王?超,錢?冬,張?琳,丁紅兵
氣液固流化床氣泡特性及氣含率預(yù)測(cè)模型
王?超1, 2,錢?冬1, 2,張?琳1,丁紅兵1, 2
(1. 天津大學(xué)電氣自動(dòng)化與信息工程學(xué)院,天津 300072;2. 天津市過程檢測(cè)與控制重點(diǎn)實(shí)驗(yàn)室,天津 300072)
氣含率及氣泡直徑會(huì)直接影響流化床內(nèi)的反應(yīng)進(jìn)程及傳質(zhì)效率,為更好地認(rèn)識(shí)局部流動(dòng)結(jié)構(gòu),徑向氣含率及氣泡直徑分布成為重點(diǎn)研究?jī)?nèi)容,特別是徑向氣含率預(yù)測(cè)模型的建立具有重要意義.已有平均氣含率預(yù)測(cè)模型都有各自的適用范圍,對(duì)不同實(shí)驗(yàn)體系的應(yīng)用會(huì)表現(xiàn)出局限性.針對(duì)以上問題,本文結(jié)合電導(dǎo)探針測(cè)量法與流體仿真技術(shù),以直徑為100mm和高度為1.5m的氣液固流化床為研究對(duì)象,系統(tǒng)地研究了在氣相表觀速度為0.014~0.283m/s、液相表觀速度為0.007~0.028m/s、液相黏度為1~40mPa·s、液相表面張力為0.053~0.072N/m及固相體積分?jǐn)?shù)為0~30%條件下徑向氣含率及氣泡直徑分布特征.結(jié)合本實(shí)驗(yàn)系統(tǒng)及相關(guān)研究數(shù)據(jù),提出一種適用于氣液固系統(tǒng)的平均氣含率預(yù)測(cè)模型.基于此預(yù)測(cè)模型,進(jìn)一步考慮氣相表觀速度及表面張力對(duì)徑向氣含率分布的影響,采用粒子群優(yōu)化算法建立氣液兩相體系的徑向氣含率預(yù)測(cè)模型.結(jié)果表明:兩相及三相體系平均氣含率預(yù)測(cè)模型充分考慮了氣液相表觀速度、液相物性、固相物性及管徑對(duì)平均氣含率的影響,相比現(xiàn)有經(jīng)典平均氣含率預(yù)測(cè)模型,拓寬了適用范圍并提高預(yù)測(cè)精度,其平均絕對(duì)百分比誤差(mean absolute percentage error,MAPE)分別為17.14%和18.36%,超出90%數(shù)據(jù)點(diǎn)的相對(duì)誤差在±30%之內(nèi).徑向氣含率預(yù)測(cè)模型對(duì)靠近管道中心處的氣含率預(yù)測(cè)更加準(zhǔn)確,其MAPE可達(dá)到12.26%.以上預(yù)測(cè)模型的建立對(duì)理解管內(nèi)全局及局部傳質(zhì)問題、流化床反應(yīng)器設(shè)計(jì)都具有指導(dǎo)意義.
氣液固流化床;徑向氣含率;徑向氣泡直徑;氣含率預(yù)測(cè)模型
在科學(xué)技術(shù)飛速發(fā)展的過程中,氣液兩相流和氣液固多相流在越來越多的領(lǐng)域里占據(jù)著重要地位.流化床作為一種多相流系統(tǒng),具備構(gòu)造簡(jiǎn)單、操作便捷等優(yōu)勢(shì),被廣泛應(yīng)用于化工、制藥、石油等領(lǐng)域[1-4].流化床中通常采用小顆粒來增加兩相之間的接觸面積,從而提高熱穩(wěn)定性和傳熱傳質(zhì)效率[5].流化床反應(yīng)器一直是一個(gè)主要的研究對(duì)象,但由于相關(guān)流體動(dòng)力學(xué)對(duì)流體物理特性、操作條件和幾何設(shè)置非常敏感,其設(shè)計(jì)、放大和預(yù)測(cè)仍是具有挑戰(zhàn)性的問題,因此需要進(jìn)一步研究.
氣含率和氣泡直徑是流化床的重要設(shè)計(jì)參數(shù),能夠直接反映流化床體系內(nèi)的流動(dòng)特性,同時(shí)也是表征氣液相界面積的關(guān)鍵參數(shù),可直接影響流化床內(nèi)部的傳質(zhì)效率[6].隨著實(shí)際生產(chǎn)過程中需求的提高及測(cè)量技術(shù)的迅猛發(fā)展,徑向氣含率及氣泡直徑分布受到越來越多的關(guān)注,獲取氣含率及氣泡直徑的局部信息有助于更好地理解流化床的內(nèi)部流動(dòng)結(jié)構(gòu).王祖恒[7]采用電導(dǎo)探針對(duì)旋轉(zhuǎn)曝氣器中徑向及軸向氣含率的分布進(jìn)行研究,考察體系內(nèi)的充氧均勻性.盧霞[8]采用粒子圖像測(cè)速和數(shù)值模擬方法研究外環(huán)流氨化反應(yīng)器的徑向氣含率及氣泡直徑分布,通過分析氣液傳質(zhì)面積和效率來指導(dǎo)反應(yīng)器的設(shè)計(jì).但在不同反應(yīng)器內(nèi)及不同操作條件下,徑向氣含率和氣泡直徑并不呈現(xiàn)統(tǒng)一的分布狀態(tài).Ohnuki等[9]通過改變氣速和液速對(duì)DN200的實(shí)驗(yàn)管道進(jìn)行研究,表明氣含率在徑向方向上呈現(xiàn)兩種常見狀態(tài),即邊壁峰與中心峰.Tomiyama等[10]對(duì)氣含率分布的機(jī)理進(jìn)行分析,發(fā)現(xiàn)其可能出現(xiàn)邊壁雙峰形式.Raimundo等[11]對(duì)不同氣泡柱尺寸下的氣泡特性進(jìn)行實(shí)驗(yàn)研究,發(fā)現(xiàn)在不同氣速下徑向氣含率與氣泡直徑呈現(xiàn)中心峰狀態(tài).艾濤等[12]對(duì)氣液并流上流式反應(yīng)器研究發(fā)現(xiàn),氣泡直徑沿徑向先增大后減?。緦?shí)驗(yàn)系統(tǒng)屬于共流向上氣液固流化床,增加徑向氣含率及氣泡直徑分布的規(guī)律分析,可為今后研究提供一定的數(shù)據(jù)基礎(chǔ),對(duì)該類反應(yīng)器的設(shè)計(jì)具有指導(dǎo)意義.
由于氣含率及氣泡直徑受多參數(shù)影響,因此在不同實(shí)驗(yàn)體系條件下并沒有完全統(tǒng)一的規(guī)律來對(duì)其進(jìn)行描述.嚴(yán)鵬[13]采用CFD-PBM耦合模型與電阻層析成像技術(shù)對(duì)不同表面張力及黏度條件下氣泡柱中的氣泡特性展開研究,黏度和表面張力的增加有利于氣泡的聚集匯并,形成大氣泡,氣含率降低.Orlando等[14]采用實(shí)驗(yàn)測(cè)量的方法展開研究,結(jié)果表明表面活性劑降低表面張力后,氣泡直徑減小但氣含率增加,同時(shí)氣速促進(jìn)氣含率升高.周秀紅[6]采用CFD-PBM耦合模型和浸入式在線多相測(cè)量?jī)x對(duì)氣液固循環(huán)流化床內(nèi)操作條件及液相性質(zhì)對(duì)流體動(dòng)力學(xué)參數(shù)的影響展開研究.綜上,目前對(duì)固相體積分?jǐn)?shù)影響氣含率及氣泡直徑的研究較少,實(shí)驗(yàn)測(cè)量結(jié)合數(shù)值模擬方法可更好地對(duì)多相流展開研究[15].
氣含率的變化趨勢(shì)和變化程度在不同因素的影響下具有差異性,為更好地理解管內(nèi)局部流動(dòng)狀態(tài)、液體混合及傳質(zhì)傳熱,建立徑向氣含率預(yù)測(cè)模型是一種重要途徑,平均氣含率的準(zhǔn)確預(yù)測(cè)是上述模型建立的基礎(chǔ).王麗軍等[16]全面考慮了氣速、管徑、液相物性等參數(shù)影響,并且將參數(shù)無量綱化,給出了氣液固漿態(tài)床的平均氣含率預(yù)測(cè)模型,但模型主要針對(duì)高氣速數(shù)據(jù)進(jìn)行回歸,對(duì)0.13m/s以下的小氣速數(shù)據(jù)表現(xiàn)出不適應(yīng)性,同時(shí)未考慮固體粒徑及密度對(duì)氣含率的影響.李蔚玲[17]考察了顆粒及液相物性對(duì)平均氣含率的影響,基于無量綱參數(shù)建立了平均氣含率預(yù)測(cè)模型,但模型未考慮液相表面張力的影響,且將固相體積分?jǐn)?shù)直接引入模型中,致使模型不適用于固體為0的極端情況,應(yīng)用具有局限性.G?tz等[18]考慮氣相、液相及固相多種因素建立了平均氣含率預(yù)測(cè)模型,但只適用于氣速小于0.1m/s的情況,使用范圍具有局限性.Islam等[19]對(duì)氣液固系統(tǒng)建立氣含率預(yù)測(cè)模型,但未考慮固相體積分?jǐn)?shù)對(duì)氣含率的影響,引入的無量綱參數(shù)中包含了基于氣泡直徑的雷諾數(shù)b,然而在實(shí)際情況下,對(duì)氣含率進(jìn)行預(yù)測(cè)時(shí)很難清楚各條件的氣泡直徑,因此模型不易推廣且應(yīng)用受限.以往的研究中,在構(gòu)建平均氣含率預(yù)測(cè)模型時(shí),由于參數(shù)考慮得不夠全面,參數(shù)適應(yīng)范圍較小或具有針對(duì)性,或選擇的無量綱參數(shù)具有特殊性致使模型應(yīng)用受到限制.
不均勻的徑向氣含率分布是管內(nèi)多種流動(dòng)機(jī)制相互作用的結(jié)果.使用純經(jīng)驗(yàn)的數(shù)學(xué)式歸納氣含率的徑向分布具有難度且模型的應(yīng)用容易受到限制.曹長(zhǎng)青[20]和Wu等[21]發(fā)現(xiàn)徑向氣含率分布可用二次曲線來表示并考慮操作條件、液相物性等參數(shù)的影響建立徑向氣含率預(yù)測(cè)模型,但前者直接將氣速、黏度等參數(shù)引入模型,致使模型參數(shù)過多且不易推廣,后者選用無量綱量表征各參數(shù)的影響,但回歸所用數(shù)據(jù)基本為純水體系內(nèi)的局部氣含率.
針對(duì)上述問題,本文結(jié)合電導(dǎo)探針測(cè)量技術(shù)與CFD-PBM耦合模型,考慮氣相表觀速度、液相黏度及表面張力和固相體積分?jǐn)?shù),對(duì)氣液固三相流化床系統(tǒng)的徑向氣含率及氣泡直徑分布規(guī)律展開研究.結(jié)合本實(shí)驗(yàn)系統(tǒng)和相關(guān)文獻(xiàn)[22-30]的平均氣含率數(shù)據(jù),提出新的平均氣含率預(yù)測(cè)模型,該模型考慮參數(shù)較全面且適用范圍較廣,并與經(jīng)典預(yù)測(cè)模型進(jìn)行比較分析,在一定參數(shù)范圍內(nèi)表現(xiàn)出更好的預(yù)測(cè)效果.以上述模型為基礎(chǔ),考慮氣速及表面張力進(jìn)一步建立了無量綱化的徑向氣含率預(yù)測(cè)模型.
構(gòu)建三相流動(dòng)模型(歐拉-歐拉-歐拉模型),液相被視為連續(xù)相,氣相和固相被視為離散相,利用顆粒動(dòng)理學(xué)模型對(duì)分散的固體壓力和黏度進(jìn)行建模.歐拉模型需要相間作用力來進(jìn)行封閉,其中最重要的為曳力模型和升力模型[31].氣液、氣固及液固間曳力模型選擇為Tomiyama(PBM-customized)模型、Schiller-Naumann(PBM-customized)模型及Schiller-Naumann (PBM-customized)模型.氣液和液固之間升力選擇為Tomiyama模型和Moraga模型.其中質(zhì)量守恒方程為
式中:下標(biāo)代表氣相(g)、液相(l)及固相(s);、和分別表示各項(xiàng)的體積分?jǐn)?shù)、密度和速度.
動(dòng)量守恒方程為
式中:下標(biāo)代表氣相(g)或液相(l);等號(hào)右邊分別為壓力梯度、應(yīng)力、重力和氣液間動(dòng)量交換作用力.
式中:下標(biāo)s代表固相;等號(hào)右邊分別為壓力梯度、由于顆粒碰撞的附加壓力、應(yīng)力、重力、氣相或液相與固相間動(dòng)量交換作用力.
群體平衡模型(population balance model,PBM)在空間和時(shí)間上描述了氣泡的聚并和破碎現(xiàn)象,是描述反應(yīng)器中氣泡或顆粒大小分布的一種方法.本文選用被廣泛使用的Luo聚并模型[32],該模型將氣泡合并分為氣泡與氣泡碰撞、碰撞時(shí)兩氣泡的速度能否引起氣泡合并兩部分.Zhou等[31]通過對(duì)比Luo和Lehr分別提出的破碎模型,表明Lehr修正后的模型對(duì)于流化床內(nèi)流動(dòng)更為適用,本文選用Lehr模型作為破碎模型.PBM模型的基本守恒方程為
采用非穩(wěn)態(tài)分離求解器對(duì)模型方程進(jìn)行求解.液相設(shè)置為主相,氣相和固相為次相.氣相和液相從反應(yīng)器底部進(jìn)入,以速度入口作為入口邊界條件,分別給定了氣體和液體的初始入口速度,對(duì)加入的固相體積分?jǐn)?shù)進(jìn)行初始化設(shè)置.出口處設(shè)為壓力出口條件,邊壁處設(shè)為無滑移邊界.在PBM模型中,通過離散求解方法將氣泡尺寸分為16段,定義氣泡最小直徑為2mm,氣泡增長(zhǎng)比例V+1/V=1.26,氣泡最大直徑為64mm,包含實(shí)驗(yàn)中氣泡尺寸范圍,進(jìn)入床層的所有氣泡初始直徑為位于第9段的8mm.
大量實(shí)驗(yàn)[20,33]表明流化床的時(shí)均流體力學(xué)行為是平穩(wěn)的和軸對(duì)稱的,不同研究人員[34-35]比較了二維和三維模擬,發(fā)現(xiàn)三維瞬態(tài)模擬的時(shí)間平均結(jié)果與二維軸對(duì)稱穩(wěn)態(tài)模擬相似.為節(jié)省計(jì)算資源,采用二維模擬方法,劃分網(wǎng)格尺寸且邊界進(jìn)行加密處理,考慮網(wǎng)格精度選擇合適的網(wǎng)格數(shù)量進(jìn)行模擬,其他仿真設(shè)置如表1所示.
表1?其他仿真設(shè)置
Tab.1?Other simulation settings
如圖1所示,氣液固三相流化床裝置的管道內(nèi)徑為100mm,床高為1500mm,裝置主要分為供水系統(tǒng)、供氣系統(tǒng)和反應(yīng)器系統(tǒng)3個(gè)部分.實(shí)驗(yàn)中的氣相和液相分別為空氣和水,固相為平均粒徑p=250μm和密度p=3500kg/m3的氧化鋁.氣相及液相流量范圍分別為0~10m3/h和100~1000L/h,待分布器均勻分布后進(jìn)入實(shí)驗(yàn)段,固相在實(shí)驗(yàn)開始之初從反應(yīng)器上端加入到管段中.出口處氣相經(jīng)氣液分離后自由逸出,液相由循環(huán)回路返回到循環(huán)水槽中,固體顆粒在液體和氣體作用下呈現(xiàn)流化狀態(tài),最后自動(dòng)沉降到流化區(qū).
圖1?氣液固三相流化床實(shí)驗(yàn)裝置
實(shí)驗(yàn)采用七通道雙頭電導(dǎo)探針陣列對(duì)流化床內(nèi)部徑向氣含率及氣泡直徑進(jìn)行測(cè)量,每組探頭到管道中心距離與管道半徑的比值()從左到右分別為-0.75、-0.50、-0.25、0、0.25、0.50和0.75,采樣時(shí)間為100s,采樣頻率為15kHz,將電導(dǎo)探針陣列安裝于高875mm處,在充分發(fā)展區(qū)系統(tǒng)流動(dòng)特征較為穩(wěn)定,高度對(duì)流動(dòng)狀態(tài)影響不大[39],傳感器布局如圖2所示.
圖2?傳感器布局
電導(dǎo)探針測(cè)量原理是基于探針處于不同介質(zhì)中的電導(dǎo)率差異來對(duì)不同相進(jìn)行區(qū)分,進(jìn)而獲得氣含率等參數(shù).選用自調(diào)整雙閾值算法對(duì)信號(hào)進(jìn)行處理,輸出信號(hào)如圖3所示.
圖3?傳感器輸出信號(hào)
采樣時(shí)間內(nèi)低電平所占時(shí)間百分比表示此處氣含率,即
采用相關(guān)測(cè)速法對(duì)上下游信號(hào)進(jìn)行處理,得到氣泡平均速度b,結(jié)合氣泡經(jīng)過探針的時(shí)間間隔(2f-1f)得到氣泡直徑b.在多氣泡體系中,一般采用Sauter平均直徑(32)作為氣泡的平均尺寸,即
式中:bi為第個(gè)氣泡的直徑;n為直徑為bi的氣泡個(gè)數(shù).
在氣液固三相流動(dòng)體系中,徑向氣含率的實(shí)驗(yàn)及數(shù)值模擬結(jié)果如圖4所示.在液相表觀速度l為0.014m/s、氣相表觀速度g為0.021~0.142m/s、固相體積分?jǐn)?shù)V為10%條件下,該模型的數(shù)值模擬結(jié)果與實(shí)驗(yàn)數(shù)據(jù)趨勢(shì)一致且數(shù)值吻合,表明該模型能夠較好地描述和預(yù)測(cè)氣液固三相流化體系.
圖4 氣液固三相流動(dòng)體系徑向氣含率實(shí)驗(yàn)與仿真結(jié)果對(duì)比(u1=0.014m/s,CV=10%)
不同氣相表觀速度g、液相黏度l及表面張力l、固相體積分?jǐn)?shù)V對(duì)徑向氣含率分布特性的影響如圖5所示,氣含率在徑向方向上呈現(xiàn)中心峰狀態(tài)和不均勻結(jié)構(gòu).由圖5(a)可知,在氣相表觀速度增加過程中,整體氣含率增加,中心位置處模擬得到的氣含率由6.30%逐漸增加到44.27%,同時(shí)徑向氣含率分布曲線逐漸陡峭.由圖5(b)和(c)可知,氣含率與液相黏度及表面張力的變化呈現(xiàn)負(fù)相關(guān)關(guān)系.伴隨表面張力增大,大氣泡占據(jù)主要地位,其上升過程中速度普遍高于小氣泡,因此大氣泡停滯在某一位置的時(shí)間較短致使氣含率降低.當(dāng)固相加入后,隨著固相體積分?jǐn)?shù)增加,由于顆粒相的阻礙作用,氣含率呈現(xiàn)下降趨勢(shì).由氣液兩相向氣液固三相轉(zhuǎn)變時(shí),氣含率降低趨勢(shì)較為明顯,如圖5(d)所示.
圖6所示為不同氣相表觀速度g、液相黏度l及表面張力l、固相體積分?jǐn)?shù)V對(duì)徑向氣泡直徑分布特性的影響,氣泡直徑沿徑向呈現(xiàn)減小趨勢(shì).由圖6(a)結(jié)果可知,隨著g的增加,氣泡直徑32隨之變大,中心位置處的模擬氣泡直徑由3.85mm增加到6.74mm.較大氣相表觀速度會(huì)提高氣泡之間聚并的概率,促使大氣泡產(chǎn)生.此外,氣泡直徑在靠近管道中間部分的徑向減小趨勢(shì)緩慢,到=0.7~0.9位置處開始出現(xiàn)顯著的降低趨勢(shì),這表明在管道中間基本上以較大的氣泡形式存在.圖6中實(shí)驗(yàn)與仿真的對(duì)比結(jié)果顯示,該數(shù)值模型對(duì)徑向氣泡直徑分布表現(xiàn)出了較好的預(yù)測(cè)性.
圖5?徑向氣含率的分布特性
圖6(b)和(c)結(jié)果表明,氣泡直徑與液相黏度及表面張力呈正相關(guān)關(guān)系.黏度及表面張力增加時(shí),氣泡的聚并概率加大,氣泡更容易匯聚形成大氣泡.隨著固相含量增加,徑向氣泡直徑呈現(xiàn)整體的增大趨勢(shì).這是由于固體顆粒能夠促進(jìn)氣泡聚并,固相含量越高,氣泡的聚并現(xiàn)象越明顯,整體呈現(xiàn)中心區(qū)域的氣泡直徑大于邊壁區(qū)域的現(xiàn)象,結(jié)果如圖6(d)所示.
圖6?徑向氣泡直徑的分布特性
對(duì)氣液或氣液固體系中的平均氣含率預(yù)測(cè)已有不少研究,但存在選用參數(shù)不全面或使用范圍較窄等問題,本文選用當(dāng)前實(shí)驗(yàn)系統(tǒng)及相關(guān)文獻(xiàn)中的平均氣含率數(shù)據(jù),如表2所示,構(gòu)建多參數(shù)較廣范圍的數(shù)據(jù)集.基于無量綱分析提出一種新的氣液兩相平均氣含率預(yù)測(cè)模型,并以此為基本模型,考慮固相性質(zhì)等參數(shù)提出新的氣液固三相平均氣含率預(yù)測(cè)模型,為徑向氣含率預(yù)測(cè)模型的建立打下基礎(chǔ).發(fā)展的預(yù)測(cè)模型適用于大氣壓環(huán)境,所用參數(shù)范圍:氣相表觀速度g為0.01~0.45m/s、液相表觀速度l為0~0.028m/s、液相黏度l為1~40mPa·s、液相表面張力l為0.027~0.073N/m、固體密度p為2440~3500kg/m3、固體粒徑p為35~250μm、固相體積分?jǐn)?shù)V為0~35%、管徑為80~280mm.
本文分析了徑向氣含率隨參數(shù)改變時(shí)的變化規(guī)律,基于徑向氣含率可以計(jì)算得到截面平均氣含率為
4.1.1?氣液兩相系統(tǒng)
對(duì)氣液兩相體系,全面考慮氣相及液相表觀速度、液相黏度及表面張力、管道內(nèi)徑對(duì)平均氣含率的影響,構(gòu)建平均氣含率預(yù)測(cè)模型.
采用修正氣相弗勞德數(shù)g代表氣相表觀速度及管道內(nèi)徑的影響,氣相表觀速度是影響氣含率的一個(gè)重要因素,管道內(nèi)徑大于0.15m時(shí),平均氣含率幾乎不受影響,采用特征長(zhǎng)度c來表征不同管徑的影響對(duì)g進(jìn)行修正[19],即
其中
式中l(wèi)為液體密度.
表2?預(yù)測(cè)模型的數(shù)據(jù)集
Tab.2?Datasets of the prediction model
綜上,平均氣含率預(yù)測(cè)模型的參數(shù)化表達(dá)為
選用表2所示數(shù)據(jù)集中氣液兩相體系對(duì)應(yīng)的237個(gè)平均氣含率數(shù)據(jù)點(diǎn),采用最小二乘法對(duì)式(11)進(jìn)行非線性回歸分析,得到的模型參數(shù)為1=0.8075,2=0.2722,3=0.2651,4=1.2185,5=-1.93×10-4.預(yù)測(cè)效果如圖7所示,擬合優(yōu)度2為0.9168,相對(duì)均方根誤差rRMSE為20.4%,平均絕對(duì)百分比誤差MAPE為17.14%,其中92%的數(shù)據(jù)點(diǎn)相對(duì)誤差在±30%以內(nèi),該模型具有較好的預(yù)測(cè)效果.
圖7?氣液兩相模型的預(yù)測(cè)效果
4.1.2?氣液固三相系統(tǒng)
對(duì)氣液固三相體系,懸浮在液相中的固體會(huì)降低氣含率,以上述兩相模型為基礎(chǔ),考慮固體顆粒性質(zhì)(顆粒粒徑p及密度p)和體積分?jǐn)?shù)V的影響并以指數(shù)形式引入,建立三相平均氣含率預(yù)測(cè)模型
選用表2所示數(shù)據(jù)集中氣液固三相體系對(duì)應(yīng)的88個(gè)平均氣含率數(shù)據(jù)點(diǎn),采用最小二乘法對(duì)式(12)進(jìn)行非線性回歸分析,得到的模型參數(shù)為1=-0.1228,2=-2.1336.預(yù)測(cè)效果如圖8所示,擬合優(yōu)度2為0.8370,相對(duì)均方根誤差rRMSE為21.9%,平均絕對(duì)百分比誤差MAPE為18.36%,其中91%的數(shù)據(jù)點(diǎn)相對(duì)誤差在±30%以內(nèi),該模型具有較準(zhǔn)確的預(yù)測(cè)效果.
4.1.3?模型評(píng)價(jià)
表3總結(jié)了氣液兩相系統(tǒng)以及氣液固三相系統(tǒng)的經(jīng)典平均氣含率預(yù)測(cè)模型,選用表2數(shù)據(jù)集中氣液兩相及氣液固三相平均氣含率數(shù)據(jù)對(duì)表3中的模型進(jìn)行評(píng)定并與本文模型進(jìn)行比較分析,引入MAPE和均方根誤差RMSE作為評(píng)價(jià)指標(biāo),模型評(píng)定結(jié)果如表4所示,以此說明本文模型的優(yōu)勢(shì)所在.
結(jié)合表3和表4結(jié)果可知,對(duì)于氣液兩相體系,Hikita等[40]和Elgozali等[41]建立的預(yù)測(cè)模型適用于較窄的液相黏度范圍,對(duì)超出17.8mPa·s和25.6mPa·s液相黏度的系統(tǒng)已不能較好預(yù)測(cè),其中后者適用的氣相表觀速度范圍較窄,對(duì)超出氣速為0.085m/s的系統(tǒng)已不適用.G?tz等[18]建立的模型適用氣相表觀速度范圍較窄,對(duì)超出0.10m/s氣速的氣含率預(yù)測(cè)表現(xiàn)出不適用性.對(duì)于氣液固三相體系,Begovich等[42]建立的預(yù)測(cè)模型在固相性質(zhì)方面只考慮了固相粒徑及密度因素,未考慮固相體積分?jǐn)?shù)對(duì)氣含率的影響,當(dāng)固相體積分?jǐn)?shù)變化時(shí),模型預(yù)測(cè)的氣含率都為相同值,致使預(yù)測(cè)結(jié)果出現(xiàn)較大偏差,考慮的氣相表觀速度、黏度及表面張力范圍都要窄于本文模型,且該模型并不適用于液相速度為0的情況.G?tz等[18]建立的模型考慮固相物性參數(shù)比較全面,但仍存在適用氣速范圍較小的問題,使用氣泡直徑參數(shù)B,ref為2mm作為參比直徑,致使模型受限于氣速小于0.10m/s的均質(zhì)流型中.針對(duì)表2數(shù)據(jù)集中相同的平均氣含率數(shù)據(jù),本文建立的模型在考慮參數(shù)全面、參數(shù)適用范圍較廣、模型形式的適用性及預(yù)測(cè)精度上體現(xiàn)更多的優(yōu)勢(shì).
由于流化床內(nèi)氣液流動(dòng)過程的復(fù)雜性,對(duì)管道內(nèi)徑向氣含率分布規(guī)律還難以從理論上進(jìn)行準(zhǔn)確預(yù)測(cè),Wu等[21]指出管道內(nèi)徑向氣含率分布滿足的經(jīng)驗(yàn)?zāi)P?,?/p>
表3?氣液及氣液固系統(tǒng)的經(jīng)典平均氣含率預(yù)測(cè)模型
Tab.3?Classical average gas holdup prediction model of the gas-liquid and gas-liquid-solid systems
表4?不同模型的評(píng)定結(jié)果
Tab.4?Evaluation results of different models
徑向氣含率分布會(huì)受到氣相表觀速度以及液相性質(zhì)等多種因素的影響.以式(11)建立的氣液兩相平均氣含率預(yù)測(cè)模型為基礎(chǔ),考慮氣相表觀速度在0.035~0.283m/s以及表面張力在0.053~0.072N/m范圍內(nèi),對(duì)徑向位置=0~0.85范圍內(nèi)的局部氣含率建立預(yù)測(cè)模型,回歸模型所用的徑向氣含率數(shù)據(jù)為本文數(shù)值模擬得到的結(jié)果.由于目標(biāo)模型具有較強(qiáng)的非線性關(guān)系,基于最小二乘原理的非線性回歸已不能較好地求解模型參數(shù),故采用粒子群優(yōu)化(particle swarm optimization,PSO)算法[43]對(duì)模型進(jìn)行求解,求解流程如圖9所示,求解的模型參數(shù)分別為
粒子適應(yīng)度值的計(jì)算式為
圖9?PSO求解模型參數(shù)的流程
圖10?徑向氣含率模型的預(yù)測(cè)效果
圖11?徑向氣含率模型的預(yù)測(cè)效果(ug=0.283m/s)
結(jié)合七通道雙頭電導(dǎo)探針陣列和CFD-PBM耦合模型考察操作參數(shù)、液相物性及固相體積分?jǐn)?shù)對(duì)徑向氣含率與氣泡直徑分布特性的影響.選用表2數(shù)據(jù)集中氣液及氣液固體系的325個(gè)平均氣含率數(shù)據(jù)點(diǎn),提出了新的平均氣含率預(yù)測(cè)模型,以此模型為基礎(chǔ),采用粒子群優(yōu)化算法建立了徑向氣含率預(yù)測(cè)模型.具體結(jié)論如下.
(1)徑向氣含率呈現(xiàn)中心峰分布狀態(tài),氣含率與氣相表觀速度呈正相關(guān),與液相黏度、表面張力及固相體積分?jǐn)?shù)呈負(fù)相關(guān);氣泡直徑呈現(xiàn)沿管道中心到邊壁的下降趨勢(shì),在=0.7~0.9位置處降低趨勢(shì)較為明顯,氣泡直徑與氣相表觀速度、液相黏度及表面張力、固相體積分?jǐn)?shù)均呈正相關(guān).
(2)以修正g、l和無量綱黏度及表面張力共同表征多參數(shù)的影響,建立了氣液兩相平均氣含率預(yù)測(cè)模型,平均絕對(duì)百分比誤差為17.14%.在此模型基礎(chǔ)上,以指數(shù)形式引入固相性質(zhì)的影響建立了氣液固三相平均氣含率預(yù)測(cè)模型,平均絕對(duì)百分比誤差為18.36%,固相體積分?jǐn)?shù)為0并不影響模型使用.與其他經(jīng)典氣含率預(yù)測(cè)模型相比,本模型在各參數(shù)較廣范圍內(nèi)可實(shí)現(xiàn)更好的預(yù)測(cè)效果,拓寬了參數(shù)適用范圍且提高預(yù)測(cè)精度.
[1] Fu Z,Zhu J,Barghi S,et al. Minimum fluidization velocity growth due to bed inventory increase in an air dense medium fluidized bed[J]. Chemical Engineering Journal,2019,359:1372-1378.
[2] Zhang H D,Sun Z N,Zhang M Z,et al. Comparison of the flow structures and regime transitions between a cylindrical fluidized bed and a square fluidized bed[J]. Powder Technology,2020,376:507-516.
[3] Singh B K,Roy S,Buwa V V. Bubbling/Slugging flow behavior in a cylindrical fluidized bed:ECT measurements and two-fluid simulations[J]. Chemical Engineering Journal,2019,383:123120.
[4] 謝?悅,梁德樂,朱凱鵬,等. 吸附-光催化流化床降解污染物的研究進(jìn)展[J]. 科技資訊,2021,19(22):1-4.
Xie Yue,Liang Dele,Zhu Kaipeng,et al. Research progress on pollutant degradation in adsorption-photocatalytic fluidized bed[J]. Science & Technology Information,2021,19(22):1-4(in Chinese).
[5] Zarekar S,Bück A,Jacob M,et al. Numerical study of the hydrodynamics of fluidized beds operated under sub-atmospheric pressure[J]. Chemical Engineering Journal,2019,372:1134-1153.
[6] 周秀紅. 氣-液-固循環(huán)流化床流動(dòng)及氣-液傳質(zhì)模擬及膨脹床流動(dòng)實(shí)驗(yàn)[D]. 天津:天津大學(xué)化工學(xué)院,2020.
Zhou Xiuhong. Simulation on Hydrodynamics and Gas-Liquid Mass Transfer in Gas-Liquid-Solid Circulating Fluidized and Experiment in Expanded Bed[D]. Tianjin:School of Chemical Engineering and Technology,Tianjin University,2020(in Chinese).
[7] 王祖恒. 旋轉(zhuǎn)曝氣器的曝氣充氧性能及局部氣含率研究[D]. 杭州:浙江工業(yè)大學(xué)化學(xué)工程學(xué)院,2017.
Wang Zuheng. Study on Aeration Performances and Local Gas Hold-Up Distribution of Rotary Bubble Diffuser[D]. Hangzhou:School of Chemical Engineer-ing,Zhejiang University of Technology,2017(in Chinese).
[8] 盧?霞. 外環(huán)流氨化反應(yīng)器內(nèi)氣泡流動(dòng)特性的研究[D]. 武漢:武漢工程大學(xué)化工與制藥學(xué)院,2019.
Lu Xia. Study on Bubble Hydrodynamics Characteristics in an Airlift External Loop Reactor[D]. Wuhan:School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,2019(in Chinese).
[9] Ohnuki A,Akimoto H. Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe[J]. International Journal of Multiphase Flow,2000,26(3):367-386.
[10] Tomiyama A,Tamai H,Zun I,et al. Transverse migration of single bubbles in simple shear flows[J]. Chemical Engineering Science,2002,57(11):1849-1858.
[11] Raimundo P M,Cloupet A,Cartellier A,et al. Hydrodynamics and scale-up of bubble columns in the heterogeneous regime:Comparison of bubble size,gas holdup and liquid velocity measured in 4 bubble columns from 0. 15m to 3m in diameter[J]. Chemical Engineering Science,2019,198:52-61.
[12] 艾?濤,王少兵,王璐璐,等. 氣液并流上流式反應(yīng)器中的氣泡特性研究[J]. 石油煉制與化工,2020,51(5):37-41.
Ai Tao,Wang Shaobing,Wang Lulu,et al. Investigation on bubble characteristics in gas-liquid concurrent up-flow reactor[J]. Petroleum Processing and Petrochemicals,2020,51(5):37-41(in Chinese).
[13] 嚴(yán)?鵬. 鼓泡塔內(nèi)氣液流動(dòng)行為的CFD-PBM耦合模型數(shù)值模擬[D]. 北京:北京石油化工學(xué)院,2019.
Yan Peng. Numerical Simulation of Gas-Liquid Flow Behavior in Bubble Columns Using CFD-PBM Coupled Model[D]. Beijing:Beijing Institute of Petrochemical Technology,2019(in Chinese).
[14] Orlando A E,Barca L F,Klein T S,et al. Effects of EOR chemicals and superficial gas velocity on bubble size and gas holdup of a bubble column[J]. Oil & Gas Science and Technology-Revue d’IFP Energies nouvelles,2019,74:79.
[15] 劉春江,卜孟莊,郭凱,等. 基于實(shí)驗(yàn)與CFD方法的Winpak填料混合性能研究[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),2021,54(1):1-9.
Liu Chunjiang,Bu Mengzhuang,Guo Kai,et al. Computational fluid dynamics simulation and experimental study of mixing performance of Winpak packing[J]. Journal of Tianjin University (Science and Technol-ogy),2021,54(1):1-9(in Chinese).
[16] 王麗軍,張?煜,李?希. 湍動(dòng)漿態(tài)床流體力學(xué)研究(Ⅰ)氣含率及其分布規(guī)律[J]. 化工學(xué)報(bào),2008,59(12):2996-3002.
Wang Lijun,Zhang Yü,Li Xi. Studies on hydrodynamics of slurry turbulent bubble column(Ⅰ)Gas holdup and its radial distribution[J]. CIESC Journal,2008,59(12):2996-3002(in Chinese).
[17] 李蔚玲. 氣液固三相流態(tài)化特性的實(shí)驗(yàn)與數(shù)值模擬研究[D]. 南京:東南大學(xué)能源與環(huán)境學(xué)院,2016.
Li Weiling. Experiment Investigation and CFD Simulation on Fluid Dynamics of Gas-Liquid-Solid Three-Phase Bubble Column Systems[D]. Nangjing:School of Energy and Environment,Southeast University,2016(in Chinese).
[18] G?tz M,Lefebvre J,M?rs F,et al. Novel gas holdup correlation for slurry bubble column reactors operated in the homogeneous regime[J]. Chemical Engineering Journal,2017,308:1209-1224.
[19] Islam M T,Nguyen A V. Bed expansion and gas holdup characteristics of bubble-assisted fluidization of liquid-particle suspensions in a HydroFloat cell[J]. Minerals Engineering,2021,160:106678.
[20] 曹長(zhǎng)青. 氣-液-固三相流化床流動(dòng)特性的實(shí)驗(yàn)研究與數(shù)值模擬[D]. 天津:天津大學(xué)化工學(xué)院,2005.
Cao Changqing. Experiment Investigation and Numerical Simulation on Hydrodynamic Characteristics in Gas-Liquid-Solid Fluidized Beds[D]. Tianjin:School of Chemical Engineering and Technology,Tianjin University,2005(in Chinese).
[21] Wu Y,Ong B C,Al-Dahhan M H. Predictions of radial gas holdup profiles in bubble column reactors[J]. Chemical Engineering Science,2001,56(3):1207-1210.
[22] Eissa S H,Schügerl K. Holdup and backmixing investigations in cocurrent and countercurrent bubble columns[J]. Chemical Engineering Science,1975,30(10):1251-1256.
[23] Zahradnik J,F(xiàn)ialova M,Ru M,et al. Duality of the gas-liquid flow regimes in bubble column reactors[J]. Chemical Engineering Science,1997,52(21/22):3811-3826.
[24] Li H,Prakash A. Heat transfer and hydrodynamics in a three-phase slurry bubble column[J]. Industrial & Engineering Chemistry Research,1997,36(11):4688-4694.
[25] Sarrafi A,Muller-Steinhagen H,Smith J M,et al. Gas holdup in homogeneous and heterogeneous gas-liquid bubble column reactors[J]. The Canadian Journal of Chemical Engineering,1999,77(1):11-21.
[26] Luo X,Lee D J,Lau R,et al. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns[J]. AIChE Journal,1999,45(4):665-680.
[27] Dargar P,Macchi A. Effect of surface-active agents on the phase holdups of three-phase fluidized beds[J]. Chemical Engineering and Processing:Process Intensification,2006,45(9):764-772.
[28] Han L,Al-Dahhan M H. Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs[J]. Chemical Engineering Science,2007,62(1/2):131-139.
[29] Yang J H,Yang J I,Kim H J,et al. Two regime transitions to pseudo-homogeneous and heterogeneous bubble flow for various liquid viscosities[J]. Chemical Engineering and Processing:Process Intensification,2010,49(10):1044-1050.
[30] Gandhi B,Prakash A,Bergougnou M A. Hydrodynamic behavior of slurry bubble column at high solids concentrations[J]. Powder Technology,1999,103(2):80-94.
[31] Zhou X H,Ma Y L,Liu M Y,et al. CFD-PBM simulations on hydrodynamics and gas-liquid mass transfer in a gas-liquid-solid circulating fluidized bed[J]. Powder Technology,2020,362:57-74.
[32] Luo H,Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal,1996,42(5):1225-1233.
[33] Safoniuk M,Grace J R,Hackman L,et al. Gas holdup in a three-phase fluidized bed[J]. AIChE Journal,2002,48(7):1581-1587.
[34] Law D,Jones S T,Heindel T J,et al. A combined numerical and experimental study of hydrodynamics for an air-water external loop airlift reactor[J]. Journal of Fluids Engineering,2011,133(2):1-8.
[35] Sari S,Ergün ?,Bar?k M,et al. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach[J]. Annals of Nuclear Energy,2009,36(2):222-232.
[36] Gidaspow D,Bezburuah R,Ding J. Hydrodynamics of circulating fluidized beds:Kinetic theory approach[R]. Chicago:Department of Chemical Engineering,1991:1-8.
[37] Lun C K K,Savage S B,Jeffrey D J,et al. Kinetic theories for granular flow:Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield[J]. Journal of Fluid Mechanics,1984,140:223-256.
[38] Schaeffer D G. Instability in the evolution equations describing incompressible granular flow[J]. Journal of Differential Equations,1987,66(1):19-50.
[39] 翟?甜. 影響鼓泡塔氣-液兩相流流體力學(xué)行為因素的研究[D]. 西安:西北大學(xué)化工學(xué)院,2014.
Zhai Tian. Studying the Effect Factors on Gas-Liquid Two-Phase Flow Fluid Mechanic Behaviors in Bubble Columns[D]. Xi’an:School of Chemical Engineer-ing,Northwestern University,2014(in Chinese).
[40] Hikita H,Asai S,Tanigawa K,et al. Gas holdup in bubble columns[J]. The Chemical Engineering Journal,1980,20(1):59-67.
[41] Elgozali A,Linek V,F(xiàn)ialova M,et al. Influence of viscosity and surface tension on performance of gas-liquid contactors with ejector type gas distributor[J]. Chemical Engineering Science,2002,57(15):2987-2994.
[42] Begovich J M,Watson J S. Hydrodynamic characteristics of three-phase fluidized beds[R]. Oak Ridge:Oak Ridge National Lab,Tenn(USA),1978.
[43] 劉?剛,孫佳琦,董偉星. 改進(jìn)粒子群優(yōu)化算法在建筑能耗優(yōu)化中的參數(shù)設(shè)置[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),2021,54(1):82-90.
Liu Gang,Sun Jiaqi,Dong Weixing. Selective harmonic elimination pulse width modulation based on improved hybrid particle swarm optimization[J]. Journal of Tianjin University(Science and Technology),2021,54(1):82-90(in Chinese).
Bubble Characteristics and Prediction Model of Gas Holdup in the Gas-Liquid-Solid Fluidized Bed
Wang Chao1, 2,Qian Dong1, 2,Zhang Lin1,Ding Hongbing1, 2
(1. School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;2.TianjinKey Laboratory of Process Measurement and Control,Tianjin 300072,China)
The gas holdup and bubble diameter directly affect the reaction progress and mass transfer efficiency in the fluidized bed. To better understand the local flow structure,the radial gas holdup and bubble diameter distribution have become the focus of research,with the radial gas holdup prediction model demonstrating great significance. The existing average gas holdup prediction models have a limited scope of application in different experimental systems. Therefore,combined with the conductivity probe measurement and fluid simulation,a gas-liquid-solid fluidized bed with a diameter of 100mm and a height of 1.5m was considered the research object in this study. The gas holdup and bubble diameter distribution were systematically investigated under the superficial gas velocity of 0.014—0.283m/s,superficial liquid velocity of 0.007—0.028m/s,liquid viscosity of 1—40mPa·s,liquid surface tension of 0.053—0.072N/m,and solid phase volume fraction of 0—30%. Combined with the results of this experimental system and literature,a prediction model for the average gas holdup of gas-liquid-solid system was proposed. Based on this prediction model and considering the influence of superficial gas velocity and surface tension on the radial gas holdup distribution,the radial gas holdup prediction model was developed using the particle swarm optimization algorithm. The results indicate that the prediction models for the average gas holdup of two-phase and three-phase systems completely consider the effects of superficial gas velocity,superficial liquid velocity,liquid properties,solid properties,and pipe diameter. The models broaden the scope of application and improve prediction accuracy,with the mean absolute percentage error(MAPE)of 17.14% and 18.36%,respectively. Over 90% of the data points are covered by the new prediction model with a relative error of less than 30%. The radial gas holdup prediction model predicts the gas holdup near the pipeline’s center more accurately,with its MAPE reaching 12.26%. The above prediction models can prove significant in understanding the global and local mass transfer problems in the tube and the design of fluidized bed reactors.
gas-liquid-solid fluidized bed;radial gas holdup;radial bubble diameter;gas holdup prediction model
10.11784/tdxbz202204003
TE65
A
0493-2137(2023)07-0723-12
2022-04-02;
2022-07-10.
王?超(1973—??),男,博士,教授,wangchao@tju.edu.cn.
丁紅兵,hbding@tju.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(61627803).
Supported by the National Natural Science Foundation of China(No. 61627803).
(責(zé)任編輯:孫立華)
天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版)2023年7期