亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        兩矩陣和的Drazin逆表示

        2023-04-29 00:00:00郭麗王安琪侯宇欒天

        摘要: 考慮兩個(gè)矩陣之和的Drazin逆的表示. 對(duì)于n階矩陣P,Q, 利用Cline公式及Drazin逆的性質(zhì)給出在P2QP2=0, P3QP=0, PQ3=0, PQ2P=0, P2QPQ=0等條件下兩矩陣和P+Q[KG*8]的Drazin逆的表達(dá)式.

        關(guān)鍵詞: 廣義逆; Drazin逆; 指標(biāo)

        中圖分類號(hào): O151.21 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1671-5489(2023)04-0739-06

        Representations of Drazin Inverse of" Sum for Two Matrices

        GUO Li, WANG Anqi, HOU Yu, LUAN Tian

        (School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin Province, China)

        Abstract: We considered the representation of the Drazin inverses of the sum for two matrices. For n-th order matrices [WTHX]P[WT] and [WTHX]Q[WT],

        the expression" of the Drazin inverse of the sum for two matrices [WTHX]P[WT]+[WTHX]Q[WT] was given by using the Cline formula and the properties of Drazin inverse under the conditions such as" P2QP2=0, P3QP=0, PQ3=0, PQ2P=0, P2QPQ=0, etc.

        Keywords: generalized inverse; Drazin inverse; index

        參考文獻(xiàn)

        [1]BEN-ISRAEL A. Generalized Inverses: Theory and Applications [M]. 2nd ed. New York: Springer, 2003: 163-168.

        [2]DRAZIN M P. Pseudo-Inverses in Associative Rings and Semigroups [J]. Amer Math Monthly, 1958, 65(7): 506-524.

        [3]HARTWIG R E, WANG G R, WEI Y M. Some Additive Results on Drazin Inverse [J]. Linear Algebra Appl, 2001, 322(1/2/3): 207-217.

        [4]YANG H, LIU X F. The Drazin Inverse of the Sum of Two Matrices and Its Applications [J]. J Comput Appl Math, 2011, 235(5): 1412-1417.

        [5]MARTNEZ-SERRANO M F, CASTRO-GONZLEZ N. On the Drazin Inverse of Block Matrices and Generalized Schur Complement [J]. Appl Math Comput, 2009, 215(7): 2733-2740.

        [6]CASTRO-GONZLEZ N, DOPAZO E, MARTNEZ-SERRANO M F. On the Drazin Inverse of the Sum of Two Operators and Its Application to Operator Matrices [J]. J Math Anal Appl, 2009, 350(1): 207-215.

        [7]郭麗, 鄒紅林, 杜文明. 兩個(gè)矩陣之和的Drazin逆的表示 [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版), 2016, 54(5): 1032-1035. (GUO L, ZOU H L, DU W M. Representations for Drazin Inverses of Sum of Two Matrices [J]. Journal of Jilin University (Science Edition), 2016, 54(5): 1032-1035.)

        [8]GUO L, CHEN J L, ZOU H L. Representations for the Drazin Inverse of the Sum of Two Matrices and Its Applications [J]. Bull Iranian Math Soc, 2019, 45(3): 683-699.

        [9]CHEN H Y, SHEIBANI M. The g-Drazin Inverse of the Sum in Banach Algebras [J]. Linear Multilinear Algebra, 2022, 70(1): 53-65.

        [10]YANG H, LIU X F. The Drazin Inverse of the Sum of Two Matrices and Its Applications [J]. J Comput Appl Math, 2010, 235(5): 1412-1417.

        [11]VINJIC' J. On Additive Properties of the Drazin Inverse of Block Matrices and Representations [J]. Appl Math Comput, 2015, 250: 444-450.

        (責(zé)任編輯: 趙立芹)

        收稿日期: 2022-12-05.

        第一作者簡(jiǎn)介: 郭 麗(1980—), 女, 漢族, 博士, 教授, 從事廣義逆理論及其應(yīng)用的研究, E-mail: guomingli95@163.com.

        通信作者簡(jiǎn)介: 欒 天(1980—), 女, 漢族, 博士, 教授, 從事廣義逆計(jì)算的研究, E-mail: luantian@163.com.

        基金項(xiàng)目: 吉林省科技發(fā)展計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): YDZJ202201ZYTS648; YDZJ202201ZYTS320)、 吉林省教育廳科學(xué)技術(shù)研究規(guī)劃項(xiàng)目"(批準(zhǔn)號(hào): JJKH20210028KJ; 2014213)和北華大學(xué)研究生創(chuàng)新項(xiàng)目(批準(zhǔn)號(hào): 2022[031]; 2022[002]).

        无码人妻一区二区三区免费| 丝袜美腿福利一区二区| 亚洲熟妇丰满多毛xxxx| 亚洲粉嫩高潮的18p| 手机色在线| 日本不卡不二三区在线看 | 国产熟人av一二三区| 91久久久久无码精品露脸| 99久久精品国产一区色| 一本色综合网久久| 久久久久女人精品毛片| 白浆出来无码视频在线| 国产色婷亚洲99精品av网站| 午夜性刺激免费看视频| 无码人妻精一区二区三区| 欧美韩国精品另类综合| 老熟妇嗷嗷叫91九色| 综合五月激情二区视频| 久久棈精品久久久久久噜噜| 日韩国产有码在线观看视频| 精品亚洲一区二区三区在线播放| 免费又黄又爽又色的视频| 丰满五十六十老熟女hd| 久久久久亚洲AV无码专区一区| 国产精品性色av麻豆| 又色又爽又高潮免费视频观看| 78成人精品电影在线播放| 精品国产一区二区三区毛片| 亚洲视频网站大全免费看| 无码少妇a片一区二区三区| 国产性一交一乱一伦一色一情| 国产蜜桃传媒在线观看| 亚洲熟妇久久精品| 乱码一二区在线亚洲| 91亚洲国产成人久久精品网站| 狠狠躁夜夜躁av网站中文字幕 | 99热免费观看| 午夜国产在线精彩自拍视频| 97久久婷婷五月综合色d啪蜜芽| 亚洲av无码久久寂寞少妇| 如何看色黄视频中文字幕|