMNET++實(shí)現(xiàn)ALBI算法的仿真分析,并將其與其他現(xiàn)有的退避算法進(jìn)行比較.
3.1 仿真場(chǎng)景與參數(shù)設(shè)計(jì)基于OMNET++建立的仿真網(wǎng)絡(luò),場(chǎng)景模型參考圖1,該網(wǎng)絡(luò)是由n個(gè)移動(dòng)節(jié)點(diǎn)(例如船只、艦艇等)組成的單跳網(wǎng)絡(luò),隨機(jī)分布在400 m×300 m的區(qū)域中,節(jié)點(diǎn)的目標(biāo)地址隨機(jī)選擇,仿真參數(shù)如表1所示,網(wǎng)絡(luò)仿真時(shí)間為300 s.
3.2 性能分析本小節(jié)主要將ALBI算法與傳統(tǒng)BEB[7]、EIED[10]、MIMLD[11]和CABM[12]算法進(jìn)行比較分析,分別從網(wǎng)絡(luò)歸一化吞吐量、公平性、端到端時(shí)延和丟包率4個(gè)指標(biāo)來(lái)評(píng)估算法性能.
通過(guò)對(duì)比網(wǎng)絡(luò)中不同競(jìng)爭(zhēng)節(jié)點(diǎn)數(shù)目的情況,本文得到幾種退避算法的性能比較,如圖3—6所示.
從圖3可以看出:退避算法的網(wǎng)絡(luò)整體吞吐量在16個(gè)競(jìng)爭(zhēng)節(jié)點(diǎn)時(shí)到達(dá)峰值,此時(shí)網(wǎng)絡(luò)負(fù)載飽和,之后增加的競(jìng)爭(zhēng)節(jié)點(diǎn)會(huì)對(duì)吞吐量產(chǎn)生負(fù)面收益,其中CABM、EIED和BEB算法都隨著網(wǎng)絡(luò)節(jié)點(diǎn)數(shù)目的增加產(chǎn)生了明顯的下降趨勢(shì),而MIMLD算法只是略有下降,基本保持穩(wěn)定;ALBI算法吞吐量性能最好,在網(wǎng)絡(luò)負(fù)載最大、節(jié)點(diǎn)數(shù)目最多時(shí),ALBI算法相比MIMLD、EIED、BEB和CABM算法吞吐量分別提高4.5%、13.72%、28.67%和52.89%.從圖4可以看出:所有算法的公平性指標(biāo)在網(wǎng)絡(luò)競(jìng)爭(zhēng)不激烈時(shí)都處于最佳狀態(tài),隨著網(wǎng)絡(luò)中競(jìng)爭(zhēng)節(jié)點(diǎn)的增多,公平性指標(biāo)因?yàn)榫W(wǎng)絡(luò)負(fù)載的增大而降低,其中EIED、CABM和BEB算法的公平性在高負(fù)載下急劇下降,MIMLD算法公平性指標(biāo)在高負(fù)載下略有下降,而ALBI算法的公平性基本不受影響.在網(wǎng)絡(luò)負(fù)載最大、節(jié)點(diǎn)數(shù)目最多時(shí),ALBI算法相比MIMLD、CABM、BEB和EIED算法公平性分別提高7.82%、44.32%、62.00%和90.40%.
從圖5可以看出,端到端延時(shí)性能隨著節(jié)點(diǎn)數(shù)目的增加而下降,這是因?yàn)楦?jìng)爭(zhēng)節(jié)點(diǎn)數(shù)目的增加導(dǎo)致信道爭(zhēng)用時(shí)碰撞的概率增加,所以傳輸時(shí)延增加.在低負(fù)載時(shí),ALBI算法的延時(shí)性能最佳,隨著節(jié)點(diǎn)數(shù)目增加,網(wǎng)絡(luò)負(fù)載進(jìn)入飽和狀態(tài),ALBI算法的延時(shí)性能逐漸下降,但與其他算法之間依舊存在性能優(yōu)勢(shì);在網(wǎng)絡(luò)負(fù)載最大時(shí),ALBI算法相比于MIMLD、EIED、BEB和CABM算法端到端延時(shí)分別減少1.10%、2.60%、2.84%和4.72%.
從圖6可以看出:CABM算法的丟包率隨著節(jié)點(diǎn)數(shù)目增加,上升很快,其性能甚至劣于傳統(tǒng)的BEB算法;EIED丟包率基本保持穩(wěn)定;ALBI和MIMLD丟包率基本不變,約等于0,但ALBI算法更接近于0.ALBI算法相比于MIMLD、EIED、BEB和CABM算法的丟包率分別減少0.29%、2.06%、15.10%和34.88%.綜上所述,基于碰撞情況估計(jì)信道競(jìng)爭(zhēng)的CABM算法無(wú)法適應(yīng)海上變化的信道環(huán)境,這主要是因?yàn)楹I闲诺赖膫鬏敁p耗隨機(jī)變化,使得節(jié)點(diǎn)傳輸失敗的原因不僅僅是信道爭(zhēng)用失敗,也可能是節(jié)點(diǎn)之間因?yàn)樾诺纻鬏敁p耗過(guò)高無(wú)法通信,但通過(guò)信道碰撞和信道占用情況預(yù)測(cè)下一時(shí)刻信道競(jìng)爭(zhēng)態(tài)勢(shì)的方法無(wú)法區(qū)分二者;同時(shí),由于信道傳輸損耗的隨機(jī)變化,不同時(shí)刻存在信道競(jìng)爭(zhēng)的鄰居節(jié)點(diǎn)數(shù)目也會(huì)隨機(jī)發(fā)生改變,因此基于平均碰撞概率的信道情況分析方法無(wú)法根據(jù)過(guò)去的數(shù)據(jù)準(zhǔn)確預(yù)測(cè)未來(lái)網(wǎng)絡(luò)競(jìng)爭(zhēng)的隨機(jī)性的變化,所以CABM算法經(jīng)常發(fā)生節(jié)點(diǎn)之間的信道碰撞和不必要的信道等待,導(dǎo)致該算法的穩(wěn)定性和可靠性要遠(yuǎn)低于預(yù)期,其性能表現(xiàn)甚至遠(yuǎn)低于傳統(tǒng)的BEB算法.BEB、EIED和MIMLD等靜態(tài)競(jìng)爭(zhēng)窗口調(diào)節(jié)因子的算法在海上自組網(wǎng)中的綜合性能要略?xún)?yōu)于CABM算法,但因?yàn)榇翱谡{(diào)節(jié)因子固定,只能依賴(lài)過(guò)去分組競(jìng)爭(zhēng)的成敗來(lái)調(diào)整現(xiàn)在的競(jìng)爭(zhēng)窗口等缺陷.隨著網(wǎng)絡(luò)節(jié)點(diǎn)數(shù)增加,網(wǎng)絡(luò)負(fù)載增大,使用BEB、EIED和MIMLD等算法的網(wǎng)絡(luò)節(jié)點(diǎn)沖突加劇,其吞吐量、公平性和延時(shí)等性能都存在著不同程度的下降.其中,由于MIMLD算法采用門(mén)限窗口的機(jī)制,對(duì)于高負(fù)載和低負(fù)載網(wǎng)絡(luò)的競(jìng)爭(zhēng)窗口采取不同的變化邏輯,所以其性能表現(xiàn)比較穩(wěn)定,但仍與ALBI算法之間存在性能差距.相比于仿真測(cè)試的其他算法,ALBI算法的性能最為優(yōu)秀.ALBI算法采用偵聽(tīng)機(jī)制和自適應(yīng)競(jìng)爭(zhēng)窗口調(diào)整因子和最佳初始競(jìng)爭(zhēng)窗口的設(shè)計(jì),不再過(guò)分依賴(lài)過(guò)去的信道爭(zhēng)用情況來(lái)調(diào)整競(jìng)爭(zhēng)窗口,而是根據(jù)鄰居節(jié)點(diǎn)數(shù)目來(lái)調(diào)整競(jìng)爭(zhēng)窗口,使得競(jìng)爭(zhēng)窗口維持在一個(gè)動(dòng)態(tài)的合理的數(shù)值.ALBI算法雖然會(huì)略微增加網(wǎng)絡(luò)延時(shí),但避免了因?yàn)榉纸M碰撞而損失過(guò)多的網(wǎng)絡(luò)性能,并且改善了激烈信道競(jìng)爭(zhēng)時(shí)節(jié)點(diǎn)發(fā)送成功后退避時(shí)間太短的缺陷,減少了不必要的信道碰撞和傳輸時(shí)間浪費(fèi),提升了網(wǎng)絡(luò)的公平性.同時(shí),自適應(yīng)競(jìng)爭(zhēng)窗口調(diào)整因子可以促使競(jìng)爭(zhēng)窗口快速收斂,使得網(wǎng)絡(luò)發(fā)生重構(gòu)時(shí),當(dāng)前節(jié)點(diǎn)的競(jìng)爭(zhēng)窗口可以迅速適應(yīng)當(dāng)前網(wǎng)絡(luò)的變化情況.對(duì)比仿真結(jié)果可以得出結(jié)論:ALBI算法是當(dāng)前算法中最適合海上無(wú)線(xiàn)自組網(wǎng)的選擇.4 結(jié)束語(yǔ)本文提出一種高效可靠的海上網(wǎng)絡(luò)的競(jìng)爭(zhēng)式MAC退避算法,該算法通過(guò)偵聽(tīng)機(jī)制來(lái)收集鄰近活躍競(jìng)爭(zhēng)節(jié)點(diǎn)信息,通過(guò)自適應(yīng)競(jìng)爭(zhēng)窗口調(diào)整因子和自適應(yīng)最佳初始競(jìng)爭(zhēng)窗口兩種機(jī)制,提高了網(wǎng)絡(luò)的綜合傳輸性能.OMNET++仿真結(jié)果表明,相較于已有算法,ALBI算法在高負(fù)載的海上網(wǎng)絡(luò)環(huán)境下能夠取得更好的性能.未來(lái)將會(huì)進(jìn)一步研究基于A(yíng)LBI的改進(jìn)方法,在保證公平性的同時(shí)繼續(xù)提高算法的吞吐量、降低延時(shí)和丟包率.
參考文獻(xiàn) References
[1]張瑞杰,彭琳琳,付林罡,等.海上無(wú)人船自組網(wǎng)隨機(jī)接入仿真研究[J].遙測(cè)遙控,2020,41(5):29-35ZHANG Ruijie,PENG Linlin,F(xiàn)U Lingang,et al.Random access technique for unmanned surface vehicle ad-hoc network[J].Journal of Telemetry,Tracking and Command,2020,41(5):29-35
[2] 石堯,李暉,杜文才,等.基于A(yíng)d Hoc移動(dòng)節(jié)點(diǎn)模型的海上DTN建模與性能分析[J].計(jì)算機(jī)工程,2018,44(3):82-86SHI Yao,LI Hui,DU Wencai,et al.Modeling and performance analysis of marine DTN based on ad hoc mobile nodes model[J].Computer Engineering,2018,44(3):82-86
[3] Hosseini-Fahraji A,Zeng K,Yang Y,et al.A self-sustaining maritime mesh network[C]//2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).IEEE,2019:1-2
[4] Yau K L A,Syed A R,Hashim W,et al.Maritime networking:bringing Internet to the sea[J].IEEE Access,2019,7:48236-4825
[5] 李瑞景.海上寬帶無(wú)線(xiàn)自組網(wǎng)多信道MAC協(xié)議研究[D].大連:大連海事大學(xué),2019LI Ruijing.Study on the multi-channel MAC protocol of maritime broadband wireless ad hoc network[D].Dalian:Dalian Maritime University,2019
[6] 張鍵.海上寬帶無(wú)線(xiàn)自組網(wǎng)MAC協(xié)議設(shè)計(jì)與實(shí)現(xiàn)[D].大連:大連海事大學(xué),2019ZHANG Jian.Design and implementation of MAC protocol for maritime broadband wireless ad hoc network[D].Dalian:Dalian Maritime University,2019
[7] 彭璟云.無(wú)線(xiàn)局域網(wǎng)MAC層BEB退避算法研究[D].昆明:昆明理工大學(xué),2018PENG Jingyun.Research on BEB backoff algorithm in MAC layer of WLAN[D].Kunming:Kunming University of Science and Technology,2018
[8] 余小龍.Ad Hoc網(wǎng)絡(luò)MAC層協(xié)議研究及其算法改進(jìn)[D].成都:電子科技大學(xué),2017YU Xiaolong.Research on ad hoc network MAC layer protocol and related algorithm improvement[D].Chengdu:University of Electronic Science and Technology of China,2017
[9] 陸毅.無(wú)人機(jī)集群自組網(wǎng)MAC協(xié)議研究[D].桂林:桂林電子科技大學(xué),2020LU Yi.Research on MAC protocol of UAV cluster ad hoc network[D].Guilin:Guilin University of Electronic Technology,2020
[10] Song N O,Kwak B J,Song J,et al.Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm[C]//The 57th IEEE Semiannual Vehicular Technology Conference.Jeju,Korea (South).IEEE,2003:2775-2778
[11] Pang Q X,Liew S C,Lee J Y B,et al.Performance evaluation of an adaptive backoff scheme for WLAN[J].Wireless Communications and Mobile Computing,2004,4(8):867-879
[12] Chan Y C,Liao M C,Chu C H.A collision-aware backoff mechanism for IEEE 802.11 WLANs[C]//2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.IEEE,2009,3:284-288
[13] Timmins I J,OYoung S.Marine communications channel modeling using the finite-difference time domain method[J].IEEE Transactions on Vehicular Technology,2009,58(6):2626-2637
[14] 沈亮.面向海上無(wú)線(xiàn)通信的信道估計(jì)算法研究與實(shí)現(xiàn)[D].西安:西安電子科技大學(xué),2018
SHEN Liang.Research and implementation of channel estimation algorithms for maritime wireless communication systems[D].Xian:Xidian University,2018
[15] 魏特,王文浩,陳軍,等.環(huán)境信息輔助的海上無(wú)線(xiàn)信道測(cè)量與建模[J].清華大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,61(9):1002-1007WEI Te,WANG Wenhao,CHEN Jun,et al.Environmental information-aided maritime wireless channel measurement and modelling[J].Journal of Tsinghua University(Science and Technology),2021,61(9):1002-1007
[16] 戴德君.有關(guān)海浪波面高度分布的幾個(gè)問(wèn)題[D].青島:中國(guó)海洋大學(xué),2000DAI Dejun.Some problems about the height distribution of sea waves[D].Qingdao:Ocean University of China,2000
[17] Bianchi G.Performance analysis of the IEEE 802.11 distributed coordination function[J].IEEE Journal on Selected Areas in Communications,2000,18(3):535-547
[18] Bianchi G,Tinnirello I.Remarks on IEEE 802.11 DCF performance analysis[J].IEEE Communications Letters,2005,9(8):765-767
MAC protocol backoff algorithm based on interception in maritime ad hoc networks
XIAO Feng DOU Zheng
1College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001
Abstract Unmanned Surface Vehicles (USVs) usually operate in coordinated formation and exchange data through wireless ad hoc networks due to mission requirements,and the channel transmission loss of maritime ad hoc networks is usually in a dynamic state owing to the influence of ocean waves.However,the existing backoff algorithm of MAC protocol in ad hoc networks cannot distinguish between packet collision and packet loss in a dynamic maritime environment,resulting in the decline of reliability and stability.Here,we propose an adaptive minimum contention window backoff algorithm based on channel monitoring.The algorithm estimates the channel state by sensing the number of adjacent contention nodes,reduces the channel collision probability and retransmission times,thus improves the reliability and stability of the network as a whole.Simulation results show that compared with classical BEB algorithm,the proposed backoff algorithm increases the throughput and fairness by 28.67% and 62.00%,respectively,and reduces the end-to-end delay and packet loss rate by 2.84% and 15.10%,respectively.
Key words backoff algorithm;maritime communication;ad hoc network;channel monitoring;adaptive;minimum competition window