摘要: 考慮一類具有多個(gè)分?jǐn)?shù)階導(dǎo)數(shù)項(xiàng)的Riemann-Liouville型分?jǐn)?shù)階微分方程在無窮區(qū)間上的積分邊值問題. 通過構(gòu)造新的Banach空間, 利用非線性分析理論, 在非線性項(xiàng)滿足L1-Carathéodory條件的情況下, 得到了邊值問題正解存在及唯一的多個(gè)結(jié)論, 并給出實(shí)例說明所得結(jié)果的適用性和通用性.
關(guān)鍵詞: 分?jǐn)?shù)階微分方程; 無窮區(qū)間; 積分邊值問題; L1-Carathéodory條件; 不動(dòng)點(diǎn)定理
中圖分類號(hào): O175.8 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1671-5489(2023)04-0761-11[HJ*3]
Integral Boundary Value Problems of FractionalDifferential Equations on Infinite Interval
LI Yue, LIU Xiping
(College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract: We considered" integral boundary value problem of a class of Riemann-Liouville fractional differential equations with multiple fractional derivative
terms on infinite intervals. By constructing a new Banach space and using the nonlinear analysis theory, and under the condition that the nonlinear term satisfied the L1-Carthéodory conditions, some conclusions" for existence and uniqueness of positive solutions to boundary value problems were obtained, and an example was used to illustrate the applicability and universality of the obtained results.
Keywords: fractional differential equation; infinite interval; integral boundary value problem; L1-Carathéodory condition; fixed point theorem
參考文獻(xiàn)
[1]KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier Science, 2006: 1-523.
[2]白占兵. 分?jǐn)?shù)階微分方程邊值問題理論及應(yīng)用 [M]. 北京: 中國科學(xué)技術(shù)出版社, 2013: 1-14. (BAI Z B. Theory and Application of Fractional Differential Equation Boundary Value Problems [M]. Beijing: China Science and Technology Press, 2013: 1-14.)
[3]LIAN H R, WANG P G, GE W G. Unbounded Upper and Lower Solutions Method for Sturm-Liouville Boundary Value Problem on Infinite Intervals [J]. Nonlinear Analysis: Theory, Methods amp; Applications, 2009, 70(7): 2627-2633.
[4]WANG H, LIU S L, LI H L. Positive Solutions to p-Laplacian Fractional Differential Equations with Infinite-Point Boundary Value Conditions [J/OL]. Advances in Difference Equations, (2018-11-20)[2022-05-06]. https://doi.org/10.1186/s13662-018-1886-2.
[5]衛(wèi)麗芳. 分?jǐn)?shù)階積微分方程邊值問題解的存在性研究 [D]." 太原: 山西大學(xué), 2019. (WEI L F. Research on the Existence of Solutions for Fractional Integro-Differential" Equation Boundary Value Problems [D]. Taiyuan: Shanxi University, 2019.)
[6]SHEN C F, ZHOU H, YANG L. On the Existence of Solution to a Boundary Value Problem of Fractional Differential Equation on the Infinite Interval [J/OL]. Boundary Value Problems, (2015-12-29)[2022-04-02]. https://doi.org/10.1186/s13661-015-0509-z.
[7]許文序, 周宗福. 無窮區(qū)間上帶有積分邊界條件的分?jǐn)?shù)階微分方程解的存在性 [J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2017, 47(23): 227-235. (XU W X, ZHOU Z F. Solutions of Fractional Differential Equations with Integral Boundary Conditions on Infinite Interval [J]. Mathematics in Practice and Theory, 2017, 47(23): 227-235.)
[8]ZHAI C B, WANG F. Properties of Positive Solutions for the Operator Equation Ax=λx and Applications to Fractional Differential Equations with Integral Boundary Conditions [J/OL]. Advances in Difference Equations, (2015-12-01)[2022-04-09]. https://doi.org/10.1186/s13661-015-0704-3.
[9]李曉晨, 劉錫平, 李燕, 等. 無窮區(qū)間上含參數(shù)分?jǐn)?shù)階微分方程積分邊值問題正解的存在性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2017, 55(1): 13-21. (LI X C, LIU X P, LI Y, et al. Existence of Positive Solutions for Integral Boundary Value Problems of Fractional Differential Equations with Parameters on Infinite Interval [J]. Journal of Jilin University (Science Edition), 2017, 55(1): 13-21.)
[10]郭麗敏, 張興秋. 無窮區(qū)間上帶有積分邊值分?jǐn)?shù)階微分方程的多個(gè)正解的存在性 [J]. 系統(tǒng)科學(xué)與數(shù)學(xué), 2014, 34(6): 752-762.
(GUO L M, ZHANG X Q. Existence of Positive Solutions for a Class of Fractional Differential Equations with Integral Boundary Value Condition on an Infinite Interval [J]. Journal of Systems Science and Mathematical Sciences, 2014, 34(6): 752-762.)
[11]何興玥, 高承華. 帶積分邊界條件的分?jǐn)?shù)階微分方程正解的存在性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2020, 58(1): 9-14. (HE X Y, GAO C H. Existence of Positive Solutions for Fractional Differential Equations with Integral Boundary Conditions [J]. Journal of Jilin University (Science Edition), 2020, 58(1): 9-14.)
[12]廖秀. 一類有限區(qū)間上分?jǐn)?shù)階微分方程邊值問題正解的存在性 [J]. 南寧師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 37(4): 48-53. (LIAO X. Existence of Positive Solutions for Fractional Differential Equations on the Finite Interval [J]. Journal of Nanning Normal University (Natural Science Edition), 2020, 37(4): 48-53.)
[13]尚淑彥, 韓曉玲. 分?jǐn)?shù)階微分方程積分邊值問題正解的存在性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2021, 59(3): 444-450. (SHANG S Y, HAN X L. Existence of Positive Solutions for Integral Boundary Value Problems of Fractional Differential Equations [J]. Journal of Jilin University (Science Edition), 2021, 59(3): 444-450.)
[14]SU X F, JIA M, LI M M. The Existence and Nonexistence of Positive Solutions for Fractional Differential Equations with Nonhomogeneous Boundary Conditions [J]. Advances in Difference Equations, 2016, 2016: 30-1-30-24.
[15]LIU X P, JIA M. A Class of Iterative Functional Fractional Differential Equation on Infinite Interval [J]. Applied Mathematics Letters, 2023, 136: 108473-1-108473-8.
[16]劉小剛, 王震, 惠小健, 等. 無窮區(qū)間上帶P-Laplacian算子的分?jǐn)?shù)階微分方程正解的存在性 [J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2021, 51(13): 240-249. (LIU X G, WANG Z, HUI X J, et al. Existence of Positive Solutions for Fractional Differential Equations with P-Laplacian Operator in Infinite Interval [J]. Mathematics in Practice and Theory, 2021, 51(13): 240-249.)
(責(zé)任編輯: 趙立芹)
收稿日期: 2022-11-03. 網(wǎng)絡(luò)首發(fā)日期: 2023-06-01.
第一作者簡介: 李 悅(1998—), 女, 漢族, 碩士研究生, 從事常微分方程理論與應(yīng)用的研究, E-mail: 2357474947@qq.com.
通信作者簡介: 劉錫平(1962—), 男, 漢族, 碩士, 教授, 從事常微分方程理論與應(yīng)用的研究, E-mail: xipingliu@usst.edu.cn.
基金項(xiàng)目: 國家自然科學(xué)基金(批準(zhǔn)號(hào): 11171220).
網(wǎng)絡(luò)首發(fā)地址: https://kns.cnki.net/kcms2/detail/22.1340.O.20230531.1547.002.html.