摘要: 研究三維Coullet系統(tǒng)的魯棒控制問題. 首先, 通過繪制系統(tǒng)時域波形圖、 混沌吸引子圖和Lyapunov指數(shù)圖驗證系統(tǒng)復雜的動力學行為; 其次, 分別用滑??刂品椒?、 基于滑模的高頻魯棒控制方法和高增益魯棒控制方法設計控制器, 并對系統(tǒng)進行控制; 最后, 通過數(shù)值仿真驗證控制器的有效性.
關(guān)鍵詞: 滑模控制; 高頻; 高增益; Lyapunov函數(shù)
中圖分類號: O411.1 文獻標志碼: A 文章編號: 1671-5489(2023)04-0943-07
Robust Control of Three-DimensionalCoullet System Based on Sliding Mode
FU Jingchao, HAN Zeyu
(College of Science, Northeast Electric Power University, Jilin 132012, Jilin Province, China)
Abstract: We studied the robust control problem of three-dimensional Coullet system. Firstly, the complex dynamic behavior of the system was verified by drawing the time domain waveform, chaotic attractor and Lyapunov exponent diagram of the system. Secondly, the sliding mode control method, the sliding mode based high frequency robust control method and the high gain robust control method were used to design the controller and control the system. Finally, the effectiveness of the controller was verified by numerical simulation.
Keywords: sliding mode control; high frequency; high gain; Lyapunov function
參考文獻
[1]SHIMIZU T, MORIOKA N. Chaos and Limit Cycles in the Lorenz Model [J]. Physics Letters A, 1978, 66(3): 182-184.
[2]COULLET P, TRESSER C, ARNODO A. Transition to Stochasticity for a Class of Forced Oscillators [J]. Physics Letters A, 1979, 72(4/5): 268-270.
[3]RYOJI O, KATSUHISA F. Design of Sliding Mode Control Systems with Constrained Inputs [J]. Transactions of the Society of Instrument and Control Engineers, 1997, 3(12): 3492-3497.
[4]LEE C Y, TUNG P C, CHU W H. Adaptive Fuzzy Sliding Mode Control for an Automatic Arc Welding System [J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(5): 481-489.
[5]CHEN Y F, MITA T. Sliding Mode Control with Adaptive VSS Observer [J]. IEEJ Transactions on Electronics, Information and Systems, 1991, 111(10): 514-522.
[6]SHAHIRI M, GHADERI R, HOSSEINNIA S H, et al. Chaotic Fractional-Order Coullet System: Synchronization and Control Approach [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(3): 665-674.
[7]FAYAZI A, RAFSANJANI H N. Synchronization in the Genesio-Tesi and Coullet System Using a Fractional-Order Adaptive Controller [C]//2011 9th IEEE International Conference on Control and Automation (ICCA). Santiago: IEEE, 2011: 889-894.
[8]ZHOU Y, SHI X R, WANG Z L, et al. Tracking the State of the Delay Hyperchaotic Lü System Using the Coullet Chaotic System via a Single Controller [J]. Complexity, 2016, 21(5): 125-130.
[9]KENGNE J, KENGNE L K. Scenario to Chaos and Multistability in a Modified Coullet System: Effects of Broken Symmetry [J]. International Journal of Dynamics and Control, 2019, 7(4): 1225-1241.
[10]WANG M K, WAN Y, YANG R R, et al. A Sliding Mode Control Strategy for an Electro Hydrostatic Actuator with Damping Variable Sliding Surface [J]. Actuators, 2021, 10(1): 3-1-3-17.
[11]WANG H P, CHANG L, TIAN Y. Extended State Observer-Based Backstepping Fast Terminal Sliding Mode Control for Active Suspension Vibration [J]. Journal of Vibration and Control, 2021, 27(19/20): 2303-2318.
[12]李曉穎, 陳至坤, 宋雪梅. 混沌控制方法綜述 [J]. 中國科技信息, 2009, 4(7): 41-42. (LI X Y, CHEN Z K, SONG X M. Research on Chaos Control [J]. China Science and Technology Information, 2009, 4(7): 41-42.)
[13]趙海濱, 胡智勇. 一類三階混沌系統(tǒng)的反饋控制實驗設計 [J]. 數(shù)字技術(shù)與應用, 2021, 39(2): 28-30. (ZHAO H B, HU Z Y. Experiment Design of Feedback Control for a Class of Third-Order Chaotic System [J]. Digital Technology amp; Application, 2021, 39(2): 28-30.)
[14]付景超, 孫敬, 李鵬松. 一類簡單二次非線性Sprott混沌系統(tǒng)的分析與控制 [J]. 吉林大學學報(理學版), 2015, 53(3): 395-400. (FU J C, SUN J, LI P S. Analysis and Control of a Class of Sprott Chaotic System with Simple Quadratic Nonlinearities" [J]. Journal of Jilin University (Science Edition), 2015, 53(3): 395-400.)
[15]付景超, 周健博. 混沌記憶系統(tǒng)的自適應反饋控制和軌跡跟蹤控制 [J]. 數(shù)學的實踐與認識, 2021, 51(4):117-122. (FU J C, ZHOU J B. Adaptive Feedback Control and Trajectory Tracking Control of Chaotic Memory System [J]. Mathematics in Practice and Theory, 2021, 51(4): 117-122.)
[16]吳雷, 陽志, 張磊, 等. 分數(shù)階混沌同步磁阻電機的滑??刂?[J]. 廣西師范大學學報(自然科學版), 2021, 39(2): 62-70. (WU L, YANG Z, ZHANG L, et al. Sliding Mode Control for Fractional Chaotic Order Synchronous Reluctance Motor [J]. Journal of Guangxi Normal University (Natural Science Edition), 2021, 39(2): 62-70.)
[17]寧正福, 姚約東, 李國珍, 等. 混沌理論及其在流體力學中的應用 [J]. 新疆石油地質(zhì), 2002, 23(2): 170-172. (NING Z F, YAO Y D, LI G Z, et al. Chaotic Theory and Its Applications in Fluid Mechanics [J]. Xinjiang Petroleum Geology, 2002, 23(2): 170-172.)
[18]崔艷斌, 張平. 混沌控制理論在生物醫(yī)學研究中的應用 [J]. 醫(yī)療裝備, 2014, 27(12): 17-20. (CUI Y B, ZHANG P. Application of Chaos Control Theory in Biomedical Research [J]. Medical Equipment, 2014, 27(12): 17-20.)
[19]張超, 陳杰睿, 馮平. 基于混沌理論的電力系統(tǒng)負荷預測應用 [J]. 計算機與數(shù)字工程, 2018, 46(11): 2165-2169. (ZHANG C, CHEN J R, FENG P. Power System Load for Ecasting Based on Chaos Theory [J]. Computer amp; Digital Engineering, 2018, 46(11): 2165-2169.)
[20]羅妮, 惠萌, 武奇生. 憶阻超混沌系統(tǒng)在信息保密中的應用 [J]. 物聯(lián)網(wǎng)技術(shù), 2020, 10(2): 35-37. (LUO N, HUI M, WU Q S. Application of Memristor Hyperchaotic Systems in Information Security [J]. Internet of Things, 2020, 10(2): 35-37.)
[21]UTKIN V I. Sliding Modes in Control and Optimization [M]. New York: Springer-Verlag, 1992: 131-144.
(責任編輯: 王 ?。?/p>
收稿日期: 2022-05-05.
第一作者簡介: 付景超(1977—), 男, 漢族, 博士, 副教授, 從事非線性動力系統(tǒng)分析與控制的研究, E-mail: neufujingchao@126.com.
基金項目: 國家自然科學基金(批準號: 12101112).