摘要: 考慮一類齊次Dirichlet邊界條件下具有非線性交叉擴(kuò)散的B-D型捕食-食餌系統(tǒng)的穩(wěn)態(tài)解. 首先, 根據(jù)線性算子的譜理論分析平凡解和半平凡解的穩(wěn)定性; 其次, 利用正錐中的不動(dòng)點(diǎn)指數(shù)理論給出共存解存在的充分條件.
關(guān)鍵詞: 捕食-食餌系統(tǒng); B-D反應(yīng)函數(shù); 穩(wěn)定性; 共存解
中圖分類號: O175.26 文獻(xiàn)標(biāo)志碼: A 文章編號: 1671-5489(2023)04-0772-13
Coexistence Solutions of B-D Type Predator-PreySystem with Nonlinear Cross-Diffusion
CUI Lu, LI Shanbing
(College of Mathematics and Statistics, Xidian University, Xi’an 710126, China)
Abstract: We considered the steady-state solutions of a B-D type predator-prey system with nonlinear cross-diffusion under homogeneous Dirichlet boundary conditions. Firstly, we analyzed the stability of trivial solution and semi-trivial solutions based on the spectral theory of linear operators. Secondly, the sufficient conditions for the existence of coexistence solutions were obtained by using the fixed point index theory in positive cones.
Keywords: predator-prey system; B-D type response function; stability; coexistence solution
參考文獻(xiàn)
[1]KAREIVA P, ODELL G. Swarms of Predators Exhibit “Preytaxis” If Individual Predators Use Area-Restricted Search [J]. Amer Natur, 1987, 130(2): 233-270.
[2]JIN H Y, WANG Z A. Global Dynamics and Spatio-Temporal Patterns of Predator-Prey Systems with Density-Dependent Motion [J]. European J Appl Math, 2021, 32(4): 652-682.
[3]LI S B, MA R Y. Positive Steady-State Solutions for Predator-Prey Systems with Prey-Taxis and Dirichlet Conditions [J]. Nonlinear Anal: Real World Appl, 2022, 68: 103669-1-103669-29.
[4]BEDDINGTON J R. Mutual Interference between Parasites or Predators and Its Effect on Searching Efficiency [J]. J Animal Ecology, 1975, 44(1): 331-340.
[5]DeANGELIS D L, GOLDSTEIN R A, O’NEILL R V. A Model for Tropic Interaction [J]. Ecology, 1975, 56(4): 881-892.
[6]FRAILE J M, KOCH-MEDINA P, LPEZ-GMEZ J, et al. Elliptic Eigenvalue Problems and Unbounded Continua of Positive Solutions of a Semilinear Elliptic Equation [J]. J Differential Equations, 1996, 127(1): 295-319.
[7]GUI C F, LOU Y. Uniqueness and Nonuniqueness of Coexistence States in the Lotka-Volterra Competition Model [J]. Comm Pure Appl Math, 1994, 47(12): 1571-1594.
[8]DANCER E N. On Positive Solutions of Some Pairs of Differential Equations [J]. Trans Amer Math Soc, 1984, 284(2): 729-743.
[9]LI L. Coexistence Theorems of Steady States for Predator-Prey Interacting Systems [J]. Trans Amer Math Soc, 1988, 305(1): 143-166.
[10]NAKASHIMA K, YAMADA Y. Positive Steady States for Prey-Predator Models with Cross-Diffusion [J]. Adv Differential Equations, 1996, 1(8): 1099-1122.
[11]POTIER-FERRY M. The Linearization Principle for the Stability of Solutions of Quasilinear Parabolic Equations-Ⅰ [J]. Arch Rational Mech Anal, 1981, 77(4): 301-320.
[12]GILBARG D, TRUDINGER N S. Elliptic Partial Differential Equations of Second Order [M]. 2nd ed. Berlin: Spring-Verlag, 1983: 177-218.
[13]AMANN H. Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces [J]. SIAM Review, 1976, 18(4): 620-709.
(責(zé)任編輯: 李 琦)
收稿日期: 2022-10-24.
第一作者簡介: 崔 璐(1997—), 女, 漢族, 碩士研究生, 從事反應(yīng)擴(kuò)散方程及其應(yīng)用的研究, E-mail: cuilucl@163.com. 通信作者簡介:
李善兵(1988—), 男, 漢族, 博士, 副教授, 從事反應(yīng)擴(kuò)散方程及其應(yīng)用的研究, E-mail: lishanbing@xidian.edu.cn.
基金項(xiàng)目: 國家自然科學(xué)基金(批準(zhǔn)號: 11901446)、 中國博士后科學(xué)基金特別資助項(xiàng)目(批準(zhǔn)號: 2021T140530)和西安市科協(xié)青年人才托舉計(jì)劃項(xiàng)目(批準(zhǔn)號: 095920201325).