亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類帶簡支梁條件的半正超線性梁方程的非平凡解

        2023-04-29 00:00:00馬瓊王晶晶
        吉林大學學報(理學版) 2023年4期

        摘要: 在關于線性算子相應主特征值的一些條件下, 用拓撲度方法和不動點理論證明帶簡支梁邊界條件的半正Euler-Bernoulli梁方程邊值問題

        關鍵詞: 拓撲度; 不動點; 非平凡解和正解; Euler-Bernoulli梁方程

        中圖分類號: O175.8 文獻標志碼: A 文章編號: 1671-5489(2023)04-0745-08

        Nontrivial Solutions for a Class of Semipositive SuperlinearBeam Equations with Simply Supported Beam Condition

        MA Qiong, WANG Jingjing

        (College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)

        Abstract: Under some conditions about corresponding principal eigenvalue of" linear operator, we prove the existence of nontrivial solutions and positive solutions of boundary value problem for the semipositive nonlinear Euler-Bernoulli beam equationswith simply supported beam boundary condition by using the topological degree method and the fixed point theory, where λgt;0 is a paramenter, f: [0,1]Keywords: topological degree; fixed point; nontrivial solution and positive solution; Euler-Bernoulli beam equations

        參考文獻

        [1]ZHANG Y X, CUI Y J. Positive Solutions for Two-Point Boundary Value Problems for Fourth-Order Differential Equations with Fully Nonlinear Terms [J/OL]. Mathematical Problems in Engineering, (2020-11-06)[2022-08-06]. https://doi.org/10.1155/2020/8813287.

        [2]王晶晶, 路艷瓊. 一類半正非線性彈性梁方程邊值問題正解的存在性 [J]. 山東大學學報(理學版), 2020, 55(6): 84-92. (WANG J J, LU Y Q. Existence of Positive Solutions for a Class of Semi-positive Nonlinear Elastic Beam Equation Boundary Value Problems [J]. Journal of Shandong University (Natural Science), 2020, 55(6): 84-92.)

        [3]WANG J J, GAO C H, LU Y Q. Global Structure of Positive Solutions for Semipositone Nonlinear Euler-Bernoulli Beam Equation with Neumann Boundary Conditions [J/OL]. Quaestiones Mathematicae, (2022-02-14)[2022-08-14]. https://doi.org/10.2989/16073606.2022.2036260.

        [4]FIGUEIREDO G M, FURTADO M F, DA SILVA J P P. Existence and Multiplicity of Positive Solutions for a Fourth-Order Elliptic Equation [J]. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2020, 150(2): 1053-1069.

        [5]BAI Z B. The Upper and Lower Solution Method for Some Fourth-Order Boundary Value Problems [J]. Nonlinear Analysis: Theory, Methods amp; Applications, 2007, 67(6): 1704-1709.

        [6]CID J A, FRANCO D, MINHS F. Positive Fixed Points and Fourth-Order Equations [J]. Bulletin of the London Mathematical Society, 2009, 41(1): 72-78.

        [7]HEIDARI TAVANI M R, NAZARI A. Existence of PositiveSolutions for a Pertubed Fourth-Order Equation [J]. Kragujevac Journal of Mathematics, 2021, 45(4): 623-633.

        [8]LIU Y J, GE W G. Double Positive Solutions of Fourth-Order Nonlinear Boundary Value Problems [J]. Applicable Analysis, 2003, 82(4): 369-380.

        [9]MA R Y, WANG J X, YAN D L. The Method of Lower and Upper Solutions for Fourth Order Equations with the Navier Condition [J/OL]. Boundary Value Problems, (2017-10-19)[2022-08-20]. https://doi.org/10.1186/s13661-017-0887-5.

        [10]MA R Y. Multiple Positive Solutions for a Semiposione Fourth-Order Boundary Value Problem [J]. Hiroshima Mathematical Journal, 2003, 33(2): 217-227.

        [11]馬巧珍. 一類四階半正邊值問題正解的存在性 [J]. 工程數(shù)學學報, 2002, 19(3): 133-136. (MA Q Z. On the Existence of Positive Solutions of Fourth-Order Semipositone Boundary Value Problem [J]. Journal of Engineering Mathematics, 2002, 19(3): 133-136.)

        [12]WANG X M. An Existence Result for Positive Solution of Fourth-Order Superlinear Semi-positive BVPs [J]. Journal of Guangxi University (Natural Science Edition), 2008, 33(2): 115-117.

        [13]WANG X M. Positive Solutions for Fourth-Order Sublinear Semi-positive Boundary-Value Problems [J]. Henan Science, 2009, 27(5): 513-516.

        [14]AMANN H. Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces [J]. SIAM Review, 1976, 18(4): 620-709.

        [15]郭大鈞. 非線性泛函分析 [M]. 2版. 濟南: 山東科學技術出版社, 2001: 1-427. (GUO D J. Nonlinear Functional Analysis [M]. 2nd ed. Jinan: Shandong Science and Technology Press, 2001: 1-427.)

        (責任編輯: 趙立芹)

        收稿日期: 2022-09-15.

        第一作者簡介: 馬 瓊(1999—), 男, 漢族, 碩士研究生, 從事常微分方程邊值問題的研究,"E-mail: maqiong2022@163.com. 通信作者簡介: 王晶晶(1995—), 男, 漢族, 博士研究生, 從事常微分方程邊值問題的研究, E-mail: mathwang0712@163.com.

        基金項目: 國家自然科學基金(批準號: 11961060).

        亚洲一区二区三区,日本| 色噜噜狠狠色综合欧洲| 中文字幕一区二区三在线| 日韩精品乱码中文字幕| 日韩精品视频一区二区三区| 欧美日本国产va高清cabal| 亚洲中文久久久久无码| 中文字幕精品一区二区三区av| 97在线视频人妻无码| 真人直播 免费视频| 久久久久久一级毛片免费无遮挡 | 日韩欧美aⅴ综合网站发布| 欧美日韩一卡2卡三卡4卡 乱码欧美孕交 | 久久精品久99精品免费| 午夜射精日本三级| 精品人妻少妇一区二区不卡| 亚洲女同同性少妇熟女| 亚洲日本人妻少妇中文字幕| 亚洲人成色7777在线观看不卡| 亚洲一区二区三区在线网站| 激情人妻中出中文字幕一区| 少妇连续高潮爽到抽搐| 久久er99热精品一区二区| 粉嫩极品国产在线观看| 国产网友自拍视频在线观看| 中文字幕亚洲无线码在线一区| 亚洲欧美日韩精品久久亚洲区| 粉嫩高中生无码视频在线观看| 亚洲综合精品一区二区 | 国产精品自产拍在线18禁| 免费看黄在线永久观看| 久久久久亚洲精品男人的天堂| 精品国精品无码自拍自在线| 国产呦系列视频网站在线观看| 99久久国产精品免费热| 国产精品99久久久久久猫咪| 久久精品国产91久久性色tv| 我的极品小姨在线观看| 久久人妻av一区二区软件| 四虎成人精品无码永久在线| 99精品国产av一区二区|