孟 歡,侯曉婷,張華敏,王旭德*
中藥天然產(chǎn)物治療炎癥性腸病的研究進(jìn)展
孟 歡1,侯曉婷1,張華敏2,王旭德1*
1. 大連大學(xué) 慢性病研究中心大連市重點(diǎn)實(shí)驗(yàn)室,遼寧 大連 116622 2. 延邊大學(xué)藥學(xué)院,吉林 延邊 133002
炎癥性腸?。╥nflammatory bowel disease,IBD)是原因尚不明確的非特異性的腸道炎癥性疾病。遺傳、環(huán)境因素、免疫功能障礙、腸道菌群失調(diào)及腸道屏障功能受損都是其發(fā)生和發(fā)展的主要原因。臨床上常用的治療藥物有氨基水楊酸類、抗生素類、皮質(zhì)類固醇類等,但治愈率較低且不良反應(yīng)明顯。研究表明,中藥天然產(chǎn)物具有免疫調(diào)節(jié)、調(diào)節(jié)腸道菌群組成和改善腸黏膜屏障功能等作用,可以有效治療IBD。通過對(duì)常見的中藥天然產(chǎn)物治療IBD的研究進(jìn)展進(jìn)行綜述,為中藥天然產(chǎn)物的進(jìn)一步開發(fā)及IBD的治療提供一定的理論指導(dǎo)。
炎癥性腸?。恢兴幪烊划a(chǎn)物;免疫調(diào)節(jié);腸道菌群;腸黏膜屏障功能;小檗堿;姜黃素;黃芩苷;芍藥苷;大黃酸;人參皂苷;黃芪多糖
炎癥性腸?。╥nflammatory bowel disease,IBD)是一類原因尚不明確的非特異性的腸道炎癥性疾病,主要的臨床表現(xiàn)為腹瀉、腹痛、便血、體質(zhì)量減輕等,嚴(yán)重時(shí)會(huì)伴有消化道出血、腸梗阻、癌變等并發(fā)癥,呈反復(fù)發(fā)作的慢性病程[1]。IBD包括潰瘍性結(jié)腸炎(ulcerative colitis,UC)和克羅恩?。–rohn’s disease,CD)2種常見的類型。其中,UC主要發(fā)生在結(jié)腸黏膜和黏膜下層,病變通常從直腸開始,可以連續(xù)性地向近端延伸至整個(gè)結(jié)腸,血性腹瀉是其主要特征;CD的病變可累及胃腸道的任何部位,屬于不連續(xù)的透壁性炎癥,多發(fā)生于右半結(jié)腸及末端回腸,并且容易出現(xiàn)腸穿孔、瘺管、膿腫等并發(fā)癥[2]。
近年來,IBD的全球發(fā)病率和流行率明顯上升,但其病因和發(fā)病機(jī)制尚不清楚,嚴(yán)重影響患者的日常生活[3]。目前普遍認(rèn)為,遺傳的易感性、環(huán)境因素、機(jī)體免疫功能障礙、腸道菌群的改變及腸黏膜屏障功能受損是IBD發(fā)生發(fā)展的主要原因[4]。臨床上常用于治療IBD的藥物主要有氨基水楊酸類、糖皮質(zhì)激素類、免疫抑制劑、生物制劑等,但停藥后容易復(fù)發(fā)、且不良反應(yīng)多[5]。因此,深入研究IBD的發(fā)病機(jī)制,尋找IBD治療的新靶點(diǎn),開發(fā)安全有效的治療方法具有重要意義。
中藥作為我國傳統(tǒng)的優(yōu)勢資源,因其具有多靶點(diǎn)、安全系數(shù)高等優(yōu)點(diǎn),在預(yù)防和治療多種慢性疾病方面應(yīng)用廣泛[6]。近年來,在尋找IBD新療法的過程中,中藥天然產(chǎn)物受到廣泛關(guān)注。許多學(xué)者從不同角度對(duì)多種類型的中藥天然產(chǎn)物治療IBD進(jìn)行了一系列的基礎(chǔ)研究,發(fā)現(xiàn)中藥天然產(chǎn)物具有調(diào)節(jié)免疫細(xì)胞分化、減輕炎癥反應(yīng)及氧化應(yīng)激損傷、調(diào)節(jié)腸道菌群、恢復(fù)腸黏膜屏障功能等多種作用,在減少不良反應(yīng)、預(yù)防復(fù)發(fā)等方面具有顯著優(yōu)勢,能夠有效地控制IBD的發(fā)生和發(fā)展[7]。因此,從中藥天然產(chǎn)物出發(fā)尋找有效的IBD治療藥物具有良好的應(yīng)用前景。本文擬對(duì)用于治療IBD的幾種常見的中藥天然產(chǎn)物,包括生物堿類、多酚類、黃酮類、萜類、醌類、皂苷類、多糖類進(jìn)行綜述,為中藥天然產(chǎn)物治療IBD的臨床應(yīng)用提供一定的參考。
生物堿是一類存在于各種生物中的含氮有機(jī)化合物,具有多種生物學(xué)活性,通??煞譃檫胚犷?、異喹啉類和吡啶類生物堿[8]?,F(xiàn)有的動(dòng)物和細(xì)胞實(shí)驗(yàn)的結(jié)果表明,不同生物堿對(duì)于IBD的共同調(diào)節(jié)機(jī)制在于通過調(diào)節(jié)核因子-κB(nuclear factor-κB,NF-κB)等信號(hào)通路,調(diào)節(jié)腸道菌群的組成,恢復(fù)腸上皮的緊密連接,進(jìn)而改善受損的腸黏膜屏障。
小檗堿是從黃連中提取的一種異喹啉生物堿,小檗堿治療通過下調(diào)信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活蛋白1(signal transducer and activator of transcription 1,STAT1)和STAT3的磷酸化,抑制NF-κB信號(hào)通路,降低2,4,6-三硝基苯磺酸(2,4,6-trinitrobenzene sulfonic acid,TNBS)誘導(dǎo)的結(jié)腸炎中輔助性T細(xì)胞1(T helper cell 1,Th1)/Th17的值及相關(guān)的促炎因子和轉(zhuǎn)錄因子的表達(dá)水平,增加結(jié)腸中分泌型免疫球蛋白A(secretory immunoglobulin A,sIgA)表達(dá),在調(diào)節(jié)免疫反應(yīng)平衡中具有重要作用[9]。小檗堿可以激活蛋白激酶B1(protein kinase B1,Akt1)/細(xì)胞因子信號(hào)抑制物1(suppressor of cytokine signaling 1,SOCS1)信號(hào)通路,抑制p65的磷酸化,減少促炎性M1巨噬細(xì)胞的極化,調(diào)節(jié)M1、M2型巨噬細(xì)胞的比率,進(jìn)而減輕葡聚糖硫酸鈉(dextran sulfate sodium,DSS)誘導(dǎo)的UC小鼠的炎癥反應(yīng)[10]。小檗堿可以通過調(diào)節(jié)吲哚乙酸、乙酸等色氨酸代謝物(tryptophan catabolites,TC),激活芳香羥受體(arylhydrocarbon receptor,AhR)信號(hào)途徑,進(jìn)而促進(jìn)咬合蛋白(occludin)、閉合小環(huán)蛋白-1(zonula occluden-1,ZO-1)的表達(dá),改善受損的腸道上皮功能[11]。小檗堿可以通過增加瘤胃球菌、脫硫弧菌、乳酸桿菌和嗜黏蛋白-阿克曼氏菌的豐度,降低變形桿菌、顫螺菌等致病菌的豐度,恢復(fù)碳水化合物的消化和吸收、糖酵解、糖異生和氨基酸代謝[12]。此外,小檗堿也可以通過激活核因子E2相關(guān)因子2(nuclear factor erythroid 2 related factor 2,Nrf2)途徑,誘導(dǎo)P-糖蛋白(P-glycoprotein,P-gp)的表達(dá),進(jìn)而起到治療結(jié)腸炎的作用[13]。
苦參堿是一種天然的哌啶類生物堿,是苦參等多種豆科植物的主要活性成分,具有抗癌、抗病毒和抗炎等多種藥理活性[14]。苦參堿可以通過激活Nrf2途徑的抗氧化反應(yīng),抑制Janus激酶2(Janus kinase 2,JAK2)/STAT3通路,下調(diào)腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、白細(xì)胞介素-1β(interleukin-1β,IL-1β)和IL-6的表達(dá),調(diào)節(jié)細(xì)胞凋亡相關(guān)因子的水平,抑制結(jié)腸上皮細(xì)胞凋亡[15-17]。苦參堿治療能夠增加ZO-1、閉合蛋白-1(claudin-1)、claudin-2、occludin等緊密連接蛋白的表達(dá),并增加產(chǎn)生黏蛋白的細(xì)胞和黏蛋白-2的表達(dá),保護(hù)腸道屏障免受DSS的破壞,這可能涉及到過氧化物酶體增殖物激活受體α(peroxisome proliferator activated receptor α,PPARα)信號(hào)通路的激活[17]。Li等[18]研究表明苦參堿可以有效調(diào)節(jié)小鼠腸道菌群的多樣性,具體表現(xiàn)為顯著增加了β變形菌、擬桿菌和柔膜菌在綱水平中的比例,并在科水平上顯著提高消化鏈球菌、甲基桿菌、赤桿菌和雙歧桿菌的相對(duì)豐度,這可能與NF-κB上游信號(hào)Toll樣受體4(Toll-like receptor 4,TLR4)/髓樣分化因子88(myeloid differentiation factor 88,MyD88)的表達(dá)被抑制有關(guān)。
OMT是一種從苦參根中提取出來的生物堿,可用于治療各種急性或慢性炎癥[19]。在DSS誘導(dǎo)的UC小鼠模型中,OMT可以通過阻斷Rho蛋白(Ras homolog gene family member A,RhoA)/Rho激酶(Rho associated kinase,ROCK)信號(hào)通路,下調(diào)Th1/Th17的值,促進(jìn)調(diào)節(jié)性T細(xì)胞(regulatory cells,Treg)的分化[20]。OMT能夠增加結(jié)腸和血清中谷胱甘肽、超氧化物歧化酶(superoxide dismutase,SOD)的水平,抑制髓過氧化物酶(myeloperoxidase,MPO)、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和環(huán)氧合酶-2(cyclooxygenase-2,COX-2)的活性及活性氧的產(chǎn)生,有效減少氧化應(yīng)激反應(yīng)[21]。此外,OMT可以通過阻斷磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase,PI3K)/Akt信號(hào)通路,降低DSS誘導(dǎo)的結(jié)腸組織中B淋巴細(xì)胞瘤2(B-cell lymphoma 2,Bcl-2)、Bcl-2基因相關(guān)啟動(dòng)子(Bcl-2 asociated death promoter,Bad)的和半胱氨酸天冬氨酸蛋白酶-3(cystein-asparate protease-3,Caspase-3)、Caspase-9表達(dá),抑制細(xì)胞凋亡[22]。OMT可以通過阻斷TLR9/MyD88/NF-κB通路及下游TNF-α、IL-1β和IL-6的蛋白表達(dá),恢復(fù)緊密連接蛋白的表達(dá),減弱TNBS誘導(dǎo)的結(jié)腸炎癥狀[23]。
胡椒堿是胡椒屬草本植物的活性成分之一,具有抗炎、抗抑郁、抗胃潰瘍等藥理作用[24]。胡椒堿治療可以通過阻斷絲裂原活化蛋白激酶(mitogen- activated protein kinase,MAPK)信號(hào)轉(zhuǎn)導(dǎo)途徑,進(jìn)而抑制IL-8的表達(dá),減弱人結(jié)腸癌SW480和HT-29細(xì)胞中的炎癥反應(yīng)[25]。胡椒堿治療通過阻斷核因子抑制蛋白(inhibitor κB-α,IκB-α)/NF-κB信號(hào)通路,抑制ILs、TNF-α、COX-2和iNOS的過度表達(dá),并下調(diào)Caspase-1的表達(dá),并可以改善TNBS誘導(dǎo)的ZO-1、claudin-1、occludin表達(dá)的降低,抑制細(xì)胞凋亡,保護(hù)腸上皮細(xì)胞,進(jìn)而緩解結(jié)腸炎[24]。Hu等[26]研究發(fā)現(xiàn)胡椒堿可能是孕激素X受體(pregnane X receptor,PXR)的潛在激動(dòng)劑和誘導(dǎo)劑,可以在mRNA和蛋白質(zhì)水平上誘導(dǎo)細(xì)胞色素酶P450(cytochrome P450 enzyme system,CYP450)的基因表達(dá),進(jìn)而預(yù)防或減輕結(jié)腸炎癥。
多酚類物質(zhì)主要分為類黃酮、酚酸、鞣質(zhì)、木酚素和二苯乙烯類,具有抗氧化、免疫調(diào)節(jié)和抗癌活性[27-28]。大量研究表明,多酚類化合物對(duì)腸道菌群具有調(diào)節(jié)作用,可以通過減少炎性相關(guān)因子的分泌等多種途徑,增加益生菌的數(shù)量,降低致病菌的相對(duì)豐度,有效緩解結(jié)腸炎癥狀,改善疾病引起的腸道微生態(tài)失調(diào)。
姜黃素是從姜黃的干燥根莖中提取的多酚類物質(zhì),具有抗炎、抗病毒、抗菌等生物學(xué)活性[29]。姜黃素通過抑制TLR4/MyD88/NF-κB以及p38 MAPK信號(hào)通路,下調(diào)TNF-α、IL-6、IL-17、IL-23,減少中性粒細(xì)胞(neutrophils,NEUT)的浸潤,改變Th1/Th2的值,促進(jìn)樹突狀細(xì)胞(dendritic cell,DC)產(chǎn)生IL-10,并誘導(dǎo)分化群4+(cluster of differentiation 4+,CD4+)CD25+叉狀頭轉(zhuǎn)錄因子(forkhead box,F(xiàn)ox)p3+Treg的分化,調(diào)節(jié)Treg/Th17平衡,在UC治療中發(fā)揮作用[30-32]。姜黃素可以通過下調(diào)小鼠含生長因子樣模體黏液樣激素樣受體(mouse EGF-like module-containing mucin-like hormone receptor-like 1,F(xiàn)4/80)+CD11b+iNOS+巨噬細(xì)胞的比例并增加CD163+、CD206+巨噬細(xì)胞的百分比,有效調(diào)節(jié)結(jié)腸炎小鼠M1和M2巨噬細(xì)胞的極化平衡[33]。姜黃素可以阻斷DSS誘導(dǎo)的K+外流、抑制活性氧的產(chǎn)生和組織蛋白酶B的釋放,減少Caspase-1、IL-1β及凋亡相關(guān)微粒蛋白(apoptosis-associated speck-like protein containing a caspase recruitment domain foci,ASC)表達(dá),進(jìn)而抑制核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide?binding oligomerisation domain-like receptor protein 3,NLRP3)炎性小體的激活,減輕NLRP3炎性小體介導(dǎo)的結(jié)腸損傷[34]。此外,姜黃素對(duì)自噬過程具有顯著的調(diào)節(jié)作用,可以通過調(diào)節(jié)DSS刺激后結(jié)腸上皮中自噬體的數(shù)量,改善內(nèi)質(zhì)網(wǎng)的狀況,進(jìn)一步調(diào)節(jié)細(xì)胞因子的水平[35]。
白藜蘆醇廣泛存在于葡萄、虎杖和漿果等多種植物中,具有抗癌、抗氧化、抗心血管疾病等多種藥理作用[36]。在人結(jié)直腸腺癌Caco-2細(xì)胞中,白藜蘆醇可以通過減少IL-1β和增加IL-11的表達(dá)改善TNF-α誘導(dǎo)的炎癥[37]。在DSS誘導(dǎo)的UC模型小鼠中,白藜蘆醇可以抑制PI3K/Akt信號(hào)途徑,減少血管內(nèi)皮生長因子A(vascular endothelial growth factor A,)基因表達(dá),下調(diào)TNF-α、γ-干擾素和IL-6等促炎因子水平,減輕結(jié)腸炎癥[38]。白藜蘆醇的治療可以下調(diào)微小RNA-31(microRNA-31,miR-31),增加Foxp3+T細(xì)胞的數(shù)量,降低IL-17+T細(xì)胞的比例,啟動(dòng)潛在的Treg抗炎反應(yīng),顯著減輕TNBS誘導(dǎo)的結(jié)腸炎癥[39-40]。白藜蘆醇可以通過Wnt信號(hào)途徑調(diào)節(jié)腸上皮細(xì)胞小泛素樣修飾蛋白1(small ubiquitin-like modifier protein 1,SUMO1)和β-連環(huán)蛋白(β-catenin)的表達(dá)[41]。在腸道菌群調(diào)節(jié)方面,白藜蘆醇可以減少酸性擬桿菌的數(shù)量,促進(jìn)短鏈脂肪酸(short chain fatty acids,SCFAs)的代謝,增加丁酸的水平,使腸道菌群恢復(fù)到穩(wěn)態(tài)水平[40]。在腸黏膜屏障功能上,白藜蘆醇可以通過增加自噬體的形成及自噬關(guān)鍵調(diào)控蛋白復(fù)合物Beclin 1和微管相關(guān)蛋白輕鏈3B(microtubule-associatedprotein light chain 3B,LC3B)的數(shù)量,增強(qiáng)腸上皮細(xì)胞自噬,改善內(nèi)質(zhì)網(wǎng)和線粒體的狀況,進(jìn)而增加ZO-1、occludin的表達(dá),減輕腸黏膜上皮的損傷[42]。
丹皮酚又稱芍藥醇,是從牡丹皮、白芍根中提取的多酚類成分,具有多種生物學(xué)效應(yīng),可用于多種疾病的治療[43]。丹皮酚能夠通過阻斷MAPK/細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)/p38信號(hào)通路,促進(jìn)UC小鼠結(jié)腸組織中Fox表達(dá),降低維甲酸受體相關(guān)孤兒受體γt(retinoic acid receptor-related orphan receptor γt,RORγt)的表達(dá),誘導(dǎo)Treg的分化,同時(shí)抑制Th17的增殖,維持機(jī)體免疫平衡,并減少IL-17等炎性因子的分泌,減輕腸道的炎癥反應(yīng)[43-44]。在TNF-α誘導(dǎo)的人結(jié)腸腺癌CW-2細(xì)胞中,丹皮酚可以降低TNF-α誘導(dǎo)的NF-κB及γ-干擾素誘導(dǎo)的STAT1的反式激活,降低iNOS的表達(dá),發(fā)揮抗炎作用[45]。此外,丹皮酚還可以通過C型凝集素受體Dectin-1/ NF-κB途徑與TLR2、TLR4發(fā)揮協(xié)同作用,改善白色念珠菌感染對(duì)結(jié)腸炎癥造成的不利影響,減輕局部和全身的炎癥反應(yīng)[46]。
綠原酸是一種存在于各種植物、蔬果中的酚酸類化合物,由奎寧酸與咖啡酸經(jīng)酯化反應(yīng)合成,具有抗炎、抗病毒、抗氧化和抗癌特性[47]。綠原酸可以通過抑制TLR4介導(dǎo)的PI3K/Akt和NF-κB途徑,下調(diào)MPO的表達(dá)水平,進(jìn)而減少DSS誘導(dǎo)的結(jié)腸炎及脂多糖誘導(dǎo)的RAW264.7細(xì)胞中NEUT的浸潤和促炎因子的表達(dá)[47-49]。綠原酸可以增加SOD1、過氧化氫酶(catalase,CAT)的表達(dá),減少丙二醛的含量及活性氧的生成,減輕氧化應(yīng)激損傷[50]。此外,綠原酸能通過抑制血紅素加氧酶-1(heme oxygenase-1,HO-1)、Bcl-2相關(guān)X蛋白(Bcl-2 associated X protein,Bax)、Caspase-8和Caspase-9的表達(dá),以劑量相關(guān)性的方式減弱細(xì)胞凋亡的發(fā)生[51]。綠原酸通過調(diào)節(jié)SD大鼠的氨基酸和脂質(zhì)代謝,降低薩特氏菌屬、布勞特氏菌屬的豐度,提高瘤胃球菌屬、乳酸桿菌屬的相對(duì)比例,從而降低血清中脂多糖的水平,促進(jìn)SCFAs的生成,增加丁酸的水平,減輕結(jié)腸的黏膜損傷[49,52]。
沒食子酸是一種酚酸類的有機(jī)化合物,廣泛存在于多種水果和植物中,具有抗炎、抗氧化、抗病毒等作用[53]。沒食子酸可以有效抑制TNBS誘導(dǎo)的UC中p-IκBα和p-NF-κB的表達(dá),顯著增加IL-4和IL-10的水平,同時(shí)下調(diào)IL-6、IL-12、IL-17、IL-23、轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)和TNF-α表達(dá),緩解UC的炎癥反應(yīng)[53-54]。沒食子酸還可以作為一種有效的抗氧化劑,顯著上調(diào)DSS誘導(dǎo)小鼠中Nrf2及其下游靶點(diǎn)尿苷二磷酸-葡萄糖醛酸轉(zhuǎn)移酶(uridine diphosphate- glucuronosyl transferase,UDP-GT)和醌氧化還原酶NADH 1(NADH quinone oxidoreductase 1,NQO1)的表達(dá)水平,降低結(jié)腸組織中MPO以及iNOS、COX-2的活性和表達(dá),減輕腸道上皮的黏膜損傷[55]。從腸道菌群的角度來看,沒食子酸治療能夠通過增加碳水化合物代謝和膽汁酸代謝,降低氨基酸代謝,減少DSS誘導(dǎo)的變形桿菌門(腸桿菌科等)和厚壁桿菌門(鏈球菌科、梭狀芽胞桿菌科)等致病菌的相對(duì)豐度,在UC的治療中發(fā)揮著重要作用[56]。
兒茶素是一種天然存在于多種食物和藥用植物中的多酚,表沒食子兒茶素沒食子酸酯(epigallocatechin gallate,EGCG)是兒茶素的主要成分,具有抗氧化、抗炎、抗癌活性,可有效緩解IBD[57]。EGCG可以通過抑制小鼠結(jié)腸組織中IL-6、單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)、IL-1β、IL-8和TNF-α的產(chǎn)生并降低MPO的活性,減輕T細(xì)胞和巨噬細(xì)胞的浸潤程度,緩解腸道炎癥[58]。EGCG能夠改善小鼠結(jié)腸的總抗氧化能力(total antioxidant capacity,T-AOC)及血清總SOD(total-SOD,T-SOD)、CAT的表達(dá),降低丙二醛的水平,減輕DSS誘導(dǎo)的腸黏膜氧化應(yīng)激反應(yīng),同時(shí)減少結(jié)腸黏膜中凋亡細(xì)胞的比例,調(diào)節(jié)結(jié)腸上皮細(xì)胞的凋亡[59]。EGCG可以通過抑制TLR4、MyD88和NF-κB表達(dá),降低UC大鼠血清中的IL-2和γ-干擾素,增加IL-4和IL-10水平的表達(dá),阻止γ-干擾素誘導(dǎo)的CD4+T細(xì)胞分化為Th1細(xì)胞,調(diào)節(jié)腸黏膜的Th1/Th2平衡,促進(jìn)腸黏膜的自我修復(fù)[60]。此外,EGCG可以增加產(chǎn)SCFAs的細(xì)菌數(shù)量,特別是阿克曼菌,促進(jìn)乙酸鹽、丁酸鹽和丙酸鹽的產(chǎn)生,保護(hù)結(jié)腸黏膜[59]。
黃酮類是一種在植物中含量豐富且具有不同酚類結(jié)構(gòu)的化合物,具有抗氧化應(yīng)激、抗腫瘤、抗菌和血管擴(kuò)張等多種藥理作用[61]。研究表明,多種黃酮類化合物能夠抑制NF-κB等炎癥信號(hào)通路的活化,并通過Nrf2介導(dǎo)的抗氧化應(yīng)激途徑,增加SOD、谷胱甘肽過氧化物酶(glutathione peroxidase,GSH-Px)等抗氧化酶的表達(dá),減少氧化應(yīng)激損傷和炎癥介質(zhì)的產(chǎn)生,從而恢復(fù)腸道黏膜的完整性。
黃芩苷是從傳統(tǒng)中藥黃芩的干燥根中提取的有效成分[62]。黃芩苷通過阻斷NF-κB和PI3K/Akt信號(hào)通路,減少IL-6、IL-1β和TNF-α的釋放,增加IL-10的水平,顯著提高UC的結(jié)腸組織中CAT、SOD和GSH-Px的活性,抑制TNBS誘導(dǎo)的活性氧、丙二醛水平的增加,控制炎癥反應(yīng)并減輕氧化應(yīng)激損傷[63-64]。黃芩苷能夠有效抑制巨噬細(xì)胞遷移抑制因子(macrophage migration inhibitory factor,MIF)的表達(dá),調(diào)節(jié)巨噬細(xì)胞的功能,促進(jìn)CD4+、CD29+細(xì)胞的增殖,調(diào)節(jié)Th17/Treg平衡,并通過上調(diào)干擾素調(diào)節(jié)因子4(interferon regulatory factor 4,IRF4)的表達(dá)水平,誘導(dǎo)巨噬細(xì)胞分化為具有抗炎作用的M2型巨噬細(xì)胞,緩解結(jié)腸炎癥[65-67]。黃芩苷可以通過下調(diào)Caspase-3、Caspase-9、Bax和凋亡相關(guān)因子配體(factor related apoptosis ligand,F(xiàn)asL)的表達(dá)水平,促進(jìn)Bcl-2的表達(dá),抑制細(xì)胞的凋亡[63]。在改善腸黏膜屏障功能方面,黃芩苷可以通過下調(diào)miR-191a的水平,增加occludin、ZO-1和黏蛋白-2的表達(dá),減少TNF-α誘導(dǎo)的大鼠小腸上皮IEC-6細(xì)胞遷移,維持腸道機(jī)械屏障和化學(xué)屏障的完整性[66,68]。Zhu等[66]研究發(fā)現(xiàn)黃芩苷可以通過降低厚壁菌門和擬桿菌門的比率,減少含內(nèi)毒素的變形桿菌門的豐度,同時(shí)上調(diào)丁酸蓖麻單胞菌屬、羅氏菌屬和真桿菌屬的相對(duì)比例,增加丁酸的水平,調(diào)節(jié)SCFAs代謝,改善TNBS誘導(dǎo)的UC腸道菌群失調(diào)。
木犀草素是一種黃酮類化合物,存在于多種植物中,具有抗炎、抗腫瘤、抗菌、抗氧化應(yīng)激等作用[69]。木犀草素可以通過激活Nrf2信號(hào)通路,增加結(jié)腸組織中HO-1、NQO1、SOD、CAT的表達(dá),下調(diào)丙二醛的水平,增強(qiáng)抗氧化應(yīng)激的能力,抑制p-STAT1、p-JAK1的表達(dá),進(jìn)而阻斷NF-κB途徑的轉(zhuǎn)導(dǎo),顯著降低COX-2、iNOS、IL-8的含量及減緩一氧化氮,從而改善DSS誘導(dǎo)的實(shí)驗(yàn)性結(jié)腸炎[70-71]。木犀草素通過阻斷Src同源區(qū)2蛋白酪氨酸磷酸酶(Src homology 2 domain-containing protein tyrosine phosphatase 1,SHP-1)的STAT3信號(hào)通路,增加阻力值及ZO-1、claudin-1、密封蛋白(polyclonal antibody to occludin,OCLN)的表達(dá)水平,恢復(fù)腸上皮屏障的功能[72]。木犀草素能夠抑制DSS誘導(dǎo)的結(jié)腸炎模型中MAPK激酶(MAPK kinase,MEK)和ERK磷酸化,降低5-羥色胺(5-hydroxytryptamine,5-HT)和色氨酸羥化酶(tryptophan hydroxylase,TPH-1)的表達(dá)[73]。Li等[74]研究表明木犀草素可以改變UC大鼠腸道微生物群的多樣性和組成,具體表現(xiàn)在擬桿菌、羅氏菌和丁酸梭菌的比例增加,厚壁菌和變形菌的豐度減少,這主要與DNA修復(fù)、核糖體、嘌呤和嘧啶的代謝有關(guān)。
小豆蔻素是一種天然黃酮,能夠抑制一氧化氮釋放以及過度生成,具有抗腫瘤、抗血小板聚集等作用[75]。在脂多糖誘導(dǎo)的RAW264.7炎癥細(xì)胞中,小豆蔻素可以通過抑制TLR4和MyD88的上調(diào),減少TNF-α和IL-6的表達(dá)發(fā)揮抗炎作用[75-76]。在人急性白血病THP-1細(xì)胞和小鼠骨髓巨噬細(xì)胞中,小豆蔻素可以通過激活A(yù)hR,促進(jìn)Nrf2/NQO1信號(hào)途徑的激活,抑制NLRP3炎性小體的活化,從而減少相關(guān)促炎因子的產(chǎn)生[77]。此外,小豆蔻素可以降低Caspase-3、MPO、iNOS、COX-2和丙二醛的水平,抑制TNF誘導(dǎo)的細(xì)胞凋亡并減少氧化應(yīng)激,改善乙酸誘導(dǎo)的UC癥狀[78]。
楊梅素是從楊梅等藥用植物中提取的黃酮類化合物,具有抗細(xì)胞增殖、抗氧化、抗炎和抗癌等作用[79]。在DSS誘導(dǎo)的小鼠急性結(jié)腸炎中,楊梅素可以通過促進(jìn)小鼠免疫細(xì)胞的內(nèi)環(huán)境穩(wěn)定,提高IL-10、TGF-β的水平,抑制IL-1β、IL-6的表達(dá)和Th1、Th17細(xì)胞的數(shù)量,增加CD25+Foxp3+Treg的比例,恢復(fù)Th17/Treg平衡,調(diào)節(jié)免疫反應(yīng)[80-81]。楊梅素可以通過減少一氧化氮的生成,降低MPO和丙二醛的含量,增加SOD與GSH-Px的表達(dá),在結(jié)腸炎癥中發(fā)揮抗氧化作用,這可能與楊梅素能夠抑制NF-κB和STAT1活化以及Nrf2介導(dǎo)的HO-1表達(dá)來抑制促炎介質(zhì)的產(chǎn)生有關(guān)[81-82]。在改善腸黏膜屏障功能方面,楊梅素可以增加claudin-1、occludin的表達(dá),恢復(fù)腸上皮緊密連接的完整性[80]。此外,楊梅素還可以通過增加阿曼克菌、瘤胃球菌的豐度,減少脫硫弧菌、梭菌等有害菌的比例,增加抗壞血酸、醛酸和脂質(zhì)的代謝,改善腸道微環(huán)境[83]。
柚皮苷是從葡萄和柑橘類等水果中提取的黃酮類糖苷化合物,實(shí)驗(yàn)證明柚皮苷具有抗炎、抗凋亡、抗氧化應(yīng)激等生物學(xué)活性[84],是一種潛在的治療IBD的有效藥物。柚皮苷可以通過上調(diào)SOD、GSH-Px的含量,降低丙二醛和MPO的水平,減少結(jié)腸組織中的炎癥反應(yīng),改善TNBS誘導(dǎo)的結(jié)腸炎的病理變化[85-86]。同樣,在乙酸誘導(dǎo)的結(jié)腸炎模型中,柚皮苷可以通過降低黃嘌呤氧化酶(xanthine oxidase,XO)和一氧化氮的含量,阻止血清中乳酸脫氫酶(lactate dehydrogenase,LDH)和堿性磷酸酶(alkaline phosphatase,ALP)表達(dá)水平的增加,恢復(fù)結(jié)腸黏膜中的氧化平衡,減少DNA損傷[87]。此外,在調(diào)節(jié)UC小鼠的腸道菌群方面,柚皮苷能夠降低厚壁菌、疣微菌、彎曲桿菌等致病菌的豐度,增加擬桿菌、藍(lán)菌的相對(duì)比例,改善DSS誘導(dǎo)的腸道菌群失調(diào)[88]。對(duì)其潛在機(jī)制的探究表明,柚皮苷可以激活DSS誘導(dǎo)的PPARγ,抑制NF-κB、MAPK途徑及NLRP3炎癥小體的激活,調(diào)節(jié)ZO-1的表達(dá)[85]。綜上,柚皮苷可能是一種潛在的改善DSS誘導(dǎo)的小鼠UC癥狀的天然藥物。
根據(jù)異戊二烯單位的不同數(shù)目,中藥中的萜類化合物大致分為倍半萜、單萜、二萜、三萜類等[89]。研究表明,一些萜類化合物能夠顯著調(diào)節(jié)T細(xì)胞亞群,通過降低Th1/Th17值,恢復(fù)Th17/Treg平衡,減少相關(guān)炎性因子的分泌,進(jìn)而減輕炎癥反應(yīng),治療炎癥相關(guān)性疾病,這與NF-κB、STAT等信號(hào)通路的調(diào)節(jié)有關(guān)。
芍藥苷是一種從毛茛科植物白芍中提取的單萜類糖苷化合物[90],可通過劑量相關(guān)性的方式抑制TNBS誘導(dǎo)的UC小鼠結(jié)腸中IL-2、IL-1β、TNF-α和γ-干擾素等細(xì)胞因子的產(chǎn)生,上調(diào)IL-10的表達(dá)水平,減輕炎癥反應(yīng)[91]。芍藥苷可以通過抑制JAK/STAT信號(hào)通路,降低體內(nèi)外IL-12的水平及DC表面MHC-II和CD86的表達(dá),抑制DC的成熟,并通過減少IL-17的分泌,上調(diào)Foxp3、IL-10的表達(dá),促使幼稚T細(xì)胞分化為CD4+CD25+Foxp3+Treg細(xì)胞,恢復(fù)DC介導(dǎo)的Th17/Treg平衡[92]。芍藥苷可以通過抑制NF-κB和STAT3磷酸化,顯著降低嗜酸性粒細(xì)胞相關(guān)趨化因子配體11(chemotactic ligand 11,CCL11)、CCL24和CCL26的水平,減少腸道內(nèi)嗜酸性粒細(xì)胞的遷移,進(jìn)而改善UC的癥狀[93]。在調(diào)節(jié)腸道菌群組成上,芍藥苷能夠阻斷胞壁酰二肽(muramyl dipeptide,MDP)/核苷酸結(jié)合寡聚結(jié)構(gòu)域2(nucleotide binding oligomerization domain containing 2,NOD2)途徑,進(jìn)而抑制NF-κB p65的核易位,增加杯狀細(xì)胞的數(shù)量,恢復(fù)結(jié)腸的隱窩結(jié)構(gòu),下調(diào)厚壁菌、毛螺菌和梭菌的相對(duì)豐度,并減少致病菌在腸道組織中的浸潤面積,對(duì)DSS誘導(dǎo)的結(jié)腸炎起到一定的治療作用[94]。此外,在脂多糖誘導(dǎo)的Caco-2細(xì)胞中,芍藥苷通過激活Nrf2/HO-1信號(hào)途徑,恢復(fù)claudin-5、occludin等緊密連接蛋白的表達(dá),降低腸道上皮的通透性[95]。
Andro是穿心蓮的主要活性成分[96]。研究表明,Andro在抗炎和免疫調(diào)節(jié)方面可以通過激活A(yù)MP依賴的蛋白激酶(AMP-activated protein kinase,AMPK)途徑,進(jìn)而阻斷NF-κB和p38 MAPK信號(hào)通路,減少一氧化氮的生成,降低iNOS和COX-2的表達(dá),改善DSS誘導(dǎo)的急性結(jié)腸炎癥狀[97]。Andro可以通過調(diào)節(jié)STAT3信號(hào)途徑,降低TNBS誘導(dǎo)的結(jié)腸炎小鼠血清和結(jié)腸組織中IL-23、IL-17和γ-干擾素的水平,降低CD4+細(xì)胞中Th1/Th17值,促進(jìn)Th2的抗炎反應(yīng)[98-99]。此外,Andro還可以通過阻斷IL-4R/STAT6信號(hào)通路,減少IL-4/IL-13與IL-4R的特異性結(jié)合,抑制MPO活性和TNF-α的分泌,改善惡唑酮誘導(dǎo)的UC癥狀[96]。
TPL是從雷公藤中提取的一種二萜內(nèi)酯,具有多種生物學(xué)活性[100]。TPL可以通過抑制IL-10的小鼠結(jié)腸黏膜中TNF-α/TNFR2信號(hào)途徑,減少Th1細(xì)胞因子的產(chǎn)生,使TNF-α、γ-干擾素、IL-12和IL-23的表達(dá)降低,并通過抑制IL-6/STAT3通路及IL-23/IL-17免疫軸,減弱Th17的促炎反應(yīng)[101-102]。TPL可以通過激活Nrf2/HO-1信號(hào)級(jí)聯(lián)反應(yīng),抑制磷酸二酯酶4(phosphodiesterase 4,PDE4)/Akt/ NF-κB信號(hào)通路,減少脂多糖誘導(dǎo)的巨噬細(xì)胞中活性氧的生成,增加M2介導(dǎo)的精氨酸酶-1(arginase-1,ARG-1)的表達(dá),同時(shí)顯著降低M1介導(dǎo)的細(xì)胞因子IL-1β、IL-6、MCP-1和CXCL10的水平,進(jìn)而抑制巨噬細(xì)胞極化為M1型,減輕脂多糖刺激的RAW264.7巨噬細(xì)胞的炎癥反應(yīng)[103]。對(duì)于固有層單核細(xì)胞(lamina propria monocytes,LPMC)的凋亡,TPL可以顯著誘導(dǎo)LPMC中SOCS3蛋白表達(dá),并降低STAT3靶向Bcl-2和重組人B細(xì)胞淋巴瘤因子2-xl(recombinant human B-cell leukemia/lymphoma-xl,Bcl-xl)的表達(dá),誘導(dǎo)有缺陷的LPCD4+細(xì)胞凋亡[104]。在腸道菌群調(diào)節(jié)方面,TPL治療可增加擬桿菌、瘤胃球菌和乳酸菌的豐度,減少金黃色葡萄球菌、梭菌、顫螺菌在屬水平上的比例,促進(jìn)腸道微生物群的恢復(fù),改善菌群的多樣性[105]。
熊果酸是從迷迭香等植物以及水果果皮中提取的五環(huán)三萜類化合物[106]。熊果酸可以抑制腸道上皮細(xì)胞和巨噬細(xì)胞中NF-κB和MAPK信號(hào)通路的激活,降低TNBS誘導(dǎo)的小鼠結(jié)腸炎以及脂多糖刺激的炎癥細(xì)胞中TNF-α、IL-1β、COX-2和iNOS的表達(dá)水平,減輕炎癥反應(yīng)[107-109]。熊果酸可以通過抑制十二烷基硫酸鈉(sodium dodecyl sulfate,SDS)誘導(dǎo)的JAK/STAT激活以及c-Jun氨基末端激酶(c-Jun-terminal kinase,JNK)的信號(hào)轉(zhuǎn)導(dǎo),阻止腸道干細(xì)胞(intestinal stem cells,ISC)的過度增殖和分化,并上調(diào)CAT、T-SOD的表達(dá),以降低細(xì)胞中活性氧的產(chǎn)生,緩解系膜細(xì)胞的損傷[110]。熊果酸治療還可以降低腸道細(xì)菌群落豐富度,增加疣微菌門的豐度,調(diào)節(jié)脂肪酸代謝,影響免疫細(xì)胞的浸潤和細(xì)胞因子的表達(dá),這可能與熊果酸治療后MAPK、IL-6/STAT3、AMPK/FoxO和PI3K信號(hào)通路有關(guān)[111]。
醌類化合物屬于天然活性化合物,是大黃、丹參等藥用植物的活性成分。根據(jù)不同的結(jié)構(gòu),分為苯醌、萘醌、菲醌和蒽醌類,具有廣泛的生物學(xué)活性[112]。目前,對(duì)于醌類化合物治療IBD的研究較少,主要集中于靶向炎癥和氧化應(yīng)激方面,這與抑制相關(guān)促炎因子水平,減少受損組織的炎性細(xì)胞浸潤有關(guān)。
大黃酸是從唐古特大黃或藥用大黃中提取的活性蒽醌,廣泛存在于各種中藥中[113]。大黃酸可以下調(diào)巨噬細(xì)胞中的NF-κB和NLRP3炎癥小體的活性,并激活Nrf2/HO-1/NQO1途徑,抑制NADPH氧化酶2(NADPH-oxidase 2,NOX2)亞基的表達(dá)和易位,下調(diào)IL-6、IL-1β、TNF-α、iNOS和COX-2的蛋白表達(dá)水平,顯著減少一氧化氮的生成,調(diào)節(jié)氧化還原平衡,介導(dǎo)巨噬細(xì)胞從促炎性的M1到抗炎性的M2表型的轉(zhuǎn)化,減少受損組織中巨噬細(xì)胞的浸潤,進(jìn)而減輕UC小鼠的炎癥反應(yīng)[114-116]。大黃酸可以增加乳酸桿菌、蘇黎世桿菌的數(shù)量,降低腸桿菌等致病菌的比例,改變腸道微生物群的組成,進(jìn)而改善菌群失調(diào)[115]。大黃酸還可以通過增加乳酸桿菌發(fā)酵產(chǎn)物,間接調(diào)節(jié)腸道的嘌呤代謝,如尿酸的水平,并通過增加claudin-1、E-鈣黏蛋白(E-cadherin)的表達(dá)和黏液的分泌,降低腸道通透性,恢復(fù)腸道的屏障功能[115]。
丹參酮IIA是從唇形科植物丹參中提取的脂溶性成分[117]。丹參酮IIA是一種有效的PXR激動(dòng)劑,經(jīng)丹參酮IIA治療的結(jié)腸炎小鼠能夠通過激活PXR,減弱NF-κB信號(hào)轉(zhuǎn)導(dǎo),下調(diào)結(jié)腸組織中iNOS、MCP、IL-1β、TNF-α和MPO的表達(dá),增加谷胱甘肽的水平,減少結(jié)腸組織的氧化應(yīng)激反應(yīng),顯著改善TNBS誘導(dǎo)的小鼠結(jié)腸炎[118-119]。此外,丹參酮IIA能通過調(diào)節(jié)NEUT的數(shù)量來預(yù)防實(shí)驗(yàn)性結(jié)腸炎,具體機(jī)制可能為丹參酮IIA顯著降低活性氧和炎性細(xì)胞因子水平,阻止C-X-C基序趨化因子受體1誘導(dǎo)的NEUT的遷移[120]。綜上,丹參酮IIA具有緩解小鼠炎癥性結(jié)腸炎的潛力。
皂苷是天然的表面活性糖苷,是人參、黃芪、三七等常見的草本植物的主要成分,在許多疾病中發(fā)揮抗炎作用并調(diào)節(jié)免疫穩(wěn)態(tài),尤其是與腸道炎癥相關(guān)的消化系統(tǒng)疾病[121]。多項(xiàng)研究表明,皂苷類化合物的免疫調(diào)節(jié)作用主要集中在通過調(diào)節(jié)巨噬細(xì)胞功能,誘導(dǎo)M2巨噬細(xì)胞的極化,恢復(fù)抗炎和促炎因子的平衡,進(jìn)而抑制腸道炎癥反應(yīng),恢復(fù)腸黏膜屏障功能。
人參皂苷是從人參屬藥材的根、莖、葉和果實(shí)中提取的固醇類三萜皂苷[122],人參皂苷Rg1是人參皂苷的特征性成分之一。在調(diào)節(jié)免疫細(xì)胞平衡和細(xì)胞因子表達(dá)方面,人參皂苷Rg1阻斷TLR的識(shí)別并激活磷酸酯酶與張力蛋白同源物基因和SOCS,抑制PI3K/Akt途徑的轉(zhuǎn)導(dǎo)和STAT蛋白的活化,調(diào)節(jié)濾泡輔助性T細(xì)胞(follicular helper T cells,Tfh)/Treg細(xì)胞的平衡[123]。人參皂苷Rg1可以靶向調(diào)節(jié)軸突生長抑制因子-B(neurite outgrowth inhibitor-B,Nogo-B)/RhoA信號(hào)通路途徑,調(diào)節(jié)M1和M2巨噬細(xì)胞的極化比例,并通過TLR4信號(hào)通路,上調(diào)NLRP12的表達(dá),抑制IL-1β和TNF-α,進(jìn)一步恢復(fù)抗炎因子和促炎因子平衡,緩解DSS誘導(dǎo)的實(shí)驗(yàn)性結(jié)腸炎[124-125]。此外,人參皂苷Rg1治療可以調(diào)節(jié)擬桿菌、乳酸菌、瘤胃球菌和葡萄球菌的相對(duì)豐度,改善結(jié)腸炎小鼠結(jié)腸微生物群的多樣性,有效減輕實(shí)驗(yàn)性結(jié)腸炎的癥狀[125]。
三七皂苷是從三七的干燥根及根莖中提取的皂苷類成分,可以用于治療糖尿病、動(dòng)脈粥樣硬化等多種疾病[126]。三七皂苷治療能夠劑量相關(guān)性地降低PI3K和Akt的磷酸化水平,抑制PI3K/Akt的激活,增加IL-10的表達(dá),顯著降低DSS誘導(dǎo)的SD大鼠結(jié)腸組織中CD11b+F4/80+標(biāo)記的巨噬細(xì)胞的百分比,誘導(dǎo)巨噬細(xì)胞極化為抗炎性的CD206+M2巨噬細(xì)胞,從而抑制腸道炎癥反應(yīng)[127]。三七皂苷通過靶向p38 MAPK和TLR/NF-κB信號(hào)轉(zhuǎn)導(dǎo)途徑,抑制三酰脂肽(Pam3-Cys-Ser-Lys4,Pam3CSK4)誘導(dǎo)的RAW264.7炎癥細(xì)胞釋放一氧化氮的水平及TNF-α、IL-6和MCP-1的表達(dá),并降低丙二醛和MPO的活性,增加腸道組織中CAT、SOD的表達(dá)活性,緩解腸道氧化應(yīng)激損傷[128]。三七皂苷可通過增加Bcl-2、Bcl-3的表達(dá),下調(diào)Caspase-3和Bax的表達(dá)水平,抑制腸道上皮的細(xì)胞凋亡反應(yīng)[127]。此外,在恢復(fù)腸道機(jī)械屏障功能方面,三七皂苷可以通過增加結(jié)腸黏膜組織中ZO-1、claudin-1和occludin的表達(dá),緩解腸黏膜屏障的損傷[127]。
黃芪甲苷IV是從豆科植物黃芪中提取的天然皂苷類成分,具有緩解哮喘、抗氧化應(yīng)激和調(diào)節(jié)免疫功能等作用[129]。黃芪甲苷Ⅳ可以通過下調(diào)NF-κB信號(hào)傳導(dǎo),降低脂多糖誘導(dǎo)的人結(jié)腸組織CCD-18Co細(xì)胞中TNF-α、IL-β和IL-6的產(chǎn)生[130]。在骨髓來源巨噬細(xì)胞(bone marrow derived macrophages,BMDM)中,黃芪甲苷Ⅳ能夠通過抑制STAT1的激活來調(diào)節(jié)STAT3的信號(hào)傳導(dǎo),增加M2型巨噬細(xì)胞標(biāo)志物CD206、幾丁質(zhì)酶3樣分子(chitinase 3-like molecule,Ym1)、TGF-β的表達(dá),抑制促炎性M1巨噬細(xì)胞標(biāo)志物iNOS、IL-6和IL-1β的活性,降低M1和M2比例,調(diào)節(jié)脾臟中巨噬細(xì)胞的功能[131]。Jiang等[132]研究表明黃芪甲苷Ⅳ可以增加三磷酸腺苷的含量,刺激β-catenin的核易位,加速上皮細(xì)胞增殖,改善TNBS誘導(dǎo)的肌動(dòng)蛋白絲的破壞,抑制claudin-5、occludin的降解,減輕結(jié)腸黏膜的損傷程度。綜上,黃芪甲苷Ⅳ可能是IBD的一種新的潛在治療藥物。
多糖是中藥中常見的天然活性成分之一,具有多種生物學(xué)作用,如抗氧化應(yīng)激、調(diào)節(jié)血脂等,因其高效、毒性低和廣泛的生物活性,作為IBD的潛在治療劑而受到廣泛的關(guān)注[133]。現(xiàn)有的實(shí)驗(yàn)研究表明,多糖類化合物通過增加有益菌和SCFAs的產(chǎn)生來調(diào)節(jié)腸道菌群的多樣性和豐富度,維持腸道微環(huán)境,促進(jìn)抗炎細(xì)胞因子的分泌,減少促炎因子的產(chǎn)生,提高抗氧化能力,修復(fù)受損的腸黏膜屏障,進(jìn)而改善IBD小鼠模型中的腸道炎癥反應(yīng)。
黃芪多糖是從黃芪中提取出來的活性多糖成分,在抗氧化、抗病毒感染、調(diào)節(jié)免疫功能、抗炎等方面發(fā)揮著重要作用[134]。黃芪多糖通過抑制NF-κB信號(hào)轉(zhuǎn)導(dǎo),下調(diào)TNF-α、IL-1β、IL-6、IL-17的表達(dá)和MPO活性,促進(jìn)CD4+T細(xì)胞中T-bet和GATA-3的表達(dá),從而調(diào)節(jié)GATA-3/T-bet值,促進(jìn)T細(xì)胞向Th2抗炎細(xì)胞表型的轉(zhuǎn)變[135-136]。黃芪多糖可以調(diào)節(jié)脂聯(lián)素/TLR/NF-κB信號(hào)通路,顯著降低UC小鼠結(jié)腸組織中一氧化氮的生成和丙二醛的水平及血清TNF-α、IL-6的表達(dá),增加TGF-β1水平及SOD、谷胱甘肽的活性,下調(diào)P-選擇素和細(xì)胞間黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)的活性,減少NEUT的浸潤和iNOS合成,抑制小鼠體內(nèi)的炎癥反應(yīng)并激活自身組織抗氧化應(yīng)激損傷的修復(fù)作用,緩解炎癥的病理狀態(tài)[137-138]。此外,黃芪多糖還可以下調(diào)結(jié)腸組織中NLRP3、Caspase-1和ASC的表達(dá),從而阻止NLRP3炎性小體的活化,進(jìn)而減少IL-18和IL-1β的表達(dá),緩解DSS誘導(dǎo)的結(jié)腸炎癥反應(yīng)[139]。有研究表明,在DSS誘導(dǎo)的實(shí)驗(yàn)性結(jié)腸炎和GSH-Px4抑制劑RSL3刺激的Caco-2細(xì)胞的模型中,黃芪多糖能夠降低前列腺素內(nèi)過氧化物合酶-2(prostaglandin endoperoxide synthase-2,)、鐵蛋白重鏈(ferritin heavy chain,)以及鐵蛋白輕鏈(ferritin light chain,)等鐵凋亡相關(guān)基因的表達(dá),進(jìn)而預(yù)防鐵凋亡,這可能與Nrf2/HO-1途徑的調(diào)節(jié)有關(guān)[140]。
DOPS是蘭科植物鐵皮石斛的多糖成分,具有廣泛的藥理活性[141]。DOPS治療能夠激活G蛋白偶聯(lián)受體,以劑量相關(guān)性方式上調(diào)IL-10的表達(dá)水平,降低Caspase-1、IL-6、TNF-α、γ-干擾素、IL-18和IL-1β的水平,同時(shí)下調(diào)β-抑制蛋白1(β-arrestin 1)的活性水平,阻斷NLRP3信號(hào)通路,顯著減輕DSS誘導(dǎo)的結(jié)腸炎反應(yīng)[142]。通過下調(diào)TNF-α信號(hào)通路,DOPS可以增加Nrf2、Kelch樣ECH相關(guān)蛋白1(Kelch like ECH associated protein 1,Keap1)、HO-1和NQO1的表達(dá),抑制活性氧的產(chǎn)生和丙二醛的水平,并增加小鼠結(jié)腸組織中抗氧化酶SOD、GSH-Px的活性,顯著提高抗氧化活性[143]。此外,DOPS可以通過上調(diào)類桿菌、乳酸桿菌和瘤胃球菌的比例,同時(shí)在一定程度上減少變形菌的豐度,改善結(jié)腸炎小鼠腸道微生物群的多樣性,并通過刺激結(jié)腸中SCFAs的產(chǎn)生,增加乙酸鹽和丁酸鹽的水平及ZO-1、occludin的表達(dá),降低腸道上皮的通透性,恢復(fù)腸道屏障功能[144]。
白術(shù)多糖是白術(shù)的主要活性成分,具有免疫調(diào)節(jié)活性[145]。研究表明,白術(shù)多糖治療能夠降低促炎細(xì)胞因子,包括TNF-α、IL-1β、IL-18和IL-23的表達(dá)水平,通過調(diào)節(jié)RAR相關(guān)孤兒受體C、Foxp3、IL-17a、TGF-β1和IL-10在結(jié)腸組織中的相對(duì)表達(dá),恢復(fù)DSS誘導(dǎo)的結(jié)腸炎小鼠腸系膜淋巴結(jié)和脾臟中的Th17/Treg平衡,并顯著提高ZO-1、occludin的表達(dá),這可能取決于IL-6/STAT3信號(hào)通路的抑制[146]。白術(shù)多糖可以增加丁酸菌和乳酸菌的比例,減少放線菌、阿克曼菌、副桿菌、細(xì)小桿菌、疣狀芽胞桿菌來改變腸道微生物群的組成,調(diào)節(jié)腸道微生物群產(chǎn)生SCFAs的能力及宿主和腸道微生物消化食物營養(yǎng)、氨基酸和膽汁酸代謝的能力,達(dá)到治療UC的效果[147]。
枸杞多糖是枸杞子的主要活性成分,在脂多糖誘導(dǎo)的RAW264.7細(xì)胞炎癥模型中,枸杞多糖通過抑制TLR4/NF-κB途徑,降低IL-6和TNF-α的表達(dá)水平,抑制一氧化氮的過度產(chǎn)生及的mRNA表達(dá),起到抗炎、抗氧化的作用[148]。枸杞多糖能夠通過抑制NF-κB介導(dǎo)的肌球蛋白輕鏈激酶(myosin light chain kinase,MLCK)-肌球蛋白輕鏈(myosin light chain,MLC)信號(hào)通路,抑制促炎因子IL-8、IL-6、ICAM-1、MCP-1的分泌,增加occludin、ZO-3、claudin-1蛋白的表達(dá),降低Caco-2細(xì)胞旁途徑通透性,恢復(fù)跨上皮電阻(transepithelial resistance,TER),進(jìn)而減輕TNF-α誘導(dǎo)的腸道屏障功能障礙[149]。
五味子多糖是五味子抗腫瘤和增強(qiáng)免疫的重要物質(zhì)基礎(chǔ),主要通過恢復(fù)腸道的正常結(jié)構(gòu),顯著降低結(jié)腸組織中MPO、丙二醛的水平及TNF-α、IL-17、IL-13、IL-6的表達(dá),提高谷胱甘肽、SOD、IL-4和γ-干擾素的水平,調(diào)節(jié)腸道微生物群的豐富度和多樣性,增加乙酸、丙酸、丁酸和總SCFAs的水平,改善UC小鼠的結(jié)腸炎癥狀[150]。
金銀花多糖是金銀花的主要活性成分,可以通過促進(jìn)UC小鼠腸黏膜中sIgA的分泌,增強(qiáng)自然殺傷細(xì)胞(natural killer cell,NK)和細(xì)胞毒性T淋巴細(xì)胞(cytotoxic T lymphocyte,CTL)的細(xì)胞毒性,減弱UC小鼠脾臟淋巴細(xì)胞的凋亡,并通過調(diào)節(jié)雙歧桿菌、乳酸桿菌與大腸桿菌、腸球菌的相對(duì)比例,恢復(fù)腸道菌群的多樣性,在一定程度上緩解DSS引起的腸道疾病[151]。
IBD是一種病因尚不明確的腸道炎癥性疾病,其病程較長且易反復(fù)發(fā)作。臨床上常見的治療藥物有5-氨基水楊酸、柳氮磺胺吡啶等,但治愈率較低且長時(shí)間具有一定的不良反應(yīng)。近年來,中藥天然產(chǎn)物在治療IBD方面取得了很大的進(jìn)展,中藥天然產(chǎn)物可以有效地控制IBD的疾病發(fā)展,改善疾病異常指標(biāo),減輕臨床癥狀。如圖1所示,中藥天然產(chǎn)物對(duì)IBD的調(diào)節(jié)機(jī)制主要集中在調(diào)節(jié)免疫功能、抗炎、抗氧化應(yīng)激、調(diào)節(jié)腸道菌群以及恢復(fù)腸黏膜屏障功能方面。這與中藥天然產(chǎn)物能夠上調(diào)IL-4、IL-10等抗炎因子的水平,減少IL-1β、TNF-α、γ-干擾素、IL-17等促炎因子的表達(dá),調(diào)節(jié)Th1/Th2、Th17/Treg的比例失衡,誘導(dǎo)巨噬細(xì)胞分化為具有抗炎作用的M2表型,降低MPO、丙二醛、iNOS、COX-2的活性及一氧化氮、活性氧的過度生成,增加谷胱甘肽、SOD、CAT的水平,增強(qiáng)TC、SCFAs的代謝,改變腸道菌群的多樣性和豐富度,調(diào)節(jié)厚壁菌和擬桿菌的比例,增加緊密連接蛋白和黏蛋白的表達(dá),恢復(fù)腸上皮緊密連接的完整性,降低腸道上皮細(xì)胞的通透性有關(guān)。除了上述作用外,一些中藥天然產(chǎn)物被證明可以通過增加自噬體的數(shù)量,調(diào)節(jié)腸上皮細(xì)胞的自噬,并通過減少Bax、FasL的表達(dá),上調(diào)抗凋亡蛋白(如Bcl-3、Bcl-2)的水平,抑制細(xì)胞凋亡,進(jìn)而有效減輕腸黏膜屏障的損傷,這可能與TLR/MyD88/NF-κB、NLRP3、JAK/STAT3、p38 MAPK、PI3K/Akt、Keap1/Nrf2/HO-1等多條信號(hào)通路的調(diào)節(jié)及各通路之間的相互作用有關(guān)。生物堿類、多酚類、黃酮類、萜類、醌類、皂苷類等類型的中藥天然產(chǎn)物調(diào)控IBD的作用機(jī)制見表1。
表1 中藥天然產(chǎn)物調(diào)控IBD
續(xù)表1
類別活性成分實(shí)驗(yàn)動(dòng)物/細(xì)胞模型作用機(jī)制文獻(xiàn) 生物堿苦參堿HT29細(xì)胞、DSS誘導(dǎo)C57BL/6小鼠模型激活Nrf2途徑,TNF-α、IL-1β、IL-6表達(dá)↓15-18 DSS刺激NCM460細(xì)胞模型抑制JAK2/STAT3信號(hào)通路,調(diào)節(jié)細(xì)胞凋亡相關(guān)因子 DSS誘導(dǎo)C57BL/6小鼠UC模型調(diào)節(jié)PPARα信號(hào)通路,ZO-1、claudins、occludin表達(dá)↑,黏蛋白2表達(dá)↑ TNBS誘導(dǎo)BALB/c小鼠模型抑制TLR4/MyD88/NF-κB信號(hào)通路,β變形菌、擬桿菌、柔膜菌、消化鏈球菌、甲基桿菌等相對(duì)豐度↑ 氧化苦參堿TNBS誘導(dǎo)SD大鼠模型抑制TLR4/MyD88/NF-κB信號(hào)通路,TNF-α、IL-1β、IL-6表達(dá)↓,緊密連接蛋白表達(dá)↑20-23 DSS誘導(dǎo)BALB/c小鼠模型阻斷RhoA/ROCK信號(hào)通路,Th1/Th17↓,促進(jìn)Treg細(xì)胞分化,谷胱甘肽、SOD水平↑,MPO、iNOS、COX-2活性↓,活性氧產(chǎn)生↓ 3% DSS誘導(dǎo)BALB/c小鼠模型抑制PI3K/Akt途徑,Bcl-2、Bcl-3表達(dá)↑,Caspase-3、Caspase-9表達(dá)↓ 胡椒堿TNBS誘導(dǎo)SD大鼠模型阻斷IκB-α/NF-κB信號(hào)通路,ILs、TNF-α、COX-2、iNOS表達(dá)↓,Caspase-1表達(dá)↓,ZO-1、claudin-1、occludin表達(dá)↑24-26 SW480細(xì)胞、HT-29細(xì)胞模型阻斷MAPK信號(hào)通路,IL-8表達(dá)↓ LS174T細(xì)胞、DSS誘導(dǎo)C57BL/6J小鼠模型作為PXR的激動(dòng)劑,誘導(dǎo)CYP3A4基因表達(dá) 多酚姜黃素DSS誘導(dǎo)BALB/c小鼠模型抑制TLR4/MyD88/NF-κB、p38 MAPK信號(hào)通路,TNF-α、IL-6、IL-17、IL-23表達(dá)↓,中性粒細(xì)胞浸潤程度↓,改變Th1、Th2的比例,恢復(fù)Treg/Th17的平衡30-35 DSS誘導(dǎo)BALB/c小鼠模型調(diào)節(jié)M1/M2巨噬細(xì)胞的極化平衡 脂多糖、DSS刺激BMDM細(xì)胞模型活性氧產(chǎn)生↓,Caspase-1、IL-1β、ASC表達(dá)↓,抑制NLRP3炎性小體活化 DSS誘導(dǎo)BALB/c小鼠模型調(diào)節(jié)上皮細(xì)胞自噬過程 白藜蘆醇TNF-α刺激Caco-2細(xì)胞模型IL-1β↓,IL-11↑37-42 DSS誘導(dǎo)BALB/c小鼠模型抑制PI3K/Akt信號(hào)通路,VEGFA表達(dá)↓,TNF-α、γ-干擾素、IL-6、IL-4水平↓ TNBS誘導(dǎo)BALB/c小鼠模型miR-31表達(dá)↓,F(xiàn)oxp3+T細(xì)胞數(shù)量↑,IL-17+T細(xì)胞的比例↓ DSS誘導(dǎo)BALB/c小鼠模型調(diào)控Wnt信號(hào)途徑,調(diào)節(jié)SUMO1、β-catenin表達(dá) TNBS誘導(dǎo)BALB/c小鼠模型酸性擬桿菌數(shù)量↓,促進(jìn)SCFAs代謝,丁酸水平↑ DSS誘導(dǎo)C57BL/6小鼠模型腸上皮細(xì)胞自噬↑,自噬體數(shù)量↑,LC3B和Beclin-1表達(dá)↑,occludin和ZO-1↑ 丹皮酚DSS誘導(dǎo)C57BL6/J小鼠模型、脂多糖刺激RAW264.7細(xì)胞模型阻斷MAPK/ERK/p38信號(hào)通路,IL-17等炎性因子分泌↓,誘導(dǎo)Treg的分化,抑制Th17細(xì)胞增殖43-46 CW-2細(xì)胞、TNBS誘導(dǎo)BALB/c小鼠模型抑制NF-κB、STAT1信號(hào)通路,IL-17、IL-6等炎性因子↓,iNOS表達(dá)↓,誘導(dǎo)Treg的分化,抑制Th17細(xì)胞增殖 DSS誘導(dǎo)C57BL/6小鼠UC模型調(diào)節(jié)Dectin-1/NF-κB途徑,改善白色念珠菌感染的影響 綠原酸脂多糖刺激RAW264.7細(xì)胞、DSS誘導(dǎo)C57BL/6小鼠模型、TNBS誘導(dǎo)BALB/c小鼠模型抑制TLR4介導(dǎo)的PI3K/Akt和NF-κB途徑,MPO表達(dá)水平↓,中性粒細(xì)胞浸潤↓47-52 DSS誘導(dǎo)ICR小鼠模型SOD1、CAT表達(dá)↑,丙二醛含量↓,活性氧生成↓,SCFAs代謝↑,丁酸水平↑ DSS誘導(dǎo)C57BL/6小鼠模型抑制凋亡信號(hào)通路,Bax、Caspase-8、Caspase-9表達(dá)↓ 高脂飲食的SD大鼠模型調(diào)節(jié)氨基酸、脂質(zhì)代謝、腸道菌群豐富度
續(xù)表1
類別活性成分實(shí)驗(yàn)動(dòng)物/細(xì)胞模型作用機(jī)制文獻(xiàn) 多酚沒食子酸TNBS誘導(dǎo)BALB/c小鼠模型抑制IκBα/NF-κB通路,IL-4和IL-10水平↑,IL-6、IL-12、IL-17、IL-23、TGF-β、TNF-α表達(dá)↓53-56 2.5% DSS誘導(dǎo)BALB/c小鼠模型激活Nrf2途徑,UDP-GT、NQO1表達(dá)↑,MPO活性↓,iNOS、COX-2表達(dá)↓ DSS誘導(dǎo)SD大鼠模型增加碳水化合物代謝和膽汁酸代謝,降低氨基酸代謝,減少變形桿門和厚壁桿菌門的相對(duì)豐度 兒茶素、EGCGDSS誘導(dǎo)C57BL/6小鼠模型IL-6、MCP-1、IL-1β、IL-8、TNF-α表達(dá)↓,MPO水平↓,T細(xì)胞和巨噬細(xì)胞浸潤程度↓,T-AOC、T-SOD、CAT表達(dá)↑,丙二醛水平↓58-60 DSS誘導(dǎo)SD大鼠模型抑制TLR4/MyD88/NF-κB信號(hào)通路,阻止Th1細(xì)胞分化,調(diào)節(jié)Th1/Th2平衡 DSS誘導(dǎo)C57BL/6小鼠模型產(chǎn)SCFAs細(xì)菌數(shù)量↑,促進(jìn)醋酸鹽、丁酸鹽和丙酸鹽的產(chǎn)生 黃酮黃芩苷TNBS誘導(dǎo)SD大鼠模型、脂多糖誘導(dǎo)的HT-29細(xì)胞模型阻斷PI3K/Akt信號(hào)通路,IL-6、IL-1β、TNF-α釋放↓,IL-10水平↑,ZO-1、β-catenin表達(dá)↑63-68 TNBS誘導(dǎo)SD大鼠模型、脂多糖誘導(dǎo)RAW264.7細(xì)胞模型抑制NF-κB信號(hào)通路,CAT、SOD、GSH-Px活性↑,Caspase-3、Caspase-9、FasL表達(dá)↓,Bcl-2表達(dá)↑ TNBS誘導(dǎo)SD大鼠模型抑制MIF表達(dá),調(diào)節(jié)巨噬細(xì)胞功能,MCP-1、CCL2、MIP-3、CCL20表達(dá)↓ TNBS誘導(dǎo)SD大鼠模型促進(jìn)CD4+CD29+細(xì)胞增殖,調(diào)節(jié)Th17/Treg平衡,活性氧、丙二醛水平↓,occludin、ZO-1和黏蛋白-2表達(dá)↑,厚壁菌門與擬桿菌門比例↓,變形桿菌門豐度↓,丁酸蓖麻單胞菌屬、羅氏菌屬等比例↑,調(diào)節(jié)SCFAs代謝,丁酸水平↑ DSS誘導(dǎo)C57BL/6小鼠模型IRF4表達(dá)↑,促進(jìn)M2型巨噬細(xì)胞極化 TNF-α誘導(dǎo)IEC-6細(xì)胞模型miR-191a水平↓,TNF-α誘導(dǎo)IEC-6遷移↓ 木犀草素DSS誘導(dǎo)C57BL/6小鼠模型激活Nrf2途徑,HO-1、NQO1表達(dá)↑,SOD、CAT表達(dá)↑,丙二醛水平↓70-74 HCT-6細(xì)胞模型抑制JAK1/STAT1信號(hào)通路,COX-2、iNOS、IL-8的含量↓,NO生成↓ TNBS誘導(dǎo)Wistar大鼠UC模型抑制NF-κB信號(hào)通路,MPO、丙二醛水平↓ TNF-α、γ-干擾素刺激Caco-2細(xì)胞模型阻斷SHP-1/STAT3信號(hào)通路,阻力值↑,ZO-1、claudin-1、OCLN表達(dá)↑ PMA刺激RBL-2H3細(xì)胞模型、2.5% DSS誘導(dǎo)C57BL/6小鼠模型抑制MAPK信號(hào)通路,5-HT、TPH-1表達(dá)↓ DSS誘導(dǎo)Wistar大鼠UC模型擬桿菌、羅氏菌、丁酸梭菌比例↑,厚壁菌、變形菌豐度↓ 小豆蔻素脂多糖誘導(dǎo)RAW264.7細(xì)胞模型抑制TLR4和MyD88,IL-1β、TNF-α、IL-6表達(dá)↓75-78 THP-1細(xì)胞、骨髓巨噬細(xì)胞、DSS誘導(dǎo)C57BL/6小鼠模型、TNBS誘導(dǎo)BALB/c小鼠模型激活A(yù)hR,促進(jìn)Nrf2/NQO1信號(hào)途徑,抑制NLRP3炎性小體活化,下調(diào)相關(guān)促炎因子表達(dá) 乙酸誘導(dǎo)SD大鼠UC模型Caspase-3、MPO、iNOS、COX-2、丙二醛水平↓,抑制細(xì)胞凋亡,減少氧化應(yīng)激 楊梅素DSS誘導(dǎo)C57BL/6小鼠模型IL-10、TGF-β水平↑,IL-17↓,Th1、Th17數(shù)量↓,CD4+CD25+ Treg比例↑,恢復(fù)Th17/Treg平衡,claudin-1等表達(dá)↑80-81,83 DSS誘導(dǎo)BALB/c小鼠模型IL-1β、IL-6表達(dá)↓,一氧化氮生成↓,MPO、丙二醛含量↓,SOD、GSH-Px表達(dá)↑ DSS誘導(dǎo)C57BL/6小鼠模型阿曼克菌、瘤胃球菌的豐度↑,脫硫弧菌、梭菌的比例↓
續(xù)表1
類別活性成分實(shí)驗(yàn)動(dòng)物/細(xì)胞模型作用機(jī)制文獻(xiàn) 黃酮柚皮苷TNBS誘導(dǎo)Wistar大鼠模型SOD、GSH-Px含量↑,丙二醛、MPO水平↓85-88 DSS誘導(dǎo)C57BL/6小鼠模型調(diào)控PPARγ,抑制NF-κB、MAPK信號(hào)通路,阻止NLRP3炎癥小體的激活,調(diào)節(jié)ZO-1表達(dá) 乙酸誘導(dǎo)Wistar大鼠模型LDH、ALP表達(dá)水平↓,XO、一氧化氮↓,減少DNA損傷 DSS誘導(dǎo)C57BL/6小鼠模型腸道菌群豐富度和多樣性↑,厚壁菌、疣微菌、彎曲桿菌豐度↓,擬桿菌、藍(lán)菌比例↑ 萜類芍藥苷TNBS誘導(dǎo)BALB/c小鼠模型抑制NF-κB信號(hào)通路,抑制細(xì)胞凋亡,IL-2、IL-1β、TNF-α、γ-干擾素的產(chǎn)生↓91-95 TNBS誘導(dǎo)的C57BL/6小鼠模型抑制JAK/STAT通路,IL-17等分泌↓,F(xiàn)oxp3、IL-10表達(dá)↑,使幼稚T細(xì)胞分化為Treg細(xì)胞,恢復(fù)Th17/Treg平衡 DSS誘導(dǎo)的C57BL/6小鼠模型抑制NF-κB和STAT3信號(hào)通路,CCL11、CCL24、CCL26水平↓,腸道內(nèi)嗜酸性粒細(xì)胞的遷移↓ DSS誘導(dǎo)的C57BL/6小鼠模型阻斷MDP/NOD2信號(hào)途徑,抑制NF-κB,杯狀細(xì)胞數(shù)量↑,厚壁菌、毛螺菌、梭菌相對(duì)豐度↓ 脂多糖誘導(dǎo)的Caco-2細(xì)胞模型激活Nrf2/HO-1信號(hào)通路,claudin-5、occludin↑ Andro脂多糖誘導(dǎo)RAW264.7細(xì)胞模型、DSS誘導(dǎo)BALB/c小鼠模型激活A(yù)MPK途徑,阻斷NF-κB和p38 MAPK信號(hào)通路,一氧化氮生成↓,iNOS、COX-2表達(dá)↓96-99 TNBS誘導(dǎo)C57BL/6小鼠UC模型調(diào)節(jié)STAT3信號(hào)通路,IL-23、IL-17、γ-干擾素水平↓,Th1和Th17細(xì)胞百分比↓,促進(jìn)Th2抗炎反應(yīng) 惡唑酮誘導(dǎo)SD大鼠模型阻斷IL-4R/STAT6信號(hào)通路,抑制MPO活性和TNF-α分泌 TPLIL-10?∕?小鼠CD模型抑制IL-6/STAT3信號(hào)途徑,Th17細(xì)胞因子產(chǎn)生↓101-105 DSS誘導(dǎo)IL-10?∕?C57BL/6小鼠模型抑制TNF-α/TNFR2信號(hào)途徑,Th1細(xì)胞因子產(chǎn)生↓,TNF-α、γ-干擾素、IL-12、IL-23表達(dá)↓ DSS誘導(dǎo)C57BL/6小鼠模型激活Nrf2/HO-1信號(hào)級(jí)聯(lián)反應(yīng),抑制PDE4/Akt/NF-κB信號(hào)通路,活性氧生成↓,抑制M1型巨噬細(xì)胞極化,調(diào)節(jié)M1/M2細(xì)胞平衡 IL-10?∕?小鼠CD模型Bcl-2、Bcl-xl表達(dá)↓,誘導(dǎo)有缺陷的細(xì)胞凋亡 DSS誘導(dǎo)C57BL/6小鼠模型擬桿菌、瘤胃球菌、乳酸菌豐度↑,金黃色屬、梭菌屬等↓ 熊果酸TNBS誘導(dǎo)C57BL/6小鼠模型抑制NF-κB、MAPK信號(hào)通路,TNF-α、IL-1β、COX-2和iNOS表達(dá)↓107-111 SDS誘導(dǎo)果蠅模型抑制JAK/STAT、JNK信號(hào)通路,阻止ISC的過度增殖和分化,CAT、T-SOD表達(dá)↑,活性氧產(chǎn)生↓ DSS誘導(dǎo)C57BL/6小鼠模型調(diào)節(jié)MAPK、IL-6/STAT3、AMPK/FoxO、PI3K信號(hào)通路,疣微菌門↑,調(diào)節(jié)脂肪酸代謝,減少免疫細(xì)胞浸潤和炎性因子表達(dá) 醌類大黃酸脂多糖/脂多糖+ATP誘導(dǎo)的RAW264.7細(xì)胞抑制NF-κB信號(hào)通路和NLRP3炎癥小體的活化,激活Nrf2/HO-1/NQO1途徑IL-6、等蛋白表達(dá)↓,介導(dǎo)巨噬細(xì)胞從M1到M2表型的轉(zhuǎn)化,減少巨噬細(xì)胞浸潤114-116 DSS誘導(dǎo)C57BL/6小鼠模型乳酸桿菌、蘇黎世桿菌豐度↑,腸桿菌豐度↓,調(diào)節(jié)嘌呤代謝,claudin-1、E-cadherin↑,黏液分泌↑ 丹參酮ⅡATNBS誘導(dǎo)BALB/c小鼠模型抑制NF-κB信號(hào)通路,iNOS、MCP、IL-1β、TNF-α、MPO表達(dá)水平↓,谷胱甘肽表達(dá)↑,減少氧化應(yīng)激118-120 HepG2細(xì)胞、LS174T細(xì)胞激活PXR,抑制NF-κB信號(hào)通路 DSS誘導(dǎo)C57BL/6小鼠模型調(diào)節(jié)中性粒細(xì)胞數(shù)量,阻止中性粒細(xì)胞遷移和活化,活性氧↓
續(xù)表1
類別活性成分實(shí)驗(yàn)動(dòng)物/細(xì)胞模型作用機(jī)制文獻(xiàn) 皂苷人參皂苷Rg1DSS誘導(dǎo)BALB/c小鼠模型阻斷TLR4,激活PTEN和SOCS,抑制PI3K/Akt途徑,調(diào)節(jié)Tfh/Treg細(xì)胞平衡123-125 DSS誘導(dǎo)BALB/c小鼠模型靶向Nogo/RhoA信號(hào)通路,調(diào)節(jié)M1和M2巨噬細(xì)胞極化比例,擬桿菌、乳酸菌、瘤胃球菌、葡萄球菌豐度↑ DSS誘導(dǎo)C57BL/6小鼠模型NLRP12表達(dá)↑,IL-1β、TNF-α表達(dá)↓ 三七皂苷DSS誘導(dǎo)SD大鼠模型阻斷PI3K/Akt信號(hào)途徑,IL-10表達(dá)↑,誘導(dǎo)M2型巨噬細(xì)胞極化,Bcl-2、Bcl-3表達(dá)↑,Caspase-3、Bax表達(dá)↓,ZO-1、claudin-1、occludin↑127-128 Pam3CSK4誘導(dǎo)RAW264.7細(xì)胞、DSS誘導(dǎo)C57BL/6小鼠模型靶向MAPK、TLR/NF-κB信號(hào)轉(zhuǎn)導(dǎo)途徑,TNF-α、IL-6等表達(dá)↓,丙二醛、MPO活性↓,CAT、SOD表達(dá)↑ 黃芪甲苷Ⅳ脂多糖誘導(dǎo)的CCD-18Co細(xì)胞下調(diào)NF-κB信號(hào)傳導(dǎo),TNF-α,IL-β、IL-6表達(dá)↓130-132 DSS誘導(dǎo)C57BL/6模型、脂多糖、γ-干擾素誘導(dǎo)的BMDM細(xì)胞抑制STAT1的激活,調(diào)節(jié)STAT3信號(hào)轉(zhuǎn)導(dǎo),M1標(biāo)志物IL-1β、IL-6、iNOS表達(dá)↓,M2標(biāo)志物TGF-β、Ym1、CD206表達(dá)↑,M1/M2↓ TNBS誘導(dǎo)SD大鼠模型ATP含量↑,刺激β-catenin的核易位,抑制claudin-5、occludin降解 多糖黃芪多糖DSS誘導(dǎo)C57BL/6小鼠模型抑制NF-κB信號(hào)通路,TNF-α、IL-1β、IL-6等表達(dá)↓,MPO↓135-140 TNBS誘導(dǎo)SD大鼠模型調(diào)節(jié)GATA-3/T-bet,促進(jìn)T細(xì)胞向Th2表型的轉(zhuǎn)變 DNBS誘導(dǎo)SD大鼠模型調(diào)節(jié)脂聯(lián)素/TLR/NF-κB信號(hào)通路,一氧化氮、丙二醛水平↓,TNF-α、IL-6表達(dá)↓,TGF-β1水平及SOD、谷胱甘肽↑,P-選擇素、ICAM-1、iNOS活性↓,減少NEUT的浸潤 DSS誘導(dǎo)C57BL/6小鼠模型NLRP3、Caspase-1、ASC表達(dá)↓,阻止NLRP3小體活化 RSL3刺激的Caco-2細(xì)胞模型激活Nrf2/HO-1途徑,PTGS2、FTH、FTL↓,預(yù)防鐵凋亡 DOPSDSS誘導(dǎo)BALB/c小鼠模型阻斷NLRP3信號(hào)通路,激活G蛋白偶聯(lián)受體,IL-10表達(dá)水平↑,Caspase-1、IL-6、TNF-α等表達(dá)↓,β-arrestin 1活性↓142-144 DSS誘導(dǎo)BALB/c小鼠模型激活Keap1/Nrf2/HO-1信號(hào)通路,活性氧產(chǎn)生↓,丙二醛↓,SOD、GSH-Px表達(dá)↑ DSS誘導(dǎo)BALB/c小鼠模型類桿菌、乳酸桿菌、瘤胃球菌比例↑,變形桿菌↓,SCFAs產(chǎn)生↑,乙酸鹽、丁酸鹽水平↑,ZO-1、occludin↑ 白術(shù)多糖DSS誘導(dǎo)C57BL/6小鼠模型TNF-α、IL-1β、IL-18和IL-23表達(dá)↓,調(diào)節(jié)Th17/Treg細(xì)胞平衡,ZO-1、occludin表達(dá)↑146-147 2.5% DSS誘導(dǎo)C57BL/6小鼠模型丁酸菌、乳酸菌比例↑,放線菌、阿克曼菌等↓,調(diào)節(jié)腸道微生物群產(chǎn)生SCFAs 枸杞多糖脂多糖刺激RAW264.7細(xì)胞模型抑制TLR4/NF-κB途徑,IL-6、TNF-α表達(dá)↓,抑制一氧化氮的過度產(chǎn)生,iNOS表達(dá)↓148-149 TNF-α刺激Caco-2細(xì)胞模型抑制NF-κB介導(dǎo)MLCK-MLC信號(hào)通路,細(xì)胞旁途徑通透性↓,TER↑,抑制IL-8、IL-6、ICAM-1、MCP-1的分泌 五味子多糖DSS誘導(dǎo)C57BL/6小鼠模型TNF-α、IL-17、IL-13、IL-6水平↓,SOD、谷胱甘肽、IL-4表達(dá)↑,調(diào)節(jié)腸道微生物群的組成,乙酸、丙酸、丁酸和總SCFAs↑150 金銀花多糖DSS誘導(dǎo)BALB/c小鼠模型sIgA分泌↑,NK、CTL的細(xì)胞毒性↑,淋巴細(xì)胞凋亡↓,雙歧桿菌、乳酸桿菌數(shù)量↑,大腸桿菌、腸球菌豐度↓151
“↓”-降低或抑制 “↑”-增加或促進(jìn)
“↓”-lower or inhibit “↑”-increase or promote
綜上,中藥天然產(chǎn)物在治療IBD及預(yù)防其復(fù)發(fā)方面具有明顯的優(yōu)勢和潛在的臨床應(yīng)用價(jià)值。但是由于中藥天然產(chǎn)物的成分較多、作用機(jī)制復(fù)雜、基礎(chǔ)研究的深度不夠及缺乏大量的隨機(jī)臨床實(shí)驗(yàn),對(duì)于其最佳治療效果、確切靶點(diǎn)和生物利用度仍需要做進(jìn)一步的研究和評(píng)估。在此基礎(chǔ)上,繼續(xù)深入研究機(jī)體免疫功能、腸道菌群、腸黏膜屏障等組分的異常與IBD發(fā)病的關(guān)系及相互作用,以及各種中藥天然產(chǎn)物對(duì)上述方面的潛在機(jī)制和調(diào)節(jié)作用,可以促進(jìn)中藥天然產(chǎn)物的進(jìn)一步研發(fā),使中藥天然產(chǎn)物更廣泛、更準(zhǔn)確地應(yīng)用于臨床上IBD的治療。
利益沖突 所有作者均聲明不存在利益沖突
[1] Neurath M F. Current and emerging therapeutic targets for IBD [J]., 2017, 14(5): 269-278.
[2] Zhang Y Z, Li Y Y. Inflammatory bowel disease: pathogenesis [J]., 2014, 20(1): 91-99.
[3] Linson E A, Hanauer S B. Epidemiology of colorectal cancer in inflammatory bowel disease-the evolving landscape [J]., 2021, 23(9): 16.
[4] 許海健, 朱倩, 丁康, 等. 黃芩苷治療炎癥性腸病的作用機(jī)制研究進(jìn)展[J]. 現(xiàn)代藥物與臨床, 2023, 38(1): 219-223.
[5] Seyedian S S, Nokhostin F, Malamir M D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease [J]., 2019, 12(2): 113-122.
[6] Zhu X, Yao Q, Yang P S,. Multi-omics approaches for in-depth understanding of therapeutic mechanism for traditional Chinese medicine [J]., 2022, 13: 1031051.
[7] Yang L, Luo H, Tan D C,. A recent update on the use of Chinese medicine in the treatment of inflammatory bowel disease [J]., 2021, 92: 153709.
[8] Peng J, Zheng T T, Li X,. Plant-derived alkaloids: The promising disease-modifying agents for inflammatory bowel disease [J]., 2019, 10: 351.
[9] Li C, Xi Y, Li S,Berberine ameliorates TNBS induced colitis by inhibiting inflammatory responses and Th1/Th17 differentiation [J].2015, 67(2 Pt B): 444-454.
[10] Liu Y X, Liu X, Hua W W,. Berberine inhibits macrophage M1polarization via Akt1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis [J]., 2018, 57: 121-131.
[11] Jing W H, Dong S J, Luo X L,. Berberine improves colitis by triggering AhR activation by microbial tryptophan catabolites [J]., 2021, 164.
[12] Liao Z Q, Xie Y Z, Zhou B J,. Berberine ameliorates colonic damage accompanied with the modulation of dysfunctional bacteria and functions in ulcerative colitis rats [J]., 2020, 104(4): 1737-1749.
[13] Jing W H, Safarpour Y, Zhang T,. Berberine upregulates P-glycoprotein in human Caco-2 cells and in an experimental model of colitis in the rat via activation of Nrf2-dependent mechanisms [J]., 2018, 366(2): 332-340.
[14] 張曉雯, 李凌宇, 尚海, 等. 苦參堿及其類似物的結(jié)構(gòu)修飾研究進(jìn)展 [J]. 中草藥, 2019, 50(23): 5892-5900.
[15] Fang R M, Wu R Y, Zuo Q,.containing-QYJD formula activates Nrf2 anti-oxidant response, blocks cellular transformation and protects against DSS-induced colitis in mouse model [J]., 2018:1-15.
[16] Chen A M, Fang D F, Ren Y,. Matrine protects colon mucosal epithelial cells against inflammation and apoptosis via the Janus kinase 2/signal transducer and activator of transcription 3 pathway [J]., 2022, 13(3): 6490-6499.
[17] Yao H, Shi Y, Yuan J,. Matrine protects against DSS-induced murine colitis by improving gut barrier integrity, inhibiting the PPAR-α signaling pathway, and modulating gut microbiota [J]., 2021, 100: 108091.
[18] Li P Y, Lei J J, Hu G S,. Matrine mediates inflammatory response via gut microbiota in TNBS- induced murine colitis [J]., 2019, 10: 28.
[19] Zhou P Q, Fan H, Hu H,. Role of DOR-β-arrestin1-Bcl2 signal transduction pathway and intervention effects of oxymatrine in ulcerative colitis [J]., 2014, 34(6): 815-820.
[20] Wang Y F, Shou Z X, Fan H,. Protective effects of oxymatrine against DSS-induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway [J]., 2019, 39(7): BSR20182297.
[21] Tang Q, Zhang W, Zhang C,. Oxymatrine loaded nitric oxide-releasing liposomes for the treatment of ulcerative colitis [J]., 2020, 586: 119617.
[22] Chen Q Y, Duan X Y, Fan H,. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/Akt signaling pathway [J]., 2017, 53: 149-157.
[23] Li S W, Feng G Q, Zhang M,. Oxymatrine attenuates TNBS-induced colinutis in rats through TLR9/Myd88/ NF-κB signal pathway [J]., 2022, 41: 9603271221078866.
[24] Guo G, Shi F, Zhu J,. Piperine, a functional food alkaloid, exhibits inhibitory potential against TNBS- induced colitis via the inhibition of IκB-α/NF-κB and induces tight junction protein (claudin-1, occludin, and ZO-1) signaling pathway in experimental mice [J]., 2020, 39(4): 477-491.
[25] Hou X F, Pan H, Xu L H,. Piperine suppresses the expression of CXCL8 in lipopolysaccharide-activated SW480 and HT-29 cells via downregulating the mitogen- activated protein kinase pathways [J]., 2015, 38(3): 1093-1102.
[26] Hu D H, Wang Y G, Chen Z W,. The protective effect of piperine on dextran sulfate sodium induced inflammatory bowel disease and its relation with pregnane X receptor activation [J]., 2015, 169: 109-123.
[27] Zhou Y, Zheng J, Li Y,. Natural polyphenols for prevention and treatment of cancer [J]., 2016, 8(8): 515.
[28] Pandey K B, Rizvi S I. Plant polyphenols as dietary antioxidants in human health and disease [J]., 2009, 2(5): 270-278.
[29] 陳欠欠, 朱鳳閣, 陳香美. 姜黃素治療腎間質(zhì)纖維化分子機(jī)制研究進(jìn)展 [J]. 中草藥, 2023, 54(3): 966-975.
[30] Wei C, Wang J Y, Xiong F,. Curcumin ameliorates DSS?induced colitis in mice by regulating the Treg/Th17 signaling pathway [J]., 2021, 23(1): 34.
[31] Rahimi K, Ahmadi A, Hassanzadeh K,. Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states [J]., 2019, 18(7): 738-748.
[32] Mouzaoui S, Banerjee S, Djerdjouri B. Low-dose curcumin reduced TNBS-associated mucin depleted foci in mice by scavenging superoxide anion and lipid peroxides, rebalancing matrix NO synthase and aconitase activities, and recoupling mitochondria [J]., 2020, 28(4): 949-965.
[33] Kang Z P, Wang M X, Wu T T,. Curcumin alleviated dextran sulfate sodium-induced colitis by regulating M1/M2macrophage polarization and TLRs signaling pathway [J]., 2021, 2021: 3334994.
[34] Gong Z Z, Zhao S N, Zhou J F,. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production [J]., 2018, 104: 11-19.
[35] Yue W J, Liu Y, Li X,. Curcumin ameliorates dextran sulfate sodium-induced colitis in mice via regulation of autophagy and intestinal immunity [J]., 2019, 30(3): 290-298.
[36] 楊萍. 白藜蘆醇通過調(diào)控信號(hào)通路治療膝骨關(guān)節(jié)炎的研究進(jìn)展 [J]. 中草藥, 2023, 54(4): 1311-1320.
[37] Sabzevary-Ghahfarokhi M, Soltani A, Luzza F,. The protective effects of resveratrol on ulcerative colitis via changing the profile of Nrf2 and IL-1β protein [J]., 2020, 47(9): 6941-6947.
[38] Zhu F, Zheng J J, Xu F,. Resveratrol alleviates dextran sulfate sodium-induced acute ulcerative colitis in mice by mediating PI3K/Akt/VEGFA pathway [J]., 2021, 12: 693982.
[39] Alrafas H R, Busbee P B, Nagarkatti M,. Resveratrol downregulates miR-31 to promote T regulatory cells during prevention of TNBS-induced colitis [J]., 2020, 64(1): e1900633.
[40] Alrafas H R, Busbee P B, Nagarkatti M,. Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells [J]., 2019, 106(2): 467-480.
[41] Wang J Y, Zhang Z Y, Fang A N,. Resveratrol attenuates inflammatory bowel disease in mice by regulating SUMO1 [J]., 2020, 43(3): 450-457.
[42] Pan H H, Zhou X X, Ma Y Y,. Resveratrol alleviates intestinal mucosal barrier dysfunction in dextran sulfate sodium-induced colitis mice by enhancing autophagy [J]., 2020, 26(33): 4945-4959.
[43] 吳桂瑩, 亓玉玲, 郝寶燕, 等. 丹皮酚衍生物及其藥理活性研究進(jìn)展 [J]. 中草藥, 2019, 50(4): 1001-1006.
[44] Zong S Y, Pu Y Q, Xu B L,. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis [J]., 2017, 42: 32-38.
[45] Ishiguro K, Ando T, Maeda O,. Paeonol attenuates TNBS-induced colitis by inhibiting NF-kappaB and STAT1 transactivation [J]., 2006, 217(1): 35-42.
[46] Ge Y Z, Pan M, Zhang C F,. Paeonol alleviates dextran sodium sulfate induced colitis involving-associated dysbiosis [J]., 2021, 59(4): 335-344.
[47] Zatorski H, Sa?aga M, Zielińska M,. Experimental colitis in mice is attenuated by topical administration of chlorogenic acid [J]., 2015, 388(6): 643-651.
[48] Chen L P, Zhang C Y, Cao J J,. Yiyi Fuzi Baijiang Decoction alleviates ulcerative colitis partly by regulating TLR4-mediated PI3K/Akt and NF-κB pathways [J]., 2022, 2022: 8780514.
[49] Zhang P, Jiao H L, Wang C L,. Chlorogenic acid ameliorates colitis and alters colonic microbiota in a mouse model of dextran sulfate sodium-induced colitis [J]., 2019, 10: 325.
[50] Wan F, Wang M Y, Zhong R Q,. Supplementation with Chinese medicinal plant extracts fromandmitigates colonic inflammation by regulating oxidative stress and gut microbiota in a colitis mouse model [J]., 2022, 11: 798052.
[51] Vukeli? I, Detel D, Pu?ar L B,. Chlorogenic acid ameliorates experimental colitis in mice by suppressing signaling pathways involved in inflammatory response and apoptosis [J]., 2018, 121: 140-150.
[52] Xie M G, Fei Y Q, Wang Y,. Chlorogenic acid alleviates colon mucosal damage induced by a high-fat diet via gut microflora adjustment to increase short-chain fatty acid accumulation in rats [J]., 2021, 2021: 3456542.
[53] Zhu L, Gu P Q, Shen H. Gallic acid improved inflammation via NF-κB pathway in TNBS-induced ulcerative colitis [J]., 2019, 67: 129-137.
[54] Pandurangan A K, Mohebali N, Esa N M. Gallic acid suppresses inflammation in dextran sodium sulfate- induced colitis in mice: Possible mechanisms [J]., 2015, 28(2): 1034-1043.
[55] Pandurangan A K, Mohebali N, Norhaizan M E,. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice [J]., 2015, 9: 3923-3934.
[56] Li Y, Xie Z Y, Gao T T,. A holistic view of gallic acid-induced attenuation in colitis based on microbiome- metabolomics analysis [J]., 2019, 10(7): 4046-4061.
[57] 李曉陽, 吳志平, 王夢馨, 等. 表沒食子兒茶素沒食子酸酯抗癌分子機(jī)制及其應(yīng)用的研究進(jìn)展 [J]. 中草藥, 2019, 50(13): 3217-3229.
[58] Du Y, Ding H H, Vanarsa K,. Low dose epigallocatechin gallate alleviates experimental colitis by subduing inflammatory cells and cytokines, and improving intestinal permeability [J]., 2019, 11(8): 1743.
[59] Wu Z H, Huang S M, Li T T,. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis [J]., 2021, 9(1): 184.
[60] Xue B, Liu X L, Dong W W,. EGCG maintains Th1/Th2 balance and mitigates ulcerative colitis induced by dextran sulfate sodium through TLR4/MyD88/NF-κB signaling pathway in rats [J]., 2017, 2017: 3057268.
[61] Salaritabar A, Darvishi B, Hadjiakhoondi F,. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review [J]., 2017, 23(28): 5097-5114.
[62] 龍宇, 向燕, 譚裕君, 等. 黃芩苷藥理作用及新劑型的研究進(jìn)展 [J]. 中草藥, 2019, 50(24): 6142-6148.
[63] Zhu L, Shen H, Gu P Q,. Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/Akt pathway activation [J]., 2020, 20(1): 581-590.
[64] Shen J, Cheng J Z, Zhu S G,. Regulating effect of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis [J]., 2019, 73: 193-200.
[65] Dai S X, Zou Y, Feng Y L,. Baicalin down-regulates the expression of macrophage migration inhibitory factor (MIF) effectively for rats with ulcerative colitis [J]., 2012, 26(4): 498-504.
[66] Zhu L, Xu L Z, Zhao S,. Protective effect of baicalin on the regulation of Treg/Th17 balance, gut microbiota and short-chain fatty acids in rats with ulcerative colitis [J]., 2020, 104(12): 5449-5460.
[67] Zhu W, Jin Z S, Yu J B,. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2phenotype [J]., 2016, 35: 119-126.
[68] Wang L, Zhang R, Chen J,. Baicalin protects against TNF-α-induced injury by down-regulating miR-191a that targets the tight junction protein ZO-1 in IEC-6 cells [J]., 2017, 40(4): 435-443.
[69] Pandurangan A K, Esa N M. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: A review [J]., 2014, 15(14): 5501-5508.
[70] Nunes C, Almeida L, Barbosa R M,. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation [J]., 2017, 8(1): 387-396.
[71] Li Y, Shen L, Luo H S. Luteolin ameliorates dextran sulfate sodium-induced colitis in mice possibly through activation of the Nrf2 signaling pathway [J]., 2016, 40: 24-31.
[72] Li B L, Zhao D Y, Du P L,. Luteolin alleviates ulcerative colitis through SHP-1/STAT3 pathway [J]., 2021, 70(6): 705-717.
[73] Suga N, Murakami A, Arimitsu H,. Luteolin suppresses 5-hydroxytryptamine elevation in stimulated RBL-2H3 cells and experimental colitis mice [J]., 2021, 69(1): 20-27.
[74] Li B L, Du P L, Du Y,. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats [J]., 2021, 269: 119008.
[75] James S, Aparna J S, Babu A,. Cardamonin attenuates experimental colitis and associated colorectal cancer [J]., 2021, 11(5): 661.
[76] Ren G Y, Sun A N, Deng C,. The anti-inflammatory effect and potential mechanism of cardamonin in DSS- induced colitis [J]., 2015, 309(7): G517-G527.
[77] Wang K, Lv Q, Miao Y M,. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway [J]., 2018, 155: 494-509.
[78] Ali A A, Al Haleem E N A, Khaleel S A H,. Protective effect of cardamonin against acetic acid-induced ulcerative colitis in rats [J]., 2017, 69(2): 268-275.
[79] 王潞, 周云英. 楊梅素抗感染、抗炎及抗氧化活性研究進(jìn)展 [J]. 中草藥, 2019, 50(3): 778-784.
[80] Qu X Y, Li Q J, Song Y,. Potential of myricetin to restore the immune balance in dextran sulfate sodium- induced acute murine ulcerative colitis [J]., 2020, 72(1): 92-100.
[81] Zhao J, Hong T, Dong M,. Protective effect of myricetin in dextran sulphate sodium-induced murine ulcerative colitis [J]., 2013, 7(2): 565-570.
[82] Cho B O, Yin H H, Park S H,. Anti-inflammatory activity of myricetin fromthrough suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide- stimulated RAW264.7 macrophages [J]., 2016, 80(8): 1520-1530.
[83] Miao R R, Zhan S, Hu X T,. Myricetin and M10, a myricetin-3--β--lactose sodium salt, modify composition of gut microbiota in mice with ulcerative colitis [J]., 2021, 346: 7-15.
[84] 楊新榮, 竇霞, 李國峰, 等. 柚皮苷藥理作用及機(jī)制的研究進(jìn)展 [J]. 中草藥, 2022, 53(10): 3226-3240.
[85] Cao H Y, Liu J X, Shen P,. Protective effect of naringin on DSS-induced ulcerative colitis in mice [J]., 2018, 66(50): 13133-13140.
[86] Hambardikar V R, Mandlik D S. Protective effect of naringin ameliorates TNBS-induced colitis in rats via improving antioxidant status and pro-inflammatory cytokines [J]., 2022, 44(3): 373-386.
[87] Kumar V S, Rajmane A R, Adil M,. Naringin ameliorates acetic acid induced colitis through modulation of endogenous oxido-nitrosative balance and DNA damage in rats [J]., 2014, 28(2): 132-145.
[88] Cao R G, Wu X, Guo H,. Naringin exhibited therapeutic effects against DSS-induced mice ulcerative colitis in intestinal barrier-dependent manner [J]., 2021, 26(21): 6604.
[89] Yang L, Yang C Q, Li C Y,. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants [J]., 2016, 61(1): 3-17.
[90] 張育貴, 張淑娟, 邊甜甜, 等. 芍藥苷藥理作用研究新進(jìn)展 [J]. 中草藥, 2019, 50(15): 3735-3740.
[91] Gu P, Zhu L, Liu Y,. Protective effects of paeoniflorin on TNBS-induced ulcerative colitis through inhibiting NF-kappaB pathway and apoptosis in mice [J]., 2017, 50: 152-160.
[92] Zheng K, Jia J, Yan S H,. Paeoniflorin ameliorates ulcerative colitis by modulating the dendritic cell- mediated Th17/Treg balance [J]., 2020, 28(6): 1705-1716.
[93] Li J J, Ren S Y, Li M,. Paeoniflorin protects against dextran sulfate sodium (DSS)-induced colitis in mice through inhibition of inflammation and eosinophil infiltration [J]., 2021, 97: 107667.
[94] Luo X, Wang X J, Huang S W,. Paeoniflorin ameliorates experimental colitis by inhibiting gram- positive bacteria-dependent MDP-NOD2 pathway [J]., 2021, 90: 107224.
[95] Wu X X, Huang X L, Chen R R,. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in caco-2 cell monolayers [J]., 2019, 42(6): 2215-2225.
[96] Zhang L H, Cao N, Wang Y W,. Improvement of oxazolone-induced ulcerative colitis in rats using andrographolide [J]., 2019, 25(1): 76.
[97] Kim N, Lertnimitphun P, Jiang Y,. Andrographolide inhibits inflammatory responses in LPS-stimulated macrophages and murine acute colitis through activating AMPK [J]., 2019, 170: 113646.
[98] Zhu Q, Zheng P F, Chen X Y,. Andrographolide presents therapeutic effect on ulcerative colitis through the inhibition of IL-23/IL-17 axis [J]., 2018, 10(2): 465-473.
[99] Zhu Q, Zheng P F, Zhou J Y,. Andrographolide affects Th1/Th2/Th17 responses of peripheral blood mononuclear cells from ulcerative colitis patients [J]., 2018, 18(1): 622-626.
[100] 宋基正, 劉宇靈, 林龍飛, 等. 雷公藤甲素抗腫瘤新型給藥系統(tǒng)研究進(jìn)展 [J]. 中草藥, 2019, 50(5): 1269-1275.
[101] Li Y, Yu C, Zhu W M,. Triptolide ameliorates IL-10-deficient mice colitis by mechanisms involving suppression of IL-6/STAT3 signaling pathway and down-regulation of IL-17 [J]., 2010, 47(15): 2467-2474.
[102] Wei X W, Gong J F, Zhu J,. The suppressive effect of triptolide on chronic colitis and TNF-alpha/TNFR2 signal pathway in interleukin-10 deficient mice [J]., 2008, 129(2): 211-218.
[103] Tang B F, Zhu J Y, Zhang B H,. Therapeutic potential of triptolide as an anti-inflammatory agent in dextran sulfate sodium-induced murine experimental colitis [J]., 2020, 11: 592084.
[104] Li Y, Tian Y, Zhu W M,. Triptolide induces suppressor of cytokine signaling-3 expression and promotes lamina propria mononuclear cells apoptosis in Crohn’s colitis [J]., 2013, 16(2): 268-274.
[105] Wu H, Rao Q, Ma G C,. Effect of triptolide on dextran sodium sulfate-induced ulcerative colitis and gut microbiota in mice [J]., 2020, 10: 1652.
[106] Seo D Y, Lee S R, Heo J W,. Ursolic acid in health and disease [J]., 2018, 22(3): 235-248.
[107] Chun J, Lee C, Hwang S W,. Ursolic acid inhibits nuclear factor-κB signaling in intestinal epithelial cells and macrophages, and attenuates experimental colitis in mice [J]., 2014, 110(1): 23-34.
[108] Liu B H, Piao X H, Guo L Y,. Ursolic acid protects against ulcerative colitis via anti-inflammatory and antioxidant effects in mice [J]., 2016, 13(6): 4779-4785.
[109] Jang S E, Jeong J J, Hyam S R,. Ursolic acid isolated from the seed ofameliorates colitis in mice by inhibiting the binding of lipopolysaccharide to Toll-like receptor 4 on macrophages [J]., 2014, 62(40): 9711-9721.
[110] Wei T, Wu L, Ji X W,. Ursolic acid protects sodium dodecyl sulfate-inducedulcerative colitis model by inhibiting the JNK signaling [J]., 2022, 11(2): 426.
[111] Sheng Q S, Li F, Chen G P,. Ursolic acid regulates intestinal microbiota and inflammatory cell infiltration to prevent ulcerative colitis [J]., 2021, 2021: 6679316.
[112] Dahlem Junior M A, Nguema Edzang R W, Catto A L,. Quinones as an efficient molecular scaffold in the antibacterial/antifungal or antitumoral arsenal [J]., 2022, 23(22): 14108.
[113] Wu C, Cao H Y, Zhou H,. Research progress on the antitumor effects of rhein: Literature review [J]., 2017, 17(12): 1624-1632.
[114] Zhou Y Y, Gao C F, Vong C T,. Rhein regulates redox-mediated activation of NLRP3 inflammasomes in intestinal inflammation through macrophage-activated crosstalk [J]., 2022, 179(9): 1978-1997.
[115] Wu J W, Wei Z H, Cheng P,. Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis [J]., 2020, 10(23): 10665-10679.
[116] Ge H, Tang H, Liang Y B,. Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasomeand[J]., 2017, 11: 1663-1671.
[117] Guo R, Li L, Su J,. Pharmacological activity and mechanism of tanshinone IIAin related diseases [J]., 2020, 14: 4735-4748.
[118] Bai A P, Lu N H, Guo Y,. Tanshinone IIAameliorates trinitrobenzene sulfonic acid (TNBS)-induced murine colitis [J]., 2008, 53(2): 421-428.
[119] Zhang X X, Wang Y G, Ma Z C,. Tanshinone IIAameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor [J]., 2015, 9: 6343-6362.
[120] Liu X W, He H Y, Huang T T,. Tanshinone IIAprotects against dextran sulfate sodium-(DSS-) induced colitis in mice by modulation of neutrophil infiltration and activation [J]., 2016, 2016: 7916763.
[121] Dong J Y, Liang W, Wang T X,. Saponins regulate intestinal inflammation in colon cancer and IBD [J]., 2019, 144: 66-72.
[122] 張浩然, 葉安琪, 張躍偉, 等. 人參皂苷衍生化及生物活性研究進(jìn)展 [J]. 中草藥, 2022, 53(14): 4554-4567.
[123] Jin J, Zhong Y B, Long J,. Ginsenoside Rg1relieves experimental colitis by regulating balanced differentiation of Tfh/Treg cells [J]., 2021, 100: 108133.
[124] Zhu G, Wang H N, Wang T C,. Ginsenoside Rg1attenuates the inflammatory response in DSS-induced mice colitis [J]., 2017, 50: 1-5.
[125] Long J, Liu X K, Kang Z P,. Ginsenoside Rg1ameliorated experimental colitis by regulating the balance of M1/M2macrophage polarization and the homeostasis of intestinal flora [J]., 2022, 917: 174742.
[126] Xu C C, Wang W W, Wang B,. Analytical methods and biological activities ofsaponins: Recent trends [J]., 2019, 236: 443-465.
[127] Lu Q G, Zeng L, Li X H,. Protective effects ofsaponin on dextran sulfate sodium-induced colitis in rats through phosphoinositide-3-kinase protein kinase B signaling pathway inhibition [J]., 2020, 26(11): 1156-1171.
[128] Luo H, Vong C T, Tan D C,.saponins modulate the inflammatory response and improve IBD-like symptoms via TLR/NF-κB and MAPK signaling pathways [J]., 2021, 49(4): 925-939.
[129] Li L, Hou X J, Xu R F,. Research review on the pharmacological effects of astragaloside IV [J]., 2017, 31(1): 17-36.
[130] Wu S X, Chen Z L. Astragaloside IV alleviates the symptoms of experimental ulcerative colitisand[J]., 2019, 18(4): 2877-2884.
[131] Tian L L, Zhao J L, Kang J Q,. Astragaloside IV alleviates the experimental DSS-induced colitis by remodeling macrophage polarization through STAT signaling [J]., 2021, 12: 740565.
[132] Jiang X G, Sun K, Liu Y Y,. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)- induced colitis implicating regulation of energy metabolism [J]., 2017, 7: 41832.
[133] Zeng P J, Li J, Chen Y L,. The structures and biological functions of polysaccharides from traditional Chinese herbs [J]., 2019, 163: 423-444.
[134] 周龍?jiān)? 田子睿, 劉書芬, 等. 黃芪對(duì)中樞神經(jīng)系統(tǒng)的藥理作用及毒理研究現(xiàn)狀 [J]. 中草藥, 2018, 49(20): 4935-4944.
[135] Gao Y J, Zhu F, Qian J M,. Therapeutic and immunoregulatory effect of GATA-binding protein-3/T-box expressed in T-cells ratio of astragalus polysaccharides on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats [J]., 2016, 22(12): 918-924.
[136] Lv J, Zhang Y, Tian Z,.polysaccharides protect against dextran sulfate sodium-induced colitis by inhibiting NF-κВ activation [J]., 2017, 98: 723-729.
[137] Ko J K S, Lam F Y L, Cheung A P L. Amelioration of experimental colitis bythrough anti-oxidation and inhibition of adhesion molecule synthesis [J]., 2005, 11(37): 5787-5794.
[138] Yan X, Lu Q G, Zeng L,. Synergistic protection of astragalus polysaccharides and matrine against ulcerative colitis and associated lung injury in rats [J]., 2020, 26(1): 55-69.
[139] Tian Z Q, Liu Y, Yang B,.polysaccharide attenuates murine colitis through inhibiton of the NLRP3 inflammasome [J]., 2017, 83(1/2): 70-77.
[140] Chen Y J, Wang J Y, Li J T,.polysaccharide prevents ferroptosis in a murine model of experimental colitis and human Caco-2 cells via inhibiting NRF2/HO-1 pathway [J]., 2021, 911: 174518.
[141] Liang J, Chen S X, Hu Y D,. Protective roles and mechanisms ofpolysaccharides on secondary liver injury in acute colitis [J]., 2018, 107: 2201-2210.
[142] Liang J, Chen S X, Chen J H,. Therapeutic roles of polysaccharides fromcolitis and its underlying mechanisms [J]., 2018, 185: 159-168.
[143] Wen Y F, Xiao H Y, Liu Y,. Polysaccharides frome ameliorate colitis-induced lung injury via inhibiting inflammation and oxidative stress [J]., 2021, 347: 109615.
[144] Zhang Y, Wu Z, Liu J,. Identification of the core active structure of ae polysaccharide and its protective effect against dextran sulfate sodium-induced colitis via alleviating gut microbiota dysbiosis [J]., 2020, 137: 109641.
[145] Xue W Y, Gao Y, Li Q W,. Immunomodulatory activity-guided isolation and characterization of a novel polysaccharide fromKoidz [J]., 2020, 161: 514-524.
[146] Yang M J, Zhang Q W, Taha R,. Polysaccharide fromKoidz. ameliorates DSS- induced colitis in mice by regulating the Th17/Treg cell balance [J]., 2022, 13: 1021695.
[147] Feng W W, Liu J, Tan Y Z,. Polysaccharides fromKoidz. ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism [J]., 2020, 138: 109777.
[148] Peng Q, Liu H J, Shi S H,.polysaccharide attenuates inflammation through inhibiting TLR4/NF-κB signaling pathway [J]., 2014, 67: 330-335.
[149] Li W, Gao M B, Han T.polysaccharides ameliorate intestinal barrier dysfunction and inflammation through the MLCK-MLC signaling pathway in Caco-2 cells [J]., 2020, 11(4): 3741-3748.
[150] Su L L, Mao C Q, Wang X C,. The anti-colitis effect ofpolysaccharide is associated with the regulation of the composition and metabolism of gut microbiota [J]., 2020, 10: 519479.
[151] Zhou X N, Lu Q Q, Kang X Z,. Protective role of a new polysaccharide extracted fromin mice with ulcerative colitis induced by dextran sulphate sodium [J]., 2021, 2021: 8878633.
Research progress on natural products from traditional Chinese medicine in treatment of inflammatory bowel disease
MENG Huan1, HOU Xiao-ting1, ZHANG Hua-min2, WANG Xu-de1
1. Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China 2. College of Pharmacy, Yanbian University, Yanbian 133002, China
Inflammatory bowel disease (IBD) is a non-specific intestinal inflammatory disease with unclear causes. It is thought that genetic elements, environmental elements, immune dysfunction, imbalance of intestinal flora and impairment of intestinal mucosal barrier function are the primary causes for the occurrence and development of IBD. The frequently used therapeutic drugs in clinic contain aminosalicylic acids (ASA), antibiotics and corticosteroids, yet the curative ratio is inferior and the side effects are obvious. New research suggests that the active constituents of traditional Chinese medicine (TCM) have the impact on such as adjusting immune function, ameliorating the composition of intestinal flora and promoting the function of intestinal mucosal barrier. Therefore, it can be used to treat IBD effectively. This article summarizes application and research advance about common natural products extracted from TCM in the treatment or prevention of IBD, mainly containing alkaloids, polyphenols, flavonoids, terpenoids, quinones, saponins and polysaccharides, which may contribute to comprehending more about their action mechanism for natural products of TCM in improving IBD, offering some theoretical guidance for the further development of natural products of TCM and the therapy of IBD.
inflammatory bowel disease; natural products of traditional Chinese medicine; immune regulation; intestinal flora; intestinal mucosal barrier function; berberine; curcumin; baicalin; paeoniflorin; rhein; ginsenoside;polysaccharide
R285
A
0253 - 2670(2023)10 - 3349 - 21
10.7501/j.issn.0253-2670.2023.10.032
2022-11-18
國家自然科學(xué)基金資助項(xiàng)目(61671098);韓國食品研究項(xiàng)目(2017029)
孟 歡(1998—),女,碩士研究生,研究方向?yàn)槊庖咚幚韺W(xué)。E-mail: 15563776072@163.com
王旭德(1985—),男,博士,講師,從事天然藥物化學(xué)研究。E-mail: Xudewanglnu@gmail.com
[責(zé)任編輯 趙慧亮]