摘要: 利用截尾的方法, 考慮次線性期望空間下廣義負(fù)相依(END)隨機變量序列Jamison型加權(quán)和的幾乎處處收斂問題, 得到了次線性期望空間下END隨機變量序列Jamison型加權(quán)和的幾乎處處收斂性. 將概率空間下END隨機變量序列Jamison型加權(quán)和的幾乎處處收斂拓展到了次線性期望空間下, 推廣了Jamison定理.
關(guān)鍵詞: 次線性期望; 幾乎處處收斂; Jamison型加權(quán)和; END隨機變量序列; 截尾
中圖分類號: O211.4 文獻標(biāo)志碼: A 文章編號: 1671-5489(2023)04-0808-07
Almost Sure Convergence of Jamison Type Weighted Sums ofEND Sequence in Sub-linear Expectation Space
LIU Lunyi, WU Qunying
(College of Science, Guilin University of Technology, Guilin 541004, Guangxi Zhuang Autonomous Region, China)
Abstract: We considered the convergence problem of the Jamison type weighted sums of extended negatively dependent (END) random variab
le sequences in a sub-linear expectation space by using the truncation method, and obtained the convergence of the Jamison type weighted sums of END random variable sequences in a sub-linear expectation space. We extended" almost sure" convergence of Jamison type weighted sums of END" random variable sequences" in probability spaces to sub-linear expectation spaces, and the Jamison theorem was generalized.
Keywords: sub-linear expectation; almost sure convergence; Jamison type weighted sum; END random variable sequence; truncation
1 引言與預(yù)備知識
概率極限理論在數(shù)學(xué)、 統(tǒng)計和金融等領(lǐng)域應(yīng)用廣泛, 適用于模型確定的情形. 隨著極限理論在金融、 風(fēng)險度量等領(lǐng)域的不斷發(fā)展, 經(jīng)典極限理論局限性逐漸突顯, 而非線性可在數(shù)學(xué)模型不確定條件下進行分析和計算. 因此, Peng[1]提出了次線性期望空間的概念, 有效解決了傳統(tǒng)概率空間理論在統(tǒng)計、 經(jīng)濟等領(lǐng)域的受限情況. 目前, 關(guān)于次線性期望空間的研究已取得了許多結(jié)果, 例如: Peng[2]將概率空間的中心極限理論引入到了次線性期望空間中; Zhang[3-5]給出了次線性期望的Kolmogorov強大數(shù)定律(SLLN)和矩不等式; Wu等[6]給出了次線性期望空間下的強大數(shù)律和Chover’s型重對數(shù)律; Ma等[7]給出了次線性期望空間下廣義負(fù)相依(END)序列加權(quán)和的強大數(shù)律的一些條件. 另一方面, 關(guān)于Jamison型加權(quán)和的幾乎處處收斂性研究在概率空間下也取得了許多成果. 如文獻[8-10]分別在兩兩NQD(negatively quadrant dependent)、 END和NA(negatively asscociated)隨機變量序列的條件下討論了Jamison型加權(quán)和的幾乎處處收斂性, 得到了概率空間下不同序列的Jamison型加權(quán)和的幾乎處處收斂性, 推廣了Jamison型定理. 但在次線性期望空間中, 關(guān)于幾乎處處收斂的推廣成果目前報道較少, 因為容度和次線性期望之間不再有線性性, 因此一些原來可應(yīng)用于概率空間下的方法并不能應(yīng)用于次線性期望空間. 本文在已有理論的基礎(chǔ)上, 考慮次線性期望空間下END隨機變量序列的Jamison型加權(quán)和的幾乎處處收斂性, 拓展了Jamison定理.
參考文獻
[1]PENG S G. Multi-dimensional G-Brownian Motion and Related Stochastic Calculus under G-Expectation [J]. Stochastic Process" Appl, 2008, 118(12): 2223-2253.
[2]PENG S G. A New Central Limit Theorem under Sublinear Expectations [J/OL]. Mathematics P R, (2008-03-18)[2022-01-17]. https:∥arxiv.org/pdf/0803.2656.pdf.
[3]ZHANG L X. Strong Limit Theorems for Extended Independent Random Variables and Extended Negatively Dependent Random Variables under Sub-linear Expctations [J]. Acta Math Sci Ser B (Engl Ed), 2022, 42(2): 467-490.
[4]ZHANG L X. Exponential Inequalities under Sub-linear Expectations with Applications to Law of the Iterated Logarithm [J]. Sci China Math, 2016, 59(12): 2503-2526.
[5]ZHANG L X. Rosenthal’s Inequalities for Independent and Negatively Dependent Random Variables under Sub-linear Expectations with Applications [J]. Sci China Math, 2016, 59(4): 751-768.
[6]WU Q Y, JIANG Y Y. Strong Law of Large Numbers and Chover’s Law of the Iterated Logarithm under Sub-linear Expectations [J]. J Math Anal Appl, 2018, 460(1): 252-270.
[7]MA X C, WU Q Y. On Some Conditions for Strong Law of Large Numbers for Weighted Sums of END Random Variables under Sublinear Expectations [J/OL]. Discrete Dyn Nat Soc, (2019-04-11)[2022-08-16]. https://doi.org/10.1155/2019/7945431.
[8]吳群英. 兩兩NQD列的廣義Jamison型加權(quán)和的強收斂性 [J]. 數(shù)學(xué)研究, 2001, 34(4): 386-393. (WU Q Y. Strong Convergence" Properties of Jamison Weighted Sums for Pairwise NQD Random Sequences [J]. Journal of Mathematical Study, 2001, 34(4): 386-393.)
[9]YANG J G. Strong Stability of a Type of Jamison Weighted Sums for END Random Variables [J]. J Korean Math Soc, 2017, 54(3): 897-907.
[10]王定成, 蘇淳, 冷勁松. NA序列廣義Jamison型加權(quán)和的幾乎處處收斂性 [J]. 應(yīng)用數(shù)學(xué)學(xué)報, 2002, 25(1): 77-87. (WANG D C, SU C, LENG J S. Almost Sure Convergence of Generalized Jamison’s Weighted Sums for NA Sequence [J]. Acta Mathematicae Applicatae Sinica, 2002, 25(1): 77-87.)
[11]JAMISON B, OREY S, PRUITT W. Convergence of Weighted Averages of Independedt Random Variables [J]. Probab Theory Related Fields, 1965(4): 40-44.
[12]陳曉聰, 吳群英. 次線性期望空間下END陣列加權(quán)和的完全收斂性 [J]. 應(yīng)用數(shù)學(xué), 2022, 35(3): 586-592. (CHEN X C, WU Q Y. Complete Convergence of Weighted Sums for Arrays of END Random Variables under Sub-linear Expectation [J]. Mathematica Applicata, 2022, 35(3): 586-592.)
[13]EUGENE S. Regularly Varying Functions [M]. Lecture Notes in Mathmatics, Vol.508. Berlin: Springer-Verlag, 1976: 1-52.
(責(zé)任編輯: 趙立芹)
收稿日期: 2022-09-01.
第一作者簡介: 劉倫義(1998—), 男, 漢族, 碩士研究生, 從事概率極限理論的研究, E-mail: 2602965031@qq.com. 通信作者簡介: 吳群英(1961—), 女, 漢族, 博士, 教授, 從事概率極限理論的研究, E-mail: wqy666@glut.edu.cn.
基金項目: 國家自然科學(xué)基金(批準(zhǔn)號: 12061028).