摘要: 針對傳統(tǒng)芬頓技術的工作pH范圍較窄、 增大pH值會明顯降低四環(huán)素的去除率并導致二次污染的問題, 采用溶劑熱合成方法, 將Fe3O4負載于碳氈(CF)電極表面, 合成Fe3O4@CF復合電極. 通過掃描電子顯微鏡(SEM)、 X射線衍射(XRD)、 X射線光電子能譜(XPS)、 Fourier變換紅外吸收光譜(FTIR)和電化學阻抗(EIS)對材料進行表征, 研究其作為電極在非均相電輔助芬頓(EF)系統(tǒng)中對四環(huán)素的降解性能和機理, 并進行循環(huán)實驗. 結果表明: Fe3O4@CF電極在非均相電輔助芬頓體系中對四環(huán)素的降解性能最好; 在室溫下, 經(jīng)過90 min, 四環(huán)素初始質量濃度為20 mg/L, 初始pH=3, 兩電極間距離為2 cm, 外加電流為50 mA, 在非均相電芬頓系統(tǒng)中Fe3O4@CF電極對四環(huán)素的去除率可達96.7%;"" Fe3O4@CF電極可重復利用性良好; 在非均相電芬頓系統(tǒng)降解四環(huán)素的過程中, OH起主要作用, O-2起輔助作用.
關鍵詞: 四環(huán)素; Fe3O4@CF電極; 非均相電芬頓體系; 氧化還原反應
中圖分類號: X132 文獻標志碼: A 文章編號: 1671-5489(2023)04-0982-09
Degradation of Tetracycline by Fe3O4@CF Electrode in Non-homogeneous Electro-Fenton System
ZHAO Longfei," WAN Ning,"" HUANG Yuting," YUE Tongtong," FENG Wei
(College of New Energy and Environment," Jilin University," Changchun 130021," China)
Abstract:" Aiming at the problem that the operating pH range of" the conventional Fenton technique was relatively narrow,"" increasing" pH" value significantly reduced the removal rate of tetracycline and led to secondary contaminztion,"" Fe3O4@CF composite electrode was synthesized by loading Fe3O4 onto the surface of carbon felt (CF) electrode by using a solvent thermal synthesis method. The materials were characterised by scanning electron microscopy (SEM)," X-ray diffraction (XRD)," X-ray photoelectron spectroscopy (XPS)," Fourier transform infrared absorption spectroscopy (FTIR) and electrochemical impedance (EIS)." We investigated the degradation performance and mechanism of" tetracycline using it as electrode in a non-homogeneous electrically assisted Fenton (EF) system, and conducted cyclic experiments." The results show that the Fe3O4@CF electrode exhibits the best degradation performance of tetracycline in a non-homogeneous electrically assisted Fenton system." After 90 min at room temperature," the initial mass"" concentration of tetracycline is 20 mg/L," an initial pH=3," a distance between the two electrodes is 2 cm, and an applied current is 50 mA," the removal rate of tetracycline by Fe3O4@CF electrode in the non-homogeneous electro-Fenton system can reach 96.7%. In addition,"" the Fe3O4@CF electrode has good reusability. In the degradation of tetracycline in the non-homogeneous electro-Fenton system," OH plays a major role and O-2 plays an auxiliary role.
Keywords: tetracycline; Fe3O4@CF electrode; non-homogeneous electro-Fenton system; oxygen reduction reaction
四環(huán)素是一種廣譜性的抗生素, 可廣泛用于細菌性傳染病的治療[1-2]. 但四環(huán)素的過量使用會導致四環(huán)素在地表水、 地下水、 土壤和其他環(huán)境介質中積累, 威脅生態(tài)環(huán)境和人類健康[3]. 目前, 去除水體中四環(huán)素的方法主要包括吸附法[4-5]、 生物法[6]、 膜分離[7]和高級氧化技術(AOP)[8-10]. 其中, 高級氧化技術被認為是去除抗生素類有機物最有前景的技術[11]. 在高級氧化技術中, 電芬頓(EF)具有反應徹底和環(huán)境友好性等優(yōu)點[12]. 在均相電芬頓體系中, 引入外加電流可原位生成H2O2, 便于生成羥基自由基(·OH), 并可促進Fe2+/Fe3+之間的電子轉移循環(huán)[13]. 然而, 均相電芬頓受工作pH值范圍窄的影響會降低對四環(huán)素的去除并導致二次金屬污染. 因此, 對陰極進行改性, 構建非均相電芬頓體系, 不僅可提高陰極的導電性, 促進氧化還原產(chǎn)生更多H2O2 [14], 還可替代可溶性Fe2+, 解決窄pH值范圍的缺點. 本文采用溶劑熱法將Fe3O4負載于碳氈(CF)表面, 制備Fe3O4@CF電極. 將Fe3O4@CF作為陰極, 構建非均相電芬頓系統(tǒng)降解水中四環(huán)素污染物, 解決了產(chǎn)生鐵泥、 二次污染和窄pH值范圍等問題[15].
1 實 驗
1.1 試劑和儀器
鹽酸四環(huán)素、 六水合三氯化鐵(FeCl36H2O)、 乙酸鈉(CH3COONa)、 聚乙二醇(PEG)、 乙二醇(EG)、 無水乙醇(CH3CH2OH)、 硫酸鈉(Na2SO4)、 叔丁醇(TBA)、 苯醌(BQ)和硝酸(HNO3)均購自國藥集團化學試劑有限公司, 均為分析純試劑." 本文均采用超純水配制溶液, 實驗均在室溫下進行.
分析天平(JA1003L型, 上海力辰儀器科技有限公司); 電化學工作站(CHI660E型, 上海辰華儀器有限公司); 紫外-分光光度計(U-4100型, 日本島津公司); X射線衍射儀(D8-FOCUS型, 德國Bruker公司); 掃描電子顯微鏡(ZEISS Gemini 300型, 德國ZEISS公司); X射線光電子能譜(Ultra DLD型, 英國KRATOS公司);" Fourier紅外光譜儀(Bruker Vertex 70型," 德國Bruker公司).
1.2 碳氈的預處理
將碳氈剪切成2 cm×2 cm的小塊, 將其在硝酸溶液中浸泡處理5 h后, 分別在丙酮、 乙醇和去離子水的環(huán)境下超聲處理30 min后, 將其放入烘箱中, 于60 ℃烘干7 h," 得到預處理后的碳氈.
1.3 Fe3O4@CF電極的制備
將適量的FeCl3·6H2O加入乙二醇溶劑中, 將混合液攪拌至透明. 加入3.6 g乙酸鈉和1.0 g聚乙二醇. 將預處理后的碳氈放入上述溶液中攪拌2 h后, 進行15 min超聲處理. 然后將毛氈放入襯有聚四氟乙烯的不銹鋼反應器中, 再將不銹鋼反應器放入烘箱內于200 ℃加熱12 h. 加熱結束后, 待反應器冷卻至室溫打開, 分別用乙醇和去離子水對樣品進行多次反復清洗. 最后, 將樣品放入烘箱內于80 ℃烘干3 h," 得到Fe3O4@CF電極.
1.4 非均相電芬頓實驗
配置200 mL 0.1 mol/L的Na2SO4溶液作為電解液, 加入一定量的四環(huán)素粉末, 使其初始質量濃度為20 mg/L, 用稀硫酸將溶液pH值調整為3. 將配置好的溶液放入250 mL不可分割的圓柱形電解池中, 電解池外加直流電源, 以鉑片為陽極, Fe3O4@CF為陰極. 將兩電極插入電解液中水平放置, 且兩電極間距為2 cm, 在反應過程中持續(xù)通入氧氣進行非均相電芬頓系統(tǒng)降解四環(huán)素實驗, 每隔10 min取樣2.5 mL, 將所取樣品用0.45 μm針式過濾器進行過濾, 用紫外-可見分光光度計測定所得濾液的吸光度值, 用于計算四環(huán)素的去除率.
2 結果與討論
2.1 Fe3O4@CF電極的表征
圖1為Fe3O4@CF和Fe3O4的XRD譜." 由圖1可見, Fe3O4在2θ=30.16°,35.48°,43.21°,57.12°,62.54°處出現(xiàn)特征峰, 分別對應Fe3O4的(220),(311),(400),(511),(440)晶面, 與Fe3O4標準卡的特征峰相符. Fe3O4@CF樣品的特征峰包括了Fe3O4在(220),(311),(400),(511),(440)晶面的特征峰, 表明Fe3O4負載于碳氈表面并未改變Fe3O4的晶相[16]. 在Fe3O4@CF譜的特征峰中, 由于引入了Fe3O4, 因此特征峰的半峰寬增加, 特征峰強度變弱, 表明碳氈對Fe3O4的生長有抑制作用. 根據(jù)Scherrer公式D=kλβcos θ(1)計算晶粒尺寸," 其中D為晶粒垂直晶面方向的平均厚度, λ為X射線波長," β為衍射峰半高寬, θ為衍射角[17]. 通過計算可得, Fe3O4@CF的晶粒尺寸約為30.63~49.31 nm.
通過Fourier變換紅外吸收光譜(FTIR)分析CF和Fe3O4@CF的表面化學特性, 結果如圖2所示. 由圖2可見, CF沒有明顯的特征峰, Fe3O4@CF在3 443,1 632,1 389,1 089,722,570 cm-1處有明顯的特征峰. 3 443 cm-1處的峰由O—H基團的拉伸振動[18-19]產(chǎn)生; 1 632 cm-1處的峰由CC的拉伸產(chǎn)生; 1 389 cm-1處的峰由CH3的對稱角振動產(chǎn)生; 1 089 cm-1處的峰由C—O的拉伸產(chǎn)生; 722 cm-1處的峰由C—H的平面外彎曲振動產(chǎn)生;" 570 cm-1處的峰由Fe—O的拉伸產(chǎn)生[20]. FTIR進一步說明已成功制備了Fe3O4@CF.
通過掃描電鏡(SEM)技術和能譜儀(EDS)分析不同樣品的形貌和表面元素分布, 結果分別如圖3和圖4所示. 由圖3(A)可見, 預處理后的碳氈表面光滑具有纖維網(wǎng)狀結構, 其直徑約為8.25 μm. 由圖3(C)可見, 通過溶劑熱法制備了直徑約為240 nm的純Fe3O4球形顆粒, 顆粒之間相互團聚. 由圖3(B)可見, 將預處理后的碳氈經(jīng)溶劑熱法處理后, 碳氈纖維表面被球狀顆粒均勻包裹. 其放大圖像如圖3(D) 所示, 碳氈纖維表面的顆粒直徑約為50 nm. 可見Fe3O4已成功負載于碳氈表面, 并且碳氈的網(wǎng)狀纖維結構對Fe3O4顆粒的生長有抑制作用, 還可以有效分散Fe3O4顆粒." 由圖4可見, Fe3O4@CF表面均勻分布C,F(xiàn)e,O 3種元素, 進一步說明Fe3O4已成功負載于碳氈表面.
通過Fe3O4@CF的X射線光電子能譜(XPS)對Fe3O4@CF電極表面元素組成進行驗證分析, 結果如圖5所示, 其中圖5(A)為Fe3O4@CF的XPS全譜. 由圖5(A)可見, Fe3O4@CF電極在711.8,530.8,284.8 eV處有3個明顯的特征峰, 分別對應C 1s,O 1s和Fe 2p, 表明制備的電極材料由C,O,F(xiàn)e 3種元素組成[21]. 由圖5(B)可見,"" 在Fe 2p1/2處有兩個峰分別為725.6,723.9 eV. 在Fe 2p3/2處有兩個峰分別為712,710.55 eV. 其中, 725.6,712 eV屬于Fe3+, 723.9,710.55 eV屬于Fe2+, 這與純Fe3O4的XPS譜一致[22]. 由圖5(C)可見, 在533.65,531.65,530.00 eV處有3個峰, 它們分別屬于C—O,O—H和Fe—O[23]. 由圖5(D)可見," 在288.6,286.75,284.8 eV處的3個峰分別屬于CO,C—O和C—C, 其中CO有利于Fe3O4在碳氈表面的生長[24].
圖6為CF電極、 Fe3O4@CF電極和Fe3O4的Nyquist圖. 由圖6可見, 在高頻區(qū)域, Fe3O4遠小于比CF電極的半圓半徑, 表明Fe3O4比CF有更好的導電性[25]. 雖然Fe3O4@CF電極的半圓半徑在高頻區(qū)有所增加, 但仍遠小于CF電極半徑. 表明Fe3O4@CF電極具有良好的電化學性能, 有助于提高非均相電芬頓反應過程中電極表面電子轉移的速率, 從而提高四環(huán)素的降解.
為研究Fe3O4@CF電極在非均相電芬頓系統(tǒng)中降解四環(huán)素的性能, 采用CF電極和Fe3O4@CF電極, 對比二者在非均相電芬頓系統(tǒng)中經(jīng)90 min后四環(huán)素的去除率, 結果如圖7所示." 由圖7可見:" 選擇Fe3O4和H2O2作為催化劑, 進行傳統(tǒng)芬頓去除四環(huán)素, 去除率為49.3%; 在通電條件下, CF作為陰極, 不添加Fe3O4催化劑時, 四環(huán)素的去除率很低, 僅為6.5%; 當加入非均相催化劑Fe3O4后, 四環(huán)素的去除率達到71.1%; 當投加均相Fe2+催化劑時, 四環(huán)素的去除率為63.1%; 在通電條件下, Fe3O4@CF作為陰極, 四環(huán)素的去除率達到96.7%, 而不通電時四環(huán)素的去除率僅為3.1%. 圖8為在不同條件下降解四環(huán)素的偽一級反應動力學方程, 利用偽一級反應動力學方程lnρ0ρt=kt(2)對四環(huán)素的質量濃度隨時間變化進行計算, 其中k(min-1)為反應過程中的反應速率常數(shù), ρ0 (mg/L)為反應開始前溶液中四環(huán)素的質量濃度, ρt(mg/L)為反應t min時溶液中四環(huán)素的質量濃度. 計算可得, Fe3O4@CF電極在非均相電芬頓體系中的反應速率常數(shù)最高, 為0.038 6 min-1, 遠高于其他條件的反應速率常數(shù). 綜上可見, Fe3O4@CF電極在非均相電芬頓系統(tǒng)中對四環(huán)素的去除效果最好.
不同條件對Fe3O4@CF電極降解四環(huán)素的影響如圖9所示. Fe3O4@CF電極在非均相電芬頓系統(tǒng)中降解四環(huán)素過程中, 初始pH值可影響活性氧化物質的產(chǎn)量, 進而影響四環(huán)素的降解效果. 由圖9(A)可見, 分別在初始pH=2,3,4,5,6,7,9的條件下進行降解實驗, 電極對四環(huán)素的去除率分別為94.9%,96.7%,92.9%,86.7%,83.9%,69.9%,59.6%. 隨著初始pH值的逐漸增大, 溶液中四環(huán)素的去除率逐漸降低, 這是因為酸性條件下可產(chǎn)生較多的H2O2, 有助于活性氧化物質的產(chǎn)生. 但若進一步降低初始pH值, 四環(huán)素的去除率也降低. 這是因為溶液中H+的增加可促進H2O2進一步發(fā)生還原反應, 減少了反應過程中OH的產(chǎn)量, 從而影響對污染物的去除[26-27]. 因此, 實驗過程中不能選取過低的pH值, 本文選取pH=3 為最合適的初始pH值[28]. 圖9(B)為Fe3O4@CF電極在不同pH值條件下的Zeta電位, 其等電位點為4.43, 說明當pH值大于4.43時電極帶負電, 當pH值小于4.43時電極帶正電. 四環(huán)素的解離常數(shù)為pKa1=3.3," pKa2=7.7, pKa3=9.7. 當3.3<pH<7.7時, 溶液中四環(huán)素以兩性離子的形式存在, 而電極的等電位點位于此區(qū)間, 其表面帶兩種不同的電荷, 可與四環(huán)素的兩性離子相互吸引, 從而提高四環(huán)素的去除率.
Fe3O4@CF電極在非均相電芬頓系統(tǒng)降解四環(huán)素過程中, 外加電流對降解效果的影響如圖9(C)所示. 由圖9(C)可見," 當外加電流分別為10,20,30,40,50,60,70 mA時, 溶液中四環(huán)素的去除率分別為57.6%,77.5%,91.2%,93.9%,96.7%,95.3%,94.1%. 可見, 在10~50 mA內, 四環(huán)素的去除率與外加電流成正比, 這是因為提高電流可加速電極表面生成H2O2, 從而獲得更多的OH用于降解溶液中四環(huán)素. 然而, 隨著外加電流進一步提高至60 mA, 溶液中四環(huán)素去除率降低. 原因是隨著電流的進一步增加, 所產(chǎn)生的副反應將與氧化還原反應形成競爭, 不利于H2O2的生成[29]. 因此, 本文選用50 mA為最合適的外加電流.
Fe3O4@CF電極在非均相電芬頓系統(tǒng)中降解四環(huán)素過程中, 兩電極間距對降解效果的影響如圖9(D)所示." 由圖9(D)可見, 當兩電極間距為1.5,2.0,2.5,3.0 cm時, 溶液中四環(huán)素的去除率分別為95.7%,96.7%,94.9%,88.9%. 可見, 當兩電極間距由2.0 cm擴大為3.0 cm時, 溶液中四環(huán)素的去除率逐漸降低, 這是因為隨著距離的變大, 電子轉移速度降低, 減少了H2O2的產(chǎn)生, 進而減少了活性氧化物的產(chǎn)生. 當間距由2.0 cm變?yōu)?.5 cm時, 溶液中四環(huán)素的去除率下降, 這是因為隨著電子轉移速率的提高, 加快了Fe2+的再生, 過量的Fe2+會與OH反應, 影響四環(huán)素的降解. 因此, 本文選擇2.0 cm作為兩電極的間距.
圖10為Fe3O4@CF電極樣品循環(huán)利用性能. 由圖10可見, 在室溫下四環(huán)素初始質量濃度為20 mg/L, 初始pH=3, 兩電極間距為2.0 cm, 外加電流為50 mA的條件下, 經(jīng)5次循環(huán)實驗后, 四環(huán)素的去除率未顯著下降, 仍高于93.7%. 表明合成的電極在非均相電芬頓系統(tǒng)中降解四環(huán)素性能良好, 而且重復使用后仍能保持良好的降解效果.
為確定Fe3O4@CF電極在非均相電芬頓體系中降解四環(huán)素的主要活性物質, 采用叔丁醇(TBA)和苯醌(BQ)對OH和O-2進行淬滅[30], 結果如圖11所示.
由圖11可見: 在不投加捕獲劑, 反應90 min后, 溶液中四環(huán)素的去除率為96.7%; 在溶液中加入BQ對O-2進行淬滅, 反應90 min后, 四環(huán)素的去除率為70.3%; 在溶液中加入TBA對OH進行淬滅, 反應90 min后, 四環(huán)素的去除率為42.7%. 表明Fe3O4@CF電極在非均相電芬頓系統(tǒng)降解四環(huán)素過程中,OH起主要作用, 而O2-起輔助作用. 在降解四環(huán)素過程中, 首先, 電極附近的有機污染物被吸附在陽極和陰極表面; 其次, 在通電條件下, 發(fā)生陽極氧化反應, 陽極附近的四環(huán)素被降解去除; 最后, 在曝氣過程中, O2在陰極發(fā)生還原反應, 產(chǎn)生H2O2, 并與陰極表面的非均相催化劑Fe3O4發(fā)生芬頓反應, 產(chǎn)生強氧化性的OH對四環(huán)素進行去除, 而Fe3+在陰極獲得電子, 形成穩(wěn)定的Fe2+/Fe3+循環(huán). 同時, 非均相Fe3O4控制少量Fe2+浸出到溶液中, 參與溶液中的均相芬頓反應, 進一步去除四環(huán)素.
3 結 論
1)" 相比于CF電極, 通過Fe3O4在碳氈表面負載, Fe3O4@CF電極的導電性更好, 可原位生成H2O2, 對四環(huán)素的降解性能更好.
2) 在室溫條件下, 四環(huán)素初始質量濃度為20 mg/L, 初始pH=3, 兩電極間距為2.0 cm, 外加電流為50 mA為非均相電芬頓系統(tǒng)降解四環(huán)素的最佳條件, 經(jīng)90 min反應后, 四環(huán)素的去除率可達96.7%. 此外, 在5次循環(huán)試驗后, Fe3O4@CF電極仍對四環(huán)素有較高的去除率, 可重復利用性良好. Fe3O4@CF電極在非均相電芬頓系統(tǒng)降解四環(huán)素的過程中, OH是起主要作用的自由基, 而O-2是起輔助作用的自由基.
3) 本文通過溶劑熱法成功制備了Fe3O4@CF電極, 將其應用于非均相電芬頓體系中對四環(huán)素的降解效果良好, 具有較好的應用前景.
參考文獻
[1]BISWAL B K," BALASUBRAMANIAN R. Adsorptive Removal of Sulfonamides," Tetracyclines and Quinolones from Wastewater and Water Using Carbon-Based Materials:" Recent Developments and Future Directions [J]. Journal of Cleaner Production," 2022, 349:" 131421-1-131421-15.
[2]YUE Y," SHEN C," GE Y. Biochar Accelerates the Removal of Tetracyclines and Their Intermediates by Altering Soil Properties [J]. Journal of" Hazardous Materials," 2019," 380:" 120821-1-120821-8.
[3]ZHANG J J," QIU S," FENG H F," et al. Efficient Degradation of Tetracycline Using Core-Shell Fe@Fe2O3-CeO2 Composite as Novel Heterogeneous Electro-Fenton Catalyst [J]. Chemical Engineering Journal," 2022," 428:" 131403-1-131403-10.
[4]SUN Y L," IM J," SHOBNAM N," et al. Degradation of Adsorbed Bisphenol A by Soluble Mn(Ⅲ) [J]. Environmental Science amp; Technology," 2021," 55(19):" 13014-13023.
[5]HUANG J Y," WANG X," PAN Z Q," et al. Efficient Degradation of Perfluorooctanoic Acid PFOA by Photocatalytic Ozonation [J]. Chemical Engineering Journal," 2016," 296:" 329-334.
[6]XU L Y," ZHANG H," XIONG P," et al. Occurrence," Fate," and Risk Assessment of Typical Tetracycline Antibiotics in the Aquatic Environment:" A Review [J]. Science of the" Total Environment," 2021," 753:" 141975-1-141975-17.
[7]BANDEHALI S," SANAEEPUR H,"" AMOOGHIN A E," et al. Biodegradable Polymers for Membrane Separation [J]. Separation and Purification Technology," 2021," 269:" 118731-1-118731-35.
[8]樸云仙," 劉再冉, 張彧, 等. 漆酶和生物炭固定化海藻酸銅球對亞甲基藍染料的去除效果實驗 [J]. 吉林大學學報(地球科學版), 2022, 52(6): 2014-2020. (PIAO Y X, LIU Z R, ZHANG Y, et al. Experimental on Removal of Methylene Blue by Laccase and Biochar Encapsulated Copper Alginate Beads [J]. Journal of Jilin University (Earth Science Edition), 2022, 52(6): 2014-2020.)
[9]任何軍, 林雯雯, 魯松, 等. 熱活化過硫酸鹽降解氧氟沙星特性及響應面優(yōu)化 [J]. 吉林大學學報(地球科學版),"" 2021, 51(3):" 887-897. (REN H J, LIN W W, LU S, et al. Degradation of" Ofloxacin by Thermally Activated Persulfate and Its Response Surface Optimization [J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 887-897.)
[10]王洪橋, 白玉. 紫外/氯工藝對水中微囊藻毒素的去除 [J]." 吉林大學學報(地球科學版), 2022, 52(1): 222-228. (WANG H Q, BAI Y." Removal of Microcystins from Water by UV/Chlorine Process [J]. Journal of Jilin University (Earth Science Edition), 2022, 52(1): 222-228.)
[11]AL-BSOUL A," AL-SHANNAG M," TAWALBEH M," et al. Optimal Conditions for Olive Mill Wastewater Treatment Using Ultrasound and Advanced Oxidation Processes [J]. Science of the" Total Environment," 2020," 700:" 134576-1-134576-10.
[12]SU P," DU X," ZHENG Y," et al. Interface-Confined Multi-layered Reaction Centers between Ce-MOFs and Fe3O4@C for Heterogeneous Electro-Fenton at Wide pH 3—9:" Mediation of Ce3+/Ce4+ and Oxygen Vacancy [J]. Chemical Engineering Journal," 2022," 433:" 133597-1-133597-13.
[13]WANG Y," ZHAO M Z," HOU C," et al. Efficient Degradation of Perfluorooctanoic Acid by Solar Photo-Electro-Fenton Like System Fabricated by MOFs/Carbon Nanofibers Composite Membrane [J]. Chemical Engineering Journal," 2021," 414:" 128940-1-128940-11.
[14]LE T X H," BECHELANY M," CRETIN M. Carbon Felt Based-Electrodes for Energy and Environmental Applications:" A Review [J]. Carbon," 2017," 122:" 564-591.
[15]CUI T Y,"" XIAO Z H," WANG Z B," et al. FeS2/Carbon Felt as an Efficient Electro-Fenton Cathode for Carbamazepine Degradation and Detoxification:" In-depth Discussion of Reaction Contribution and Empirical Kinetic Model [J]. Environmental" Pollution," 2021," 282:" 117023-1-117023-14.
[16]BORUAH P K," SHARMA B," KARBHAL I," et al. Ammonia-Modified Graphene Sheets Decorated with Magnetic Fe3O4 Nanoparticles for the Photocatalytic and Photo-Fenton Degradation of Phenolic Compounds under Sunlight Irradiation [J]. Journal of" Hazardous Materials," 2017," 325:" 90-100.
[17]DUNG N T," DUONG L T," HOA N T," et al. A Comprehensive Study on the Heterogeneous Electro-Fenton Degradation of Tartrazine in Water Using CoFe2O4/Carbon Felt Cathode [J]. Chemosphere," 2022," 287(Pt 2):" 132141-1-132141-12.
[18]ZHAO J J," NIU Y Z," RER B," et al. Synthesis of Schiff Base Functionalized Superparamagnetic Fe3O4 Composites for Effective Removal of Pb(Ⅱ) and Cd(Ⅱ) from Aqueous Solution [J]. Chemical Engineering Journal," 2018," 347:" 574-584.
[19]DA ROSA SALLES T," SCHNORR C," DA" SILVA BRUCKMANN F," et al. Effective Diuretic Drug Uptake Employing Magnetic Carbon Nanotubes Derivatives:" Adsorption Study and in vitro Geno-Cytotoxic Assessment [J]. Separation and Purification Technology," 2023:" 123713-1-123713-12.
[20]MOUDEN A E," MESSAOUDI N E,"" GUERRAF A,nbsp; et al. Removal of Cadmium and Lead Ions from Aqueous Solutions by Novel Dolomite-Quartz@Fe3O4 Nanocomposite Fabricated as Nanoadsorbent [J]. Environmental Research," 2023," 225:" 115606-1-115606-13.
[21]ZHANG X," REN B," LI X," et al. High-Efficiency Removal of Tetracycline by Carbon-Bridge-Doped g-C3N4/Fe3O4 Magnetic Heterogeneous Catalyst through Photo-Fenton Process [J]. Journal of" Hazardous Materials," 2021," 418:" 126333-1-126333-18.
[22]ZENG H P," LIU C B," XU H," et al. Preparation of Fe3O4@C with Water Treatment Residuals and Its Potential in the Magnetic Coagulation Process [J]. Journal of Cleaner Production," 2022," 362:" 132327-1-132327-12.
[23]PI Y R," DUAN C Y," ZHOU Y L," et al. The Effective Removal of Congo Red Using a Bio-nanocluster:" Fe3O4 Nanoclusters Modified Bacteria [J]. Journal of" Hazardous Materials," 2022," 424:" 127577-1-127577-13.
[24]GONG Q J," LIU Y," DANG Z. Core-Shell Structured Fe3O4@GO@MIL-100(Fe) Magnetic Nanoparticles as Heterogeneous Photo-Fenton Catalyst for 2,4-Dichlorophenol Degradation under Visible Light [J]. Journal of" Hazardous Materials, "2019," 371:" 677-686.
[25]CHEN J," WAN J F,"" LI C," et al. Synthesis of Novel Fe0-Fe3O4/CeO2/C Composite Cathode for Efficient Heterogeneous Electro-Fenton Degradation of Ceftriaxone Sodium [J]. Journal of" Hazardous Materials," 2022," 437:" 129393-1-129393-14.
[26]ZHANG F," ZHOU L N," MA S W," et al. Highly Efficient Heterogeneous Electro-Fenton Degradation of Organic Pollutants Using a FeNi-OH/NF Cathode [J]. Separation and Purification Technology," 2023," 314: "123604-1-123604-8.
[27]XIN S S," HOU S Y," XIN Y J," et al. Heterogeneous Photo-Electro-Fenton Degradation of Tetracycline through Nitrogen/Oxygen Self-doped Porous Biochar Supported CuFeO2 Multifunctional Cathode Catalyst under Visible Light [J]. Applied Catalysis B:" Environmental," 2022," 312:" 121442-1-121442-14.
[28]YU D H," HE J G," WANG Z Y," et al. Mineralization of Norfloxacin in a CoFe-LDH/CF Cathode-Based Heterogeneous Electro-Fenton System:" Preparation Parameter Optimization of the Cathode and Conversion Mechanisms of H2O2 to OH [J]. Chemical Engineering Journal," 2021," 417:" 129240-1-129240-12.
[29]GARCIA-SEGURA S," BRILLAS E," CORNEJO-PONCE L," et al. Effect of the Fe3+/Cu2+ Ratio on the Removal of the Recalcitrant Oxalic and Oxamic Acids by Electro-Fenton and Solar Photoelectro-Fenton [J]. Solar Energy," 2016," 124:" 242-253.
[30]CUI L L," LI Z W," LI Q Q," et al. Cu/CuFe2O4 Integrated Graphite Felt as a Stable Bifunctional Cathode for High-Performance Heterogeneous Electro-Fenton Oxidation [J]. Chemical Engineering Journal," 2021," 420:" 127666-1-127666-15.
(責任編輯: 單 凝)
收稿日期:" 2022-11-18.
第一作者簡介:" 趙龍飛(1997—), 男, 漢族, 碩士研究生, 從事環(huán)境功能材料的研究, E-mail: 1060272035@qq.com. 通信作者簡介:" 馮 威(1972—), 男, 漢族, 博士, 教授, 博士生導師, 從事環(huán)境功能材料的研究, E-mail: weifeng@jlu.edu.cn.
基金項目: 國家自然科學基金(批準號: 61774073).