摘要: 首先, 利用權(quán)函數(shù)方法討論非齊次核的半離散Hilbert型逆向不等式, 給出最佳半離散Hilbert型逆向不等式的等價條件及各參數(shù)間的關(guān)系; 其次, 作為應(yīng)用給出等價的算子表示及若干特例.
關(guān)鍵詞: 非齊次核; 半離散Hilbert型逆向不等式; 最佳常數(shù)因子; 算子表示; Beta函數(shù)
中圖分類號: O178 文獻(xiàn)標(biāo)志碼: A 文章編號: 1671-5489(2023)04-0823-08
Equivalent Conditions and Operator Expressions forthe Best Half-Discrete Hilbert-Type InverseInequality with Non-h(huán)omogeneous Kernel
HONG Yong1, ZHANG Lijuan1, KONG Yinying2, LI Zhen2
(1. Department of Applied Mathematics, Guangzhou Huashang College, Guangzhou 511300, China;2. College of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China)
Abstract: Firstly, by using the power function method, we discussed the half-discrete Hilbert-type inverse inequality with non-h(huán)omogeneous kernelgave equivalent conditions for the best half-discrete Hilbert-type inverse inequality and the relationship" between the parameters. Secondly," as an application, we gave" the equivalent operator expressions and some special cases.
Keywords: non-h(huán)omogeneous kernel; half-discrete Hilbert-type inverse inequality; the best constant factor; operator expression; Beta function
參考文獻(xiàn)
[1]HARDY G H, LETTLEWOOD J E, PLYA G. Inequalities [M]. Cambridge: Cambridge University Press, 1952: 255-284.
[2]洪勇. 關(guān)于零階齊次核的Hardy-Hilbert型不等式 [J]. 浙江大學(xué)學(xué)報(理學(xué)版), 2013, 40(1): 15-18. (HONG Y. On Hardy-Hilbert Type Integral Inequality with Homogeneous Kernel of 0-Degree [J]. Journal of Zhejiang University (Science Edition), 2013, 40(1): 15-18.)
[3]洪勇, 孔蔭瑩. 含變量可轉(zhuǎn)移函數(shù)核的Hilbert型級數(shù)不等式 [J]. 數(shù)學(xué)物理學(xué)報, 2014, 34A(3): 708-715. (HONG Y, KONG Y Y. A Hilbert Type Series Inequality with Transferable Variable Kernel [J]. Acta Mathematica Scientia, 2014, 34A(3): 708-715.)
[4]楊必成. 一個推廣的具有最佳常數(shù)的Hardy-Hilbert積分不等式 [J]. 數(shù)學(xué)年刊A輯(中文版), 2000, 21A(4): 401-408. (YANG B C. A Generalized Hardy-Hilbert-Type Integral Inequality with the Best Constant Factor [J]. Chinese Annals of Mathematics, 2000, 21A(4): 401-408.)
[5]RASSIAS M T, YANG B C. On a Hilbert-Type Integral Inequality in the Whole Plane Related to the Extended Riemann Zeta Function [J]. Complex Analysis and Operator Theory, 2019, 13(4): 1765-1782.
[6]匡繼昌. 常用不等式 [M]. 5版. 濟(jì)南: 山東科學(xué)技術(shù)出版社, 2021: 744-772. (KUANG J C. Applied Inequalities [M]. 5th ed. Jinan: Shandong Science and Technology Press, 2021: 744-772.)
[7]洪勇. 一類具有準(zhǔn)齊次核的涉及多個函數(shù)的Hilbert型積分不等式 [J]. 數(shù)學(xué)學(xué)報(中文版), 2014, 57(5): 833-840. (HONG Y. A Hilbert-Type Integral Inequality with Quasi-h(huán)omogeneous Kernel and Several Functions [J]. Acta Mathematica Sinica (Chinese Series), 2014, 57(5): 833-840.)
[8]YANG B C. On an Extension of Hilbert’s Integral Inequality with Some Parameters [J]. The Australian Journal of Mathematical Analysis and Applications, 2004, 1(1): 11-1-11-8.
[9]高明哲. Hardy-Riesz拓廣了的Hilbert不等式的一個改進(jìn) [J]. 數(shù)學(xué)研究與評論, 1994, 14(2): 255-259. (GAO M Z. An Improvement of Hardy-Riesz’s Extension of the Hilbert Inequality [J]. Journal of Mathematical Research and Exposition, 1994, 14(2): 255-259.)
[10]KUANG J C. On New Extensions of Hilbert’s Integral Inequality [J]. Journal of Mathematical Analysis and Applications, 1999, 235(2): 608-614.
[11]LI Y J, HE B. On Inequalities of Hilbert’s Type [J]. Bulletin of the Australian Mathematical Society, 2007, 76(1): 1-13.
[12]KRNIC' M, PEARIC' J E. Hilbert’s Inequalities and Their Reverses [J]. Publicationes Mathematicae Debrecen, 2005, 67(3/4): 315-331.
[13]RASSIAS M TH, YANG B C, RAIGORODSKII A. On a More Accurate Reverse Hilbert-Type Inequality in the Whole Plane [J]. Journal of Mathematical Inequalities, 2020, 14(4): 1359-1374.
[14]洪勇, 溫雅敏. 齊次核的Hilbert型級數(shù)不等式取最佳常數(shù)因子的充要條件 [J]. 數(shù)學(xué)年刊A輯(中文版), 2016, 37A(3): 329-336. (HONG Y, WEN Y M. A Necessary and Sufficient Conditions of that Hilbert Type Series Inequality with Homogeneous Kernel "Has the Best Constant Factor [J]. Chinese Annals of Mathematics, 2016, 37A(3): 329-336.)
[15]洪勇, 吳春陽, 陳強(qiáng). 一類非齊次核的最佳Hilbert型積分不等式的搭配參數(shù)條件 [J]. 吉林大學(xué)學(xué)報(理學(xué)版), 2021, 59(2): 207-212. (HONG Y, WU C Y, CHEN Q. Matching Parameter Conditions for the Best Hilbert-Type Integral Inequality with "a Class of Non-h(huán)omogeneous Kernels [J]. Journal of Jilin University (Science Edition), 2021, 59(2): 207-212.)
[16]楊必成, 陳強(qiáng). 一類非齊次核逆向的Hardy型積分不等式成立的條件 [J]. 吉林大學(xué)學(xué)報(理學(xué)版), 2017, 55(4): 804-808. (YANG B C, CHEN Q. Equialent Conditions of Existence of a Class of Reverse Hardy-Type Integral Inequalities with Non-h(huán)omogeneous "Kernel [J]. Journal of Jilin University (Science Edition), 2017, 55(4): 804-808.)
[17]HE B, HONG Y, LI Z. Conditions for the Validity of a Class of Optimal Hilbert Type Multiple Integral Inequalities with Nonhomogeneous Kernels [J/OL]. Journal of Inequalities and Applications, (2021-04-02)[2022-07-10]. https://doi.org/10.1186/s13660-021-02593-z.
[18]LIAO J Q, HONG Y, YANG B C. Equivalent Conditions of a Hilbert-Type Multiple Integral Inequality Holding [J/OL]. Journal of Function Spaces, (2020-04-15)[2022-07-10]. https://doi.org/10.1155/2020/3050952.
[19]HONG Y, HUANG Q L, YANG B C, et al. The Necessary and Sufficient Conditions for the Existence of a Kind of Hilbert-Type Multiple Integral Inequality with the Non-h(huán)omogeneous Kernel and Its Applications [J/OL]. Journal of Inequalities and Applications, (2017-12-28)[2022-07-12]. https://doi.org/10.1186/s13660-017-1592-8.
[20]HONG Y, HUANG Q L, CHEN Q. The Parameter Conditions for the Existence of the Hilbert-Type Multiple Integral Inequality and Its Best Constant Factor [J/OL]. Annals of Functional Analysis, (2020-10-15)[2022-07-12]. https://doi.org/10.1007/s43034-020-00087-5.
[21]CHEN Q, YANG B C. A Reverse Hardy-Hilbert-Type Integral Inequality Involving One Derivative Function [J/OL]. Journal of Inequalities and Applications, (2020-12-11)[2022-08-15]. https://doi.org/10.1186/s13660-020-02528-0.
[22]WANG A Z, YANG B C, CHEN Q. Equivalent Properties of a Reverse Half-Discrete Hilbert’s Inequality [J/OL]. Journal of Inequalities and Applications, (2019-11-04)[2022-08-15]. https://doi.org/10.1186/s13660-019-2236-y.
[23]HUANG Z X, SHI Y P, YANG B C. On a Reverse Extended Hardy-Hilbert’s Inequality [J/OL]. Journal of Inequalities and Applications, (2020-03-12)[2022-08-15]. https://doi.org/10.1186/s13660-020-02333-9.
(責(zé)任編輯: 趙立芹)
收稿日期: 2022-09-26.
第一作者簡介: 洪 勇(1959—), 男, 漢族, 碩士, 教授, 從事調(diào)和分析及解析不等式的研究, E-mail: hongyonggdcc@yeah.net.
基金項目: 廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金(批準(zhǔn)號: 2022A1515012429)、 廣州華商學(xué)院科研團(tuán)隊項目(批準(zhǔn)號: 2021HSKT03)和廣東省教育科學(xué)規(guī)劃項目(批準(zhǔn)號: 2021GXJK201).