摘要: 用加權(quán)能量估計(jì)和構(gòu)造自相似上解的方法, 研究一類(lèi)在邊界退化的半線性拋物方程初邊值問(wèn)題解的漸近行為, 得到了問(wèn)題解的整體存在性和爆破性, 建立了Fujita型定理, 并刻畫(huà)了臨界Fujita指標(biāo)與退化擴(kuò)散項(xiàng)和非線性源項(xiàng)之間的定量關(guān)系.
關(guān)鍵詞: 邊界退化; 臨界Fujita指標(biāo); 半線性拋物方程
中圖分類(lèi)號(hào): O175.23 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1671-5489(2023)04-0801-07
Asymptotic Behavior of Solutions to SemilinearParabolic Equations with" Boundary" Degeneracy
GUO Wei1, JIN Manli1, JING Xinxin2
(1. School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin Province, China;2. College of Mathematics and Systems Science, Shandong University of Science and Technology,Qingdao 266590, Shandong Province, China)
Abstract: We studied the asymptotic behavior of solutions for a class of" initial-boundary value problems of a semilinear parabolic equation with boundary degeneracy by using the methods of weighted energy estimates and constructing self-similar upper solutions. We obtained the global existence and blowing-up properties of solutions to the problem," established Fujita type theorem, and characterized the quantitative relationship between the critical Fujita exponent and the degenerate diffusion term and the nonlinear source term.
Keywords:" boundary degeneracy; critical Fujita exponent; semilinear parabolic equation
參考文獻(xiàn)
[1]FUJITA H. On the Blowing up of Solutions of the Cauchy Problem for ut=Δu+u1+α[J]. J Fac Sci Univ Tokyo Sect Ⅰ, 1966, 13: 109-124.
[2]HAYAKAWA K. On Nonexistence of Global Solutions of Some Semilinear Parabolic Differential Equations [J]. Proc Japan Acad, 1973, 49: 503-505.
[3]KOBAYASHI K, SIARO T, TANAKA H. On the Blowing up Problem for Semilinear Heat Equations [J]. J Math Soc Japan, 1977, 29(1): 407-424.
[4]ANDREUCCI D, CIRMI G R, LEONARDI S, et al. Large Time Behavior of Solutions to the Neumann Problem for a Quasilinear Second Order Degenerate Parabolic Equation in Domains with Noncompact Boundary [J]. J Differential Equations, 2001, 174(2): 253-288.
[5]DENG K, LEVINE H A. The Role of Critical Exponents in Blow-up Theorems: The Sequel [J]. J Math Anal Appl, 2000, 243(1): 85-126.
[6]郭微, 高云柱. 一類(lèi)非線性耦合對(duì)流擴(kuò)散方程組的臨界Fujita曲線 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2020, 58(2): 271-276.
(GUO W, GAO Y Z. Critical Fujita Curves for a Class of Nonlinear Coupled Convection-Diffusion Systems [J]. Journal of Jilin University (Science Edition), 2020, 58(2): 271-276.)
[7]JING X X, NIE Y Y, WANG C P. Asymptotic Behavior of Solutions to Coupled Semilinear Parabolic Systems with Boundary Degeneracy [J]. Electron J Differential Equations, 2021, 2021: 67-1-67-17.
[8]JING X X, NIE Y Y, WANG C P. Asymptotic Behavior of Solutions to Coupled Semilinear Parabolic Equations with General Degenerate Diffusion Coefficients [J]. Discrete Contin Dyn Syst Ser B, 2023, 28(2): 959-983.
[9]LEVINE H A. The Role of Critical Exponents in Blow-up Theorems [J]. SIAM Rev, 1990, 32(2): 262-288.
[10]WANG C P. Asymptotic Behavior of Solutions to a Class of Semilinear Parabolic Equations with Boundary Degeneracy [J]. Proc Amer Math Soc, 2013, 141(9): 3125-3140.
[11]WANG C P, ZHENG S N. Critical Fujita Exponents of Degenerate and Singular Parabolic Equations [J]. Proc Roy Soc Edinburgh Sect A, 2006, 136(2): 415-430.
[12]WANG C P, ZHENG S N, WANG Z J. Critical Fujita Exponents for a Class of Quasilinear Equations with Homogeneous Neumann Boundary Data [J]. Nonlinearity, 2007, 20(6): 1343-1359.
[13]ZHENG S N, WANG C P. Large Time Behaviour of Solutions to a Class of Quasilinear Parabolic Equations with Convection Terms [J]. Nonlinearity, 2008, 21(9): 2179-2200.
[14]ZHOU Q, NIE Y Y, HAN X Y. Large Time Behavior of Solutions to Semilinear Parabolic Equations with Gradient [J]. J Dyn Control Syst, 2016, 22(1): 191-205.
[15]周倩, 那楊, 高冬. 一類(lèi)耦合半線性擴(kuò)散方程組的Fujita臨界曲線 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2020, 58(4): 733-743. (ZHOU Q, NA Y, GAO D. Fujita Critical Curves for a Class of Coupled Semilinear Diffusion Systems [J]. Journal of Jilin University (Science Edition), 2020, 58(4): 733-743.)
[16]ZHOU M J, LENG Y. Existence and Nonexistence of the Solutions to the Cauchy Problem of Quasilinear Parabolic Equation with a Gradient Term [J]. Lith Math J, 2021, 61(1): 123-142.
[17]ZHAO X T, ZHOU M J, JING X X. Asymptotic Behavior of Solutions to Porous Medium Equations with Boundary Degeneracy [J]. Electron J Differential Equations, 2021, 2021: 96-1-96-19.
(責(zé)任編輯: 趙立芹)
收稿日期: 2022-10-24.
第一作者簡(jiǎn)介: 郭 微(1976—), 女, 漢族, 博士, 教授, 從事非線性擴(kuò)散方程理論的研究, E-mail: guoweijilin@163.com. 通信作者簡(jiǎn)介: 靳曼莉(1980—), 女, 漢族, 博士, 副教授, 從事微分方程定性理論的研究, E-mail: 64278144@qq.com.
基金項(xiàng)目: 吉林省教育廳科學(xué)技術(shù)研究項(xiàng)目(批準(zhǔn)號(hào): JJKH20210031KJ; JJKH20210029KJ).