摘要: 在關于線性算子相應主特征值的一些條件下, 用拓撲度方法和不動點理論證明帶簡支梁邊界條件的半正Euler-Bernoulli梁方程邊值問題
關鍵詞: 拓撲度; 不動點; 非平凡解和正解; Euler-Bernoulli梁方程
中圖分類號: O175.8 文獻標志碼: A 文章編號: 1671-5489(2023)04-0745-08
Nontrivial Solutions for a Class of Semipositive SuperlinearBeam Equations with Simply Supported Beam Condition
MA Qiong, WANG Jingjing
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
Abstract: Under some conditions about corresponding principal eigenvalue of" linear operator, we prove the existence of nontrivial solutions and positive solutions of boundary value problem for the semipositive nonlinear Euler-Bernoulli beam equationswith simply supported beam boundary condition by using the topological degree method and the fixed point theory, where λgt;0 is a paramenter, f: [0,1]Keywords: topological degree; fixed point; nontrivial solution and positive solution; Euler-Bernoulli beam equations
參考文獻
[1]ZHANG Y X, CUI Y J. Positive Solutions for Two-Point Boundary Value Problems for Fourth-Order Differential Equations with Fully Nonlinear Terms [J/OL]. Mathematical Problems in Engineering, (2020-11-06)[2022-08-06]. https://doi.org/10.1155/2020/8813287.
[2]王晶晶, 路艷瓊. 一類半正非線性彈性梁方程邊值問題正解的存在性 [J]. 山東大學學報(理學版), 2020, 55(6): 84-92. (WANG J J, LU Y Q. Existence of Positive Solutions for a Class of Semi-positive Nonlinear Elastic Beam Equation Boundary Value Problems [J]. Journal of Shandong University (Natural Science), 2020, 55(6): 84-92.)
[3]WANG J J, GAO C H, LU Y Q. Global Structure of Positive Solutions for Semipositone Nonlinear Euler-Bernoulli Beam Equation with Neumann Boundary Conditions [J/OL]. Quaestiones Mathematicae, (2022-02-14)[2022-08-14]. https://doi.org/10.2989/16073606.2022.2036260.
[4]FIGUEIREDO G M, FURTADO M F, DA SILVA J P P. Existence and Multiplicity of Positive Solutions for a Fourth-Order Elliptic Equation [J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2020, 150(2): 1053-1069.
[5]BAI Z B. The Upper and Lower Solution Method for Some Fourth-Order Boundary Value Problems [J]. Nonlinear Analysis: Theory, Methods amp; Applications, 2007, 67(6): 1704-1709.
[6]CID J A, FRANCO D, MINHS F. Positive Fixed Points and Fourth-Order Equations [J]. Bulletin of the London Mathematical Society, 2009, 41(1): 72-78.
[7]HEIDARI TAVANI M R, NAZARI A. Existence of PositiveSolutions for a Pertubed Fourth-Order Equation [J]. Kragujevac Journal of Mathematics, 2021, 45(4): 623-633.
[8]LIU Y J, GE W G. Double Positive Solutions of Fourth-Order Nonlinear Boundary Value Problems [J]. Applicable Analysis, 2003, 82(4): 369-380.
[9]MA R Y, WANG J X, YAN D L. The Method of Lower and Upper Solutions for Fourth Order Equations with the Navier Condition [J/OL]. Boundary Value Problems, (2017-10-19)[2022-08-20]. https://doi.org/10.1186/s13661-017-0887-5.
[10]MA R Y. Multiple Positive Solutions for a Semiposione Fourth-Order Boundary Value Problem [J]. Hiroshima Mathematical Journal, 2003, 33(2): 217-227.
[11]馬巧珍. 一類四階半正邊值問題正解的存在性 [J]. 工程數(shù)學學報, 2002, 19(3): 133-136. (MA Q Z. On the Existence of Positive Solutions of Fourth-Order Semipositone Boundary Value Problem [J]. Journal of Engineering Mathematics, 2002, 19(3): 133-136.)
[12]WANG X M. An Existence Result for Positive Solution of Fourth-Order Superlinear Semi-positive BVPs [J]. Journal of Guangxi University (Natural Science Edition), 2008, 33(2): 115-117.
[13]WANG X M. Positive Solutions for Fourth-Order Sublinear Semi-positive Boundary-Value Problems [J]. Henan Science, 2009, 27(5): 513-516.
[14]AMANN H. Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces [J]. SIAM Review, 1976, 18(4): 620-709.
[15]郭大鈞. 非線性泛函分析 [M]. 2版. 濟南: 山東科學技術出版社, 2001: 1-427. (GUO D J. Nonlinear Functional Analysis [M]. 2nd ed. Jinan: Shandong Science and Technology Press, 2001: 1-427.)
(責任編輯: 趙立芹)
收稿日期: 2022-09-15.
第一作者簡介: 馬 瓊(1999—), 男, 漢族, 碩士研究生, 從事常微分方程邊值問題的研究,"E-mail: maqiong2022@163.com. 通信作者簡介: 王晶晶(1995—), 男, 漢族, 博士研究生, 從事常微分方程邊值問題的研究, E-mail: mathwang0712@163.com.
基金項目: 國家自然科學基金(批準號: 11961060).