摘要: 首先, 用分?jǐn)?shù)階集中緊性原理, 在全空間上證明一類帶有電磁場和臨界Hardy-Littlewood-Sobolev項(xiàng)的非線性Kirchhoff方程的緊性條件,以克服該方程由于無界區(qū)域以及臨界項(xiàng)導(dǎo)致的緊性條件缺失問題; 其次結(jié)合對(duì)稱山路定理, 證明該方程滿足山路結(jié)構(gòu), 并結(jié)合虧格理論證明該方程解的多重性.
關(guān)鍵詞: Kirchhoff方程; 臨界Hardy-Littlewood-Sobolev項(xiàng); 集中緊性原理; 變分方法
中圖分類號(hào):" O175.2 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1671-5489(2023)04-0796-05
Multiplicity of Solutions for Nonlinear Kirchhoff Equation withElectromagnetic Fields and Critical Hardy-Littlewood-Sobolev Term
ZHAO Min, ZHANG Deli
(College of Mathematics, Changchun Normal University," Changchun 130032, China)
Abstract: Firstly, by using the fractional order concentration-compactness principle, we proved the compactness conditions for a class of nonlinear Kirchhoff equations with electromagnetic fields and critical Hardy-Littlewood-Sobolev term in the whole space to overcome the problem of lack of compactness conditions caused by unbounded regions and critical term in this equation. Secondly, combined with the symmetric mountain path theorem, we proved that the equation satisfied the mountain path structure, and proved the multiplicity of the solution to the equation by using genus theory.
Keywords: Kirchhoff equation; critical Hardy-Littlewood-Sobolev term; concentration-compactness principle; variational method
參考文獻(xiàn)
[1]FISCELLA A, VALDINOCI E. A Critical Kirchhoff Type Problem Involving a Nonlocal Operator [J]. Nonlinear Anal, 2014, 94: 156-170.
[2]PUCCI P, XIANG M Q, ZHANG B L. Existence Results for Schrdinger-Choquard-Kirchhoff Equations Involving the Fractional p-Laplacian [J]. Adv Calc Var, 2019, 12(3): 253-275.
[3]SONG Y Q, SHI S Y. Existence and Multiplicity of Solutions for Kirchhoff Equations with Hardy-Littlewood-Sobolev Critical Nonlinearity [J]. Appl Math Lett, 2019, 92: 170-175.
[4]LIEB E H, LOSS M. Analysis [M]. 2nd ed. Providence, RI: American Mathematical Society, 2001: 106-110.
[5]D’AVENIA P, SQUASSINA M. Ground States for Fractional Magnetic Operators [J]. ESAIM: Control Optim Calc Var, 2018, 24(1): 1-24.
[6]XIANG M Q, ZHANG B L, RDULESCU V D. Superlinear Schrdinger-Kirchhoff Type Problems Involving the Fractional p-Laplacian and Critical Exponent [J]. Adv Nonlinear Anal, 2020, 9(1): 690-709.
[7]GAO F S, YANG M B. The Brezis-Nirenberg Type Critical Problem for Nonlinear Choquard Equation [J]. Sci China Math, 2018, 61(7): 1219-1242.
[8]Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations [M]//CBMS Regional Conference Series in Mathematics, 65. Providence, RI: American Mathematical Society, 1986: 1-100.
[9]AMBROSETTI A, RABINOWITZ P H. Dual Varational Methods in Critical Point Theory and Applications [J]. J Funct Anal, 1973, 14(4): 349-381.
(責(zé)任編輯: 李 琦)
收稿日期: 2022-09-28.
第一作者簡介: 趙 敏(1997—), 女, 蒙古族, 碩士研究生, 從事非線性微分方程的研究, E-mail: zm126666@outlook.com.
通信作者簡介: 張德利(1964—), 男, 漢族, 博士, 教授, 從事非線性分析與測度論的研究, E-mail: zhangdl64@126.com.
基金項(xiàng)目: 吉林省科技發(fā)展計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): [2022]第YDZJ202201ZYTS582號(hào))、 吉林省自然科學(xué)基金(批準(zhǔn)號(hào): 20230101182JC)和長春師范大學(xué)研究生科研創(chuàng)新項(xiàng)目(批準(zhǔn)號(hào): [2022]第061號(hào)).