亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        無窮區(qū)間上分?jǐn)?shù)階微分方程積分邊值問題

        2023-04-29 00:00:00李悅劉錫平

        摘要: 考慮一類具有多個(gè)分?jǐn)?shù)階導(dǎo)數(shù)項(xiàng)的Riemann-Liouville型分?jǐn)?shù)階微分方程在無窮區(qū)間上的積分邊值問題. 通過構(gòu)造新的Banach空間, 利用非線性分析理論, 在非線性項(xiàng)滿足L1-Carathéodory條件的情況下, 得到了邊值問題正解存在及唯一的多個(gè)結(jié)論, 并給出實(shí)例說明所得結(jié)果的適用性和通用性.

        關(guān)鍵詞: 分?jǐn)?shù)階微分方程; 無窮區(qū)間; 積分邊值問題; L1-Carathéodory條件; 不動(dòng)點(diǎn)定理

        中圖分類號(hào): O175.8 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1671-5489(2023)04-0761-11[HJ*3]

        Integral Boundary Value Problems of FractionalDifferential Equations on Infinite Interval

        LI Yue, LIU Xiping

        (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

        Abstract: We considered" integral boundary value problem of a class of Riemann-Liouville fractional differential equations with multiple fractional derivative

        terms on infinite intervals. By constructing a new Banach space and using the nonlinear analysis theory, and under the condition that the nonlinear term satisfied the L1-Carthéodory conditions, some conclusions" for existence and uniqueness of positive solutions to boundary value problems were obtained, and an example was used to illustrate the applicability and universality of the obtained results.

        Keywords: fractional differential equation; infinite interval; integral boundary value problem; L1-Carathéodory condition; fixed point theorem

        參考文獻(xiàn)

        [1]KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations [M]. Amsterdam: Elsevier Science, 2006: 1-523.

        [2]白占兵. 分?jǐn)?shù)階微分方程邊值問題理論及應(yīng)用 [M]. 北京: 中國科學(xué)技術(shù)出版社, 2013: 1-14. (BAI Z B. Theory and Application of Fractional Differential Equation Boundary Value Problems [M]. Beijing: China Science and Technology Press, 2013: 1-14.)

        [3]LIAN H R, WANG P G, GE W G. Unbounded Upper and Lower Solutions Method for Sturm-Liouville Boundary Value Problem on Infinite Intervals [J]. Nonlinear Analysis: Theory, Methods amp; Applications, 2009, 70(7): 2627-2633.

        [4]WANG H, LIU S L, LI H L. Positive Solutions to p-Laplacian Fractional Differential Equations with Infinite-Point Boundary Value Conditions [J/OL]. Advances in Difference Equations, (2018-11-20)[2022-05-06]. https://doi.org/10.1186/s13662-018-1886-2.

        [5]衛(wèi)麗芳. 分?jǐn)?shù)階積微分方程邊值問題解的存在性研究 [D]." 太原: 山西大學(xué), 2019. (WEI L F. Research on the Existence of Solutions for Fractional Integro-Differential" Equation Boundary Value Problems [D]. Taiyuan: Shanxi University, 2019.)

        [6]SHEN C F, ZHOU H, YANG L. On the Existence of Solution to a Boundary Value Problem of Fractional Differential Equation on the Infinite Interval [J/OL]. Boundary Value Problems, (2015-12-29)[2022-04-02]. https://doi.org/10.1186/s13661-015-0509-z.

        [7]許文序, 周宗福. 無窮區(qū)間上帶有積分邊界條件的分?jǐn)?shù)階微分方程解的存在性 [J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2017, 47(23): 227-235. (XU W X, ZHOU Z F. Solutions of Fractional Differential Equations with Integral Boundary Conditions on Infinite Interval [J]. Mathematics in Practice and Theory, 2017, 47(23): 227-235.)

        [8]ZHAI C B, WANG F. Properties of Positive Solutions for the Operator Equation Ax=λx and Applications to Fractional Differential Equations with Integral Boundary Conditions [J/OL]. Advances in Difference Equations, (2015-12-01)[2022-04-09]. https://doi.org/10.1186/s13661-015-0704-3.

        [9]李曉晨, 劉錫平, 李燕, 等. 無窮區(qū)間上含參數(shù)分?jǐn)?shù)階微分方程積分邊值問題正解的存在性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2017, 55(1): 13-21. (LI X C, LIU X P, LI Y, et al. Existence of Positive Solutions for Integral Boundary Value Problems of Fractional Differential Equations with Parameters on Infinite Interval [J]. Journal of Jilin University (Science Edition), 2017, 55(1): 13-21.)

        [10]郭麗敏, 張興秋. 無窮區(qū)間上帶有積分邊值分?jǐn)?shù)階微分方程的多個(gè)正解的存在性 [J]. 系統(tǒng)科學(xué)與數(shù)學(xué), 2014, 34(6): 752-762.

        (GUO L M, ZHANG X Q. Existence of Positive Solutions for a Class of Fractional Differential Equations with Integral Boundary Value Condition on an Infinite Interval [J]. Journal of Systems Science and Mathematical Sciences, 2014, 34(6): 752-762.)

        [11]何興玥, 高承華. 帶積分邊界條件的分?jǐn)?shù)階微分方程正解的存在性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2020, 58(1): 9-14. (HE X Y, GAO C H. Existence of Positive Solutions for Fractional Differential Equations with Integral Boundary Conditions [J]. Journal of Jilin University (Science Edition), 2020, 58(1): 9-14.)

        [12]廖秀. 一類有限區(qū)間上分?jǐn)?shù)階微分方程邊值問題正解的存在性 [J]. 南寧師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 37(4): 48-53. (LIAO X. Existence of Positive Solutions for Fractional Differential Equations on the Finite Interval [J]. Journal of Nanning Normal University (Natural Science Edition), 2020, 37(4): 48-53.)

        [13]尚淑彥, 韓曉玲. 分?jǐn)?shù)階微分方程積分邊值問題正解的存在性 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2021, 59(3): 444-450. (SHANG S Y, HAN X L. Existence of Positive Solutions for Integral Boundary Value Problems of Fractional Differential Equations [J]. Journal of Jilin University (Science Edition), 2021, 59(3): 444-450.)

        [14]SU X F, JIA M, LI M M. The Existence and Nonexistence of Positive Solutions for Fractional Differential Equations with Nonhomogeneous Boundary Conditions [J]. Advances in Difference Equations, 2016, 2016: 30-1-30-24.

        [15]LIU X P, JIA M. A Class of Iterative Functional Fractional Differential Equation on Infinite Interval [J]. Applied Mathematics Letters, 2023, 136: 108473-1-108473-8.

        [16]劉小剛, 王震, 惠小健, 等. 無窮區(qū)間上帶P-Laplacian算子的分?jǐn)?shù)階微分方程正解的存在性 [J]. 數(shù)學(xué)的實(shí)踐與認(rèn)識(shí), 2021, 51(13): 240-249. (LIU X G, WANG Z, HUI X J, et al. Existence of Positive Solutions for Fractional Differential Equations with P-Laplacian Operator in Infinite Interval [J]. Mathematics in Practice and Theory, 2021, 51(13): 240-249.)

        (責(zé)任編輯: 趙立芹)

        收稿日期: 2022-11-03. 網(wǎng)絡(luò)首發(fā)日期: 2023-06-01.

        第一作者簡介: 李 悅(1998—), 女, 漢族, 碩士研究生, 從事常微分方程理論與應(yīng)用的研究, E-mail: 2357474947@qq.com.

        通信作者簡介: 劉錫平(1962—), 男, 漢族, 碩士, 教授, 從事常微分方程理論與應(yīng)用的研究, E-mail: xipingliu@usst.edu.cn.

        基金項(xiàng)目: 國家自然科學(xué)基金(批準(zhǔn)號(hào): 11171220).

        網(wǎng)絡(luò)首發(fā)地址: https://kns.cnki.net/kcms2/detail/22.1340.O.20230531.1547.002.html.

        婷婷五月六月综合缴情| 国产亚洲精品一品二品| 91极品尤物在线观看播放| 国产精品国产三级国产三不| 亚洲中文字幕视频第一二区| 国产狂喷水潮免费网站www| 亚洲av无码国产精品色午夜洪| 不卡视频一区二区三区| 中文字幕精品亚洲一区二区三区| 性av一区二区三区免费| 精东天美麻豆果冻传媒mv| 欧美日韩国产免费一区二区三区欧美日韩 | 久久精品网站免费观看| 99精品久久精品一区| 欧美69久成人做爰视频| 亚洲日韩国产精品第一页一区| 亚洲AV乱码毛片在线播放| 精品高清一区二区三区人妖| 国产精品无码素人福利不卡| 久久久久亚洲av无码专区网站| 国产在线视频h| 亚洲国产精品日韩av专区| 亚洲 欧美 国产 制服 动漫| 女人让男人桶爽30分钟| 99热在线精品播放| 亚洲国产精品成人av| 免费a级毛片高清在钱| 国产精品久久久久久久免费看| 精品国产高清a毛片无毒不卡 | 国产禁区一区二区三区| 特级做a爰片毛片免费看无码| 老色鬼永久精品网站| 成人性生交大片免费看激情玛丽莎 | 男人天堂AV在线麻豆| 国产乱淫h侵犯在线观看| 午夜裸体性播放| 日韩另类在线| 成年女人午夜特黄特色毛片免| 麻豆精品在线视频观看| 亚洲国产精品无码中文字 | 最好的99精品色视频大全在线|