摘要: 考慮齊次Neumann邊界條件下, 饑餓驅(qū)動擴散對Holling-Ⅱ型捕食模型共存的影響. 利用特征值理論分析一致擴散和饑餓驅(qū)動擴散情形下半平凡解的穩(wěn)定性, 并通過對比兩種擴散下半平凡解穩(wěn)定性的變化, 發(fā)現(xiàn)饑餓驅(qū)動擴散有利于物種共存.
關(guān)鍵詞: 捕食模型; Holling-Ⅱ型功能反應(yīng)函數(shù); 饑餓驅(qū)動擴散; 共存域
中圖分類號: O175.26 文獻標志碼: A
文章編號: 1671-5489(2023)04-0753-08
Effect of Starvation-Driven Diffusion on Coexistence of Holling-Ⅱ Type Predator-Prey Model
LEI Meijuan," ZHANG Lina
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
Abstract: We considered the effect of starvation-driven diffusion on the coexistence of a Holling-Ⅱ type predator-prey model under homogeneous Neumann boundary conditions. The eigenvalue theory was used to analyze the stability of semi-trivial solution under uniform diffusion and starvation-driven diffusion. By comparing the stability changes of semi-trivial solutions under two kinds of diffusion, we find that starvation-driven diffusion is conducive to the coexistence of species.
Keywords: predator-prey model; Holling-Ⅱ functional response function; starvation-driven diffusion; coexistence region
參考文獻
[1]HE X Q, NI W M. The Effects of Diffusion and Spatial Variation in Lotka-Volterra Competition-Diffusion System Ⅰ: Heterogeneity vs. Homogeneity [J]. Journal of Differential Equations, 2013, 254(2): 528-546.
[2]ZHOU L, ZHANG S, LIU Z H. A Free Boundary Problem of a Predator-Prey Model with Advection in Heterogeneous Environment [J]. Applied Mathematics and Computation, 2016, 289: 22-36.
[3]ZOU R, GUO S J. Dynamics in a Diffusive Predator-Prey System with Ratio-Dependent Predator Influence [J]. Computers amp; Mathematics with Applications, 2018, 75(4): 1237-1258.
[4]LOU Y, WANG B. Local Dynamics of a Diffusive Predator-Prey Model in Spatially Heterogeneous Environment [J]. Journal of Fixed Point Theory and Applications, 2016, 19(1): 755-772.
[5]WANG B, ZHANG Z C. Bifurcation Analysis of a Diffusive Predator-Prey Model in Spatially Heterogeneous Environment [J/OL]. Electronic Journal of Qualitative Theory of Differential Equations, (2017-05-22)[2022-05-09]. doi: 10.14232/ejqtde.2017.1.42.
[6]CHO E, KIM Y J. Starvation Driven Diffusion as a Survival Strategy of Biological Organisms [J]. Bulletin of Mathematical Biology, 2013, 75(5): 845-870.
[7]KIM Y J, KWON O, LI F. Evolution of Dispersal toward Fitness [J]. Bulletin of Mathematical Biology, 2013, 75(12): 2474-2498.
[8]CHOI W, BAEK S, AHN I. Intraguild Predation with Evolutionary Dispersal in a Spatially Heterogeneous Environment [J]. Journal of Mathematical Biology, 2019, 78(7): 2141-2169.
[9]CHOI W, AHN I. Predator-Prey Interaction Systems with Non-uniform Dispersal in a Spatially Heterogeneous Environment [J]. Journal of Mathematical Analysis and Applications, 2020, 485(2): 123860-1-123860-21.
[10]葉其孝, 李正元, 王明新, 等. 反應(yīng)擴散方程引論 [M]. 北京: 科學(xué)出版社, 2013: 78-102. (YE Q X, LI Z Y, WANG M X, et al." Introduction to Reaction Diffusion Equation [M]. Beijing: Science Press, 2013: 78-102.)
(責任編輯: 李 琦)
收稿日期: 2022-11-18.
第一作者簡介: 雷梅娟(1997—), 女, 漢族, 碩士研究生, 從事偏微分方程理論及應(yīng)用的研究, E-mail: 18894265063@163.com. 通信作者簡介: 張麗娜(1981—), 女, 漢族, 博士, 副教授, 從事偏微分方程理論及應(yīng)用的研究, E-mail: linazhang@nwnu.edu.cn.
基金項目: 國家自然科學(xué)基金(批準號: 11761063).