摘要: 用時(shí)間映像原理證明在非線性項(xiàng)半正情形下帶一維Minkowski平均曲率算子的邊值問題
參考文獻(xiàn)
[1]GREINER W. Classical Mechanics: Point Particles and Relativity [M]. New York: Springer-Verlag, 2004: 1-488.
[2]HUTTEN E H. Relativistic (Non-linear) Oscillator [J]. Nature, 1965, 205: 892.
[3]OKRASIN'SKI W, POCINICZAK L. A Nonlinear Mathematical Model of the Corneal Shape [J]. Nonlinear Anal Real World Appl, 2012, 13(3): 1498-1505.
[4]BRUBAKER N D, PELESKO J A. Non-linear Effects on Canonical MEMS Models [J]. European J Appl Math, 2011, 22(5): 455-470.
[5]BEREANU C, MAWHIN J. Existence and Multiplicity Results for Some Nonlinear Problems with Singular -Laplacian [J]. J Differential Equations, 2007, 243(2): 536-557.
[6]BEREANU C, JEBELEAN P, MAWHIN J. Radial Solutions for Some Nonlinear Problems Involving Mean Curvature Operators in Euclidean and Minkowski Spaces [J]. Proc Amer Math Soc, 2009, 137(1): 161-169.
[7]COELHO I, CORSATO C, OBERSNEL F, et al. Positive Solutions of the Dirichlet Problem for the One-Dimensional Minkowski-Curvature Equation [J]. Adv Nonlinear Stud, 2012, 12(3): 621-638.
[8]MA R Y, LU Y Q. Multiplicity of Positive Solutions for Second Order Nonlinear Dirichlet Problem with One-Dimension Minkowski-Curvature Operator [J]. Adv Nonliner Stud, 2015, 15(4): 789-803.
[9]ZHANG X M, FENG M Q. Bifurcation Diagrams and Exact Multiplicity of Positive Solutions of One-Dimensional Prescribed Mean Curvature Equation in Minkowski Space [J]. Commun Contemp Math, 2019, 21(3): 1850003-1-1850003-17.
[10]GAO H L, XU J. Bifurcation Curves and Exact Multiplicity of Positive Solutions for Dirichlet Problems with the Minkowski-Curvature Equation [J/OL]. Bound Value Probl, (2021-09-23)[2021-10-15]. https://doi.org/10.1186/s13661-021-01558-x.
[11]苗亮英, 何志乾. Minkowski空間中含平均曲率算子的擬線性微分系統(tǒng)Dirichlet問題徑向正解的唯一性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2022, 60(1): 85-88. (MIAO L Y, HE Z Q. Uniqueness of Positive Radial Solutions of Dirichlet Problem for Quasilinear Differential System with Mean Curvature Operator in Minkowski Space [J]. Journal of Jilin University (Science Edition), 2022, 60(1): 85-88.)
[12]姚燕燕, 徐晶, 高紅亮. 帶有特殊非線性項(xiàng)的Dirichlet問題正解的確切個(gè)數(shù) [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2021, 59(5): 1015-1024." (YAO Y Y, XU J, GAO H L. Exact Multiplicity of Positive Solutions of Dirichlet Problems with Special Nonlinear Terms [J]. Journal of Jilin University (Science Edition), 2021, 59(5): 1015-1024.)
[13]MYERSCOUGH M R, GRAY B F, HOGARTH W L, et al. An Analysis of an Ordinary Differential Equation Model for a Two-Species Predator-Prey System with Harvesting and Stocking [J]. J Math Biol, 1992, 30(4): 389-411.
[14]CASTRO A, SHIVAJI R. Non-negative Solutions for a Class of Non-positone Problems [J]. Proc R Soc Edinb, 1988, 108A(3/4): 291-302.
[15]MAYA C, SHIVAJI R. Multiple Positive Solutions for a Class of Semilinear Elliptic Boundary Value Problems [J]. Nonlinear Anal: Theory, Methods Appl, 1999, 38(4): 497-504.
[16]CHU K D, HAI D D, SHIVAJI R. Uniqueness of Positive Radial Solutions for a Class of Infinite Semipositone p-Laplacian Problems in a Ball [J]. Proc Amer Math Soc, 2020, 148(5): 2059-2067.
[17]HAI D D, MUTHUNAYAKE A, SHIVAJI R. A Uniqueness Result for a Class of Infinite Semipositone Problems with Nonlinear Boundary Conditions [J]. Positivity, 2021, 25(4): 1357-1371.
(責(zé)任編輯: 趙立芹)
收稿日期: 2022-10-03.
第一作者簡(jiǎn)介: 李志強(qiáng)(1995—), 男, 漢族, 碩士研究生," 從事常微分方程與差分方程邊值問題的研究, E-mail: 2593741990@qq.com.
通信作者簡(jiǎn)介: 路艷瓊(1986—), 女, 漢族, 博士, 副教授, 從事常微分方程與差分方程邊值問題的研究, E-mail: luyq8610@126.com.
基金項(xiàng)目: 國(guó)家自然科學(xué)基金青年科學(xué)基金(批準(zhǔn)號(hào): 11901464; 11801453)、 西北師范大學(xué)青年教師科研能力提升計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): NWNU-LKQN-2020-20)