摘要: 考慮定義在Ω3上的完全拋物吸引-排斥趨化系統(tǒng). 通過設置適當的輔助函數, 利用微分不等式技術并推導輔助函數的微分不等式, 得到了爆破時間的下界.
關鍵詞: 吸引-排斥趨化系統(tǒng); 輔助函數; 下界
中圖分類號: O175.29 文獻標志碼: A 文章編號: 1671-5489(2023)04-0840-05
Lower Bound Estimate of Blow-up Time for a FullParabolic Attraction-Repulsion Chemotaxis System
CHEN Xuejiao, LI Yuanfei, ZENG Peng
(School of Data Science, Guangzhou Huashang College, Guangzhou 511300, China)
Abstract: The full parabolic attraction-repulsion chemotaxis system defined on Ω 3 was considered. By setting appropriate an auxiliary function and using the differential inequality technique, the differential inequality of the auxiliary function was derived, and the lower bound of the blow-up time was obtained.
Keywords: attraction-repulsion chemotaxis system; auxiliary function; lower bound
參考文獻
[1]LI J R, ZHENG S N. A Lower Bound for Blow-up Time in a Fully Parabolic Keller-Segel System [J]. Appl Math Lett, 2013, 26(4): 510-514.
[2]李遠飛. Keller-Segel拋物系統(tǒng)解的爆破現象 [J]. 應用數學學報, 2017, 40(5): 692-701. (LI Y F. Blow-up Phenomena for the Solutions to a Fully Parabolic Keller-Segel System [J]. Acta Mathematicae Applicatae Sinica, 2017, 40(5): 692-701.)
[3]LANKEIT J. Finite-Time Blow-up in the Three-Dimensional Fully Parabolic Attraction-Dominated Attraction-Repulsion Chemotaxis System [J]. J Math Anal Appl, 2021, 504(2): 125409-1-125409-16.
[4]LUCA M, CHAVEZ-ROSS A, EDELSTEIN-KESHET L, et al. Chemotactic Signaling, Microglia, and Alzheimer’s Disease Senile Plaques: Is There a Connection ? [J]. Bull Math Biol, 2003, 65(4): 693-730.
[5]SONG J C. Lower Bounds for Blow-up Time in a Non-local Reaction-Diffusion Problem [J]. Appl Math Lett, 2011, 24(5): 793-796.
[6]李遠飛, 雷彩明. 具有非線性邊界條件的趨化性模型解的爆破時間下界估計 [J]. 應用數學學報, 2015, 38(6): 1097-1102. (LI Y F, LEI C M. Lower Bound of the Blow-up Time for a Model of Chemotaxis with Nonlinear Boundary Condition [J]. Acta Mathematicae Applicatae Sinica, 2015, 38(6): 1097-1102.)
[7]李遠飛. Keller-Segel趨化模型解的全局存在性和爆破時間的下界估計 [J]. 應用數學和力學, 2022, 43(7): 816-824. (LI Y F. Global Existence of Solutions and Lower Bound Estimate of Blow-up Time for Keller-Segel Chemotaxis Model [J]. Applied Mathematics and Mechanics, 2022, 43(7): 816-824.)
[8]YANG X, ZHOU Z F. Blow-up Problems for the Heat Equation with a Local Nonlinear Neumann Boundary Condition [J]. J Differential Equations, 2016, 261(5): 2738-2783.
[9]PAYNE L E, SONG J C. Lower Bounds for Blow-up in a Model of Chemotaxis [J]. J Math Anal Appl, 2012, 385(2): 672-676.
[10]孫鵬, 孔德建, 李建軍, 等. 非齊次發(fā)展型p-Laplace方程正解的爆破性和存在性 [J]. 東北師大學報(自然科學版), 2012, 44(1): 1-9. (SUN P, KONG D J, LI J J, et al. Blow-up and Global Existence of Positive Solutions for Inhomogeneous Evolution p-Laplace Equtions [J]. Journal of Northeast Normal University (Natural Science Edition), 2012, 44(1): 1-9.)
[11]朱旭生, 湯傳揚, 王莉. 歐拉方程組徑向對稱正規(guī)解的爆破 [J]. 東北師大學報(自然科學版), 2016, 48(2): 31-34. (ZHU X S, TANG C Y, WANG L. Blow-up of the Radial Symmetric Regular Solution for the Euler Equation [J]. Journal of Northeast Normal University (Natural Science Edition), 2016, 48(2): 31-34.)
[12]PAYNE L E, PHILIPPIN G A, VERNIER PIRO S. Blow-up Phenomena for a Semilinear Heat Equation with Nonlinear Boundary Condition, Ⅱ [J]. Nonlinear Anal: Theory, Methods Appl, 2010, 73(4): 971-978.
(責任編輯: 趙立芹)
收稿日期: 2022-10-03.
第一作者簡介: 陳雪姣(1984—), 女, 漢族, 碩士, 副教授, 從事偏微分方程的研究, E-mail: A10314063@163.com.
通信作者簡介: 李遠飛(1982—), 男, 漢族, 博士, 教授, 從事偏微分方程的研究, E-mail: liqfd@163.com.
基金項目: 廣東省普通高校重點項目(自然科學)(批準號: 2019KZDXM042)、 廣東省教育廳青年創(chuàng)新人才項目(批準號: 2021KQNCX134)和廣州華商學院導師制項目(批準號: 2021HSDS16).