彭佳偉,張葉,寇單單,楊麗,劉曉飛,張學(xué)英,陳海江,田義
‘倉方早生’桃及其早熟芽變不同發(fā)育時(shí)期果實(shí)的轉(zhuǎn)錄組分析
1河北農(nóng)業(yè)大學(xué)園藝學(xué)院,河北保定 071000;2河北農(nóng)業(yè)大學(xué)山區(qū)研究所/河北省山區(qū)農(nóng)業(yè)技術(shù)創(chuàng)新中心/國家北方山區(qū)農(nóng)業(yè)工程技術(shù)研究中心,河北保定 071001;3河北省保定市農(nóng)業(yè)農(nóng)村局,河北保定 071000;4河北省鹽山縣望樹鎮(zhèn)中學(xué),河北滄州 061300
【目的】通過對桃品種‘倉方早生’及其早熟芽變不同發(fā)育時(shí)期的果實(shí)進(jìn)行轉(zhuǎn)錄組分析,挖掘參與調(diào)控桃果實(shí)成熟的關(guān)鍵因子,為深入研究桃果實(shí)成熟調(diào)控機(jī)理提供理論依據(jù)。【方法】以桃品種‘倉方早生’及其早熟芽變?yōu)樵嚥?,每個(gè)品種分別選擇長勢一致的樣品樹5株,分別于花后30 d(對應(yīng)‘倉方早生’c1、早熟芽變y1)、45 d(對應(yīng)c2、y2)、59 d(對應(yīng)c3、y3)、71 d(對應(yīng)c4、y4)及89 d(對應(yīng)c5)對不同發(fā)育時(shí)期的桃去皮果肉進(jìn)行取樣和轉(zhuǎn)錄組測序,并利用實(shí)時(shí)熒光定量PCR(qRT-PCR)對篩選的差異表達(dá)基因進(jìn)行定量驗(yàn)證;利用GO和KEGG對‘倉方早生’及其早熟芽變的差異表達(dá)基因進(jìn)行分析;基于差異表達(dá)基因構(gòu)建加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析(weighted gene co- expression network analysis,WGCNA),從中鑒定出與果實(shí)成熟密切相關(guān)的樞紐模塊和樞紐基因。【結(jié)果】將處于果實(shí)相同發(fā)育時(shí)期的轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行比較,得到y(tǒng)1與c1、y2與c2、y3與c4和y4與c5四組對比數(shù)據(jù),共篩選出差異表達(dá)基因4 395個(gè),其中上調(diào)表達(dá)基因2 212個(gè),下調(diào)表達(dá)基因2 183個(gè)。其中包括10個(gè)乙烯、11個(gè)脫落酸和18個(gè)生長素合成及其信號轉(zhuǎn)導(dǎo)途徑基因,并構(gòu)建了10個(gè)IAA蛋白與預(yù)測互作ARF蛋白間的相互作用網(wǎng)絡(luò)。由GO分類統(tǒng)計(jì)結(jié)果可知,差異表達(dá)基因在生物過程板塊主要集中于細(xì)胞過程、代謝過程和單體過程;在細(xì)胞組分板塊主要聚集于膜和細(xì)胞組分;在分子功能板塊主要富集于結(jié)合蛋白和催化活性等方面?!畟}方早生’及其早熟芽變果實(shí)的差異基因主要集中在y3與c4和y4與c5對比組中,這些差異基因大多被富集到分子功能中結(jié)合活力、氧化還原酶活性等方面。對差異表達(dá)基因進(jìn)行KEGG通路分析表明,在果實(shí)生長發(fā)育成熟過程中伴隨著多種次生代謝產(chǎn)物的變化,如倍半萜和三萜生物合成、類黃酮生物合成、類胡蘿卜素的生物合成和-亞麻酸代謝等。同時(shí),本研究發(fā)現(xiàn)生長素信號轉(zhuǎn)導(dǎo)途徑在不同時(shí)間節(jié)點(diǎn)均有富集,這意味著植物激素信號轉(zhuǎn)導(dǎo)通路對果實(shí)成熟具有極為重要的作用?!窘Y(jié)論】在‘倉方早生’及其早熟芽變不同發(fā)育時(shí)期果實(shí)的差異表達(dá)基因中,大量激素信號轉(zhuǎn)導(dǎo)途徑基因特別是生長素信號途徑基因發(fā)生了富集,這些基因可能在調(diào)控果實(shí)發(fā)育中具有重要作用,可對這些候選的和功能及其如何通過相互作用調(diào)控果實(shí)成熟的機(jī)制進(jìn)行進(jìn)一步的解析。
桃;果實(shí)成熟;轉(zhuǎn)錄組分析;加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析
【研究意義】桃是重要的落葉果樹之一,因其果實(shí)口感甜美和氣味芳香而深受消費(fèi)者喜愛。但桃果實(shí)在貯藏和運(yùn)輸過程中極易損傷變質(zhì),生產(chǎn)中主要依靠種植不同成熟期的桃品種來延長市場供應(yīng)期。桃的果實(shí)成熟期是一個(gè)十分重要的農(nóng)藝經(jīng)濟(jì)性狀,選育不同成熟期的桃品種,對豐富市場供給、提高種植者的經(jīng)濟(jì)收益具有重要意義。本研究通過對‘倉方早生’及其早熟芽變進(jìn)行轉(zhuǎn)錄組分析,從轉(zhuǎn)錄組數(shù)據(jù)中篩選出與果實(shí)成熟有關(guān)的代謝通路,深入挖掘與桃果實(shí)成熟有關(guān)的候選基因,分析相關(guān)基因表達(dá)變化與差異,為挖掘調(diào)控桃果實(shí)成熟的關(guān)鍵基因及其分子機(jī)制奠定基礎(chǔ)。【前人研究進(jìn)展】果實(shí)成熟是一個(gè)非常復(fù)雜的過程,包括顏色、質(zhì)地、香氣和生物活性化合物等多個(gè)方面的變化[1-2]。大量研究表明,果實(shí)成熟涉及到多種植物激素的調(diào)控[3-4]。其中,乙烯(Ethylene,ETH)是呼吸躍變型果實(shí)成熟及其后續(xù)代謝變化的主要觸發(fā)和協(xié)調(diào)因子,直接影響果實(shí)品質(zhì)[5-7]。如HAYAMA等[8]所述,乙烯影響桃果實(shí)軟化的起始和進(jìn)程,其濃度是調(diào)節(jié)軟化速度的重要因素,桃果實(shí)的成熟軟化在轉(zhuǎn)錄水平上受乙烯的調(diào)控。乙烯的合成由ACC合酶(1-aminocyclopropane-1-carboxylate synthase,ACS)和ACC氧化酶(1-aminocyclopropane-1-carboxylic acid oxidase,ACO)兩種酶催化[9-10],是乙烯合成的關(guān)鍵基因,在桃果實(shí)中的轉(zhuǎn)錄隨著成熟的進(jìn)程而增加[11]。有研究表明,乙烯轉(zhuǎn)錄因子(ERFs)可以通過在不同程度上調(diào)控乙烯合成關(guān)鍵基因來影響果實(shí)成熟進(jìn)程[12-13]。同時(shí),脫落酸(abscisic acid,ABA)作為一種關(guān)鍵的植物激素,也參與了呼吸躍變型果實(shí)的成熟和衰老,被認(rèn)為是包括桃在內(nèi)的幾種呼吸躍變型果實(shí)成熟的決定因素之一[14-15]。ABA可以啟動(dòng)桃果實(shí)成熟,而且在果實(shí)成熟后期與乙烯一起積累[16]。在桃果實(shí)成熟過程中,ABA濃度顯著增加,加速桃果實(shí)的軟化和成熟[17]。此外,ABA信號轉(zhuǎn)導(dǎo)中的基因?qū)麑?shí)成熟也有著相似的調(diào)控作用[18]。Zeng等[16]從桃中鑒定的10個(gè)2C型蛋白磷酸酶(protein phosphatase 2C,PP2C)基因中,和可以引發(fā)果實(shí)成熟,并在果實(shí)成熟的后期發(fā)揮重要作用,在番茄中也有類似報(bào)道[19]。WANG等[17]在桃基因組中檢測到兩個(gè)9-順式-環(huán)氧類胡蘿卜素雙加氧酶(9-cis-epoxycarotenoid dioxygenase,NCED)基因的表達(dá)水平與ABA一致,表明兩個(gè)基因可能是果實(shí)成熟過程中ABA積累的重要參與者。生長素(Auxin)也是果實(shí)發(fā)育成熟過程中的重要激素,有重要的調(diào)控作用[20-22]。通過TATSUKI等[23]的研究可以看出,在不同類型的桃果實(shí)成熟過程中,硬質(zhì)桃果皮組織中的IAA濃度較低,且沒有增長;但溶質(zhì)桃果皮組織中的IAA水平顯著增加,導(dǎo)致果實(shí)軟化。因此,桃成熟進(jìn)程中IAA濃度可以調(diào)控果實(shí)的成熟軟化。GUAN等[24]從桃基因組中鑒定到23個(gè),表達(dá)模式分析得出和在完全成熟時(shí)顯著上調(diào)表達(dá),且上調(diào)倍數(shù)最大,為果實(shí)發(fā)育、果實(shí)成熟進(jìn)程所必需;此外,由基因表達(dá)變化可知,等均可能在果實(shí)發(fā)育和成熟過程中發(fā)揮功效。部分研究表明3種植物激素的調(diào)控因子協(xié)同調(diào)控桃果實(shí)成熟,如PAN等[25]發(fā)現(xiàn),在處于低表達(dá)水平時(shí),對硬質(zhì)型(stony hard,SH)桃果實(shí)成熟期間生長素的積累產(chǎn)生影響,從而抑制乙烯生物合成基因的表達(dá),導(dǎo)致果實(shí)不能軟化;WANG等[26]發(fā)現(xiàn)是調(diào)節(jié)桃成熟過程中生長素信號轉(zhuǎn)導(dǎo)的重要因子,與一起在桃果實(shí)成熟過程中整合生長素和乙烯信號,并通過結(jié)合和激活和啟動(dòng)子促進(jìn)ABA生物合成,來調(diào)節(jié)桃果實(shí)的成熟和軟化。另有研究表明,通過抑制兩個(gè)ABA生物合成基因(、)和一個(gè)細(xì)胞壁降解基因()的表達(dá)來調(diào)節(jié)果實(shí)成熟[27]。【本研究切入點(diǎn)】目前,桃果實(shí)成熟的機(jī)制尚未完全闡明。本研究將結(jié)合轉(zhuǎn)錄組數(shù)據(jù)全面準(zhǔn)確地對桃果實(shí)成熟的通路進(jìn)行挖掘篩選與分析?!緮M解決的關(guān)鍵問題】本研究以桃品種‘倉方早生’及其早熟芽變?yōu)檠芯吭嚥?,進(jìn)行轉(zhuǎn)錄組測序,通過分析‘倉方早生’及其早熟芽變的轉(zhuǎn)錄組數(shù)據(jù),挖掘出與參與調(diào)控果實(shí)成熟有關(guān)的激素信號途徑中的關(guān)鍵基因。
試材‘倉方早生’和早熟芽變于2020年取自保定市順平西閆莊試驗(yàn)園,兩品種盛花期相近,均在4月6—7日,花后59 d早熟芽變的果實(shí)開始著色,花后71 d達(dá)到成熟;‘倉方早生’花后89 d達(dá)到成熟,兩品種果實(shí)均屬于溶質(zhì)型。
每個(gè)品種分別選擇長勢一致的樣本樹5株。根據(jù)果實(shí)生長動(dòng)態(tài)的4個(gè)發(fā)育時(shí)期(圖1)共采樣5次:花后30 d(第1次膨大期,對應(yīng)c1與y1)、花后45 d(硬核期,對應(yīng)c2與y2)、花后59 d(早熟芽變第2次膨大期,對應(yīng)c3與y3)、花后71 d(早熟芽變成熟期,‘倉方早生’第2次膨大期,對應(yīng)c4與y4)及花后89 d(‘倉方早生’成熟期,對應(yīng)c5)。每次分別隨機(jī)采取‘倉方早生’和早熟芽變果實(shí)10個(gè),取5 g去皮果肉,切碎,迅速用液氮處理后置于-80℃保存。
1.2.1 總RNA提取及檢測、cDNA文庫構(gòu)建和轉(zhuǎn)錄組測序 采用多糖多酚植物總RNA提取試劑盒(TIANGEN,China)分別對‘倉方早生’及其早熟芽變在不同采樣時(shí)間的果實(shí)進(jìn)行總RNA的提取,所有操作按照說明書進(jìn)行。取2 μL RNA樣品進(jìn)行瓊脂糖凝膠電泳,檢測RNA樣品的質(zhì)量。用NanoDrop One(Thermo Fisher Scientific,USA)對RNA質(zhì)量進(jìn)行初步檢測。利用HiFi Script gDNA Removal RT Master Mix(Beijing ComWin Biotech Co.,Ltd.)試劑盒合成第一鏈cDNA。采用Illumina HiSeqTM 2000進(jìn)行轉(zhuǎn)錄組表達(dá)譜測序,由北京華諾時(shí)代科技有限公司完成。
c:倉方早生Kurakato;y:早熟芽變Early-ripening mutant。下同 The same as below
1.2.2 轉(zhuǎn)錄組測序質(zhì)量評估 測序reads經(jīng)fastp(version 0.18.0)[28]過濾后得到clean reads,通常以Q20、Q30大小衡量測序準(zhǔn)確度,通常≥85%[29]。將得到的clean reads與桃參考基因組(http://www.rosaceae.org/species/prunus_persica/genome_v1.0)比對,進(jìn)行基因結(jié)構(gòu)注釋、基因表達(dá)分析和基因功能預(yù)測等。
1.2.3 轉(zhuǎn)錄組差異基因的實(shí)時(shí)熒光定量PCR驗(yàn)證 使用Primer Premier Software設(shè)計(jì)qRT-PCR引物,利用天根反轉(zhuǎn)錄試劑盒(TIANGEN,China)合成cDNA。以為內(nèi)參基因,按照Ultra SYBR One Step RT-qPCR Kit (Beijing ComWin Biotech Co.,Ltd.)提供的說明書,在Light Cycler_96進(jìn)行qRT-PCR分析,反應(yīng)條件:94℃預(yù)變性60 s;95℃ 10 s,58℃ 10 s,72℃ 10 s,45個(gè)循環(huán);95℃ 10 s,65℃ 60 s,97℃ 1 s。采用2-ΔΔCT法[30]計(jì)算基因的相對表達(dá)量。
1.2.4 樣品間差異表達(dá)基因及富集分析 通過EdgeR包(http://www.bioconductor.org/packages/2.12/bioc/ html/edgeR.html)計(jì)算篩選差異表達(dá)基因(differentially expressed genes,DEG),篩選條件是|log2Fold Change|>1,-value<0.05,log2(FC)為樣品1與樣品2的FPKM差異倍數(shù)的對數(shù)值[31]。采用GO和KEGG兩個(gè)數(shù)據(jù)庫[32],對篩選出的差異基因進(jìn)行功能注釋以及通路顯著性富集分析。
1.2.5 植物激素相關(guān)代謝途徑中差異表達(dá)基因的篩選與熱圖分析 根據(jù)樣品間差異表達(dá)基因的GO功能分析與KEGG代謝途徑富集分析結(jié)果,從轉(zhuǎn)錄組數(shù)據(jù)中找出與桃果實(shí)成熟有關(guān)的代謝途徑。本試驗(yàn)重點(diǎn)分析植物激素相關(guān)途徑并從中篩選出差異表達(dá)基因,進(jìn)一步明確基因的功能注釋,并利用Tbtools軟件制作熱圖對這些基因進(jìn)行分析。
1.2.6 加權(quán)基因共表達(dá)網(wǎng)絡(luò)的構(gòu)建與分析 首先對前期得到的數(shù)據(jù)進(jìn)行預(yù)處理和質(zhì)量控制。利用GSG(Good Samples Genes)函數(shù)來檢測數(shù)據(jù)集中是否有離群值和缺失值。使用R中的WGCNA(v1.47)包構(gòu)建共表達(dá)網(wǎng)絡(luò)[31]。篩選樣本間表達(dá)量差異最大的前10%的基因作為后續(xù)構(gòu)建加權(quán)共表達(dá)網(wǎng)絡(luò)的數(shù)據(jù),直至篩選到樞紐基因。將樞紐基因的蛋白序列上傳至KEGG官網(wǎng)(http://www.KEGG.jp/)得到基因的功能注釋。對富集到生長素信號轉(zhuǎn)導(dǎo)通路上的AUX/IAA進(jìn)行蛋白互作預(yù)測,得到若干個(gè)ARF蛋白,將IAA與ARF的相互作用關(guān)系通過Cytoscape進(jìn)行可視化分析。
對‘倉方早生’及其早熟芽變果實(shí)不同生長發(fā)育時(shí)期的27個(gè)樣品進(jìn)行RNA提取以及轉(zhuǎn)錄組測序分析。經(jīng)過濾去除低質(zhì)量的reads后與桃參考基因組進(jìn)行比對,比對率均在90%以上。
從轉(zhuǎn)錄組中選取變化趨勢明顯的8個(gè)DEG進(jìn)行驗(yàn)證,包括5個(gè)果實(shí)成熟相關(guān)的DEG(、、、、)和3個(gè)隨機(jī)挑選的DEG(、、),結(jié)果如圖2所示。轉(zhuǎn)錄組測得的FPKM值與這8個(gè)基因相對表達(dá)量的變化趨勢基本一致,且與基因已知正常表達(dá)量一致,表明RNA-seq數(shù)據(jù)可靠,可以進(jìn)行后續(xù)的數(shù)據(jù)分析和關(guān)鍵基因挖掘。
把同一發(fā)育時(shí)期的‘倉方早生’和早熟芽變果實(shí)轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行兩兩對比,共獲得差異表達(dá)基因4 395個(gè),其中上調(diào)基因2 212個(gè),下調(diào)基因2 183個(gè)。如圖3-A所示,y1與c1、y2與c2、y3與c4和y4與c5中分別有282、152、1 409和2 552個(gè)差異表達(dá)基因。結(jié)果發(fā)現(xiàn),果實(shí)發(fā)育后期兩個(gè)階段(y3與c4、y4與c5)的差異基因數(shù)量較發(fā)育前期明顯增多。
通過維恩圖探究果實(shí)不同成熟期各樣品間轉(zhuǎn)錄組的不同,如圖3-B所示,鑒定到‘倉方早生’及其早熟芽變在不同成熟時(shí)期涉及的差異表達(dá)基因存在較大差異,各個(gè)發(fā)育時(shí)期均存在差異表達(dá)的基因有13個(gè)。對上述13個(gè)基因進(jìn)行KEGG通路分析,發(fā)現(xiàn)其中的光合作用途徑(ko00195: Photosynthesis)與果實(shí)發(fā)育密不可分,鐵氧還蛋白-NADP+還原酶(ferredoxin-NADP+reductase,F(xiàn)NR)作為光合電子傳遞鏈的末端氧化酶直接參與光合作用;細(xì)胞色素P450途徑(ko00199: Cytochrome P450)中注釋到的,具有強(qiáng)大的催化作用,能通過植物新陳代謝來調(diào)節(jié)植物生長發(fā)育。
圖2 差異基因的qRT-PCR驗(yàn)證
圖3 y1與c1、y2與c2、y3與c4、y4與c5四組差異基因數(shù)(A)及樣品間差異表達(dá)基因維恩圖(B)
GO富集分析可以反映桃果實(shí)發(fā)育過程中DEG的主要生物學(xué)功能。本研究將處于同一發(fā)育時(shí)期的數(shù)據(jù)進(jìn)行對比發(fā)現(xiàn),果實(shí)中差異基因在生物過程(biological process)富集數(shù)量最多(圖4)。其中,y1與c1組間比較發(fā)現(xiàn)282個(gè)DEG,被富集到24個(gè)GO通路;y2與c2組間比較發(fā)現(xiàn)152個(gè)DEG,被富集到25個(gè)GO通路;y3與c4組間比較發(fā)現(xiàn)1 409個(gè)DEG,被富集到32個(gè)GO通路;y4與c5組間比較發(fā)現(xiàn)2 552個(gè)DEG,被富集到35個(gè)GO通路(圖5)。
圖4 ‘倉方早生’及其早熟芽變果實(shí)不同發(fā)育時(shí)期GO富集差異基因數(shù)目
將4個(gè)對比組中-value≤0.05的代謝途徑列為顯著富集的代謝途徑,通過KEGG分析顯示,y1與c1、y2與c2、y3與c4和y4與c5中分別有53、36、342和522個(gè)差異基因又被分別注釋到多條代謝途徑上,分別是66、50、189、179條。分析發(fā)現(xiàn),在y1與c1組間主要富集在倍半萜和三萜生物合成、類黃酮生物合成、類胡蘿卜素的生物合成途徑;在y2與c2組間中GABAergic突觸途徑富集程度最高,然后是FoxO信號通路和自噬調(diào)節(jié)途徑;在y3與c4組間,主要富集的代謝途徑是光合作用、DNA復(fù)制、碳代謝;y4與c5組間顯著富集在減數(shù)分裂-酵母、細(xì)胞周期等方面(圖6)。但是,在處于果實(shí)發(fā)育后期的y3與c4及y4與c5對比組中,植物信號轉(zhuǎn)導(dǎo)途徑中包含差異基因數(shù)均較多,分別為27與40個(gè)DEG。
本研究重點(diǎn)關(guān)注與植物激素有關(guān)的通路,從轉(zhuǎn)錄組中篩選到10個(gè)乙烯、11個(gè)脫落酸與18個(gè)生長素生物合成及其信號轉(zhuǎn)導(dǎo)基因,并對此進(jìn)行分析。
圖5 ‘倉方早生’及其早熟芽變果實(shí)不同發(fā)育時(shí)期差異表達(dá)基因的GO功能類別
圖6 ‘倉方早生’及其早熟芽變果實(shí)不同發(fā)育時(shí)期差異表達(dá)基因的KEGG富集
篩選出的10個(gè)與乙烯有關(guān)的差異表達(dá)基因中,包括2個(gè)乙烯生物合成基因和8個(gè)乙烯信號轉(zhuǎn)導(dǎo)基因。如圖7-A所示,的表達(dá)在不同時(shí)間點(diǎn)均具有顯著差異,其中表達(dá)量高的(ppa001786m)在果實(shí)二次膨大期差異顯著,早熟芽變較‘倉方早生’表達(dá)量上調(diào)。
在ABA代謝與信號轉(zhuǎn)導(dǎo)通路中(圖7-B),合成ABA的關(guān)鍵基因(ppa002804m)和分解ABA的關(guān)鍵基因P450單加氧酶(ppa005059m、MSTRG.14953.1)在‘倉方早生’及早熟芽變果實(shí)生長發(fā)育中表達(dá)差異顯著。在果實(shí)發(fā)育及成熟過程中,表達(dá)豐度良好,兩品種均于花后45 d達(dá)到最高值,成熟時(shí),‘倉方早生’中表達(dá)量高于早熟芽變;2個(gè)表達(dá)模式相近,呈下降趨勢,且在果實(shí)成熟過程中,早熟芽變中的表達(dá)量較‘倉方早生’顯著下調(diào),通過調(diào)控ABA合成與分解途徑中相關(guān)基因表達(dá)水平最終影響果實(shí)不同發(fā)育階段的ABA積累。在ABA信號轉(zhuǎn)導(dǎo)途徑中,‘倉方早生’及早熟芽變從59 d之后到果實(shí)成熟,調(diào)控ABA受體基因及參與下游信號轉(zhuǎn)導(dǎo)的基因表達(dá)差異顯著,在PYR/PYL-PP2C-SnRK2 ABA信號轉(zhuǎn)導(dǎo)系統(tǒng)中,與表達(dá)都可能對果實(shí)成熟發(fā)揮重要作用。PP2C基因(ppa008381m、ppa005286m、ppa006696m)等表達(dá)量較‘倉方早生’下調(diào);表達(dá)低且變化幅度小。
將參與生長素信號轉(zhuǎn)導(dǎo)的18個(gè)差異表達(dá)基因進(jìn)行表達(dá)量分析(圖7-C)。在花后45 d之前,相關(guān)基因(ppa002065m)在‘倉方早生’及其早熟芽變中表達(dá)無顯著差異;硬核期之后,早熟芽變果實(shí)中ppa002065m表達(dá)量逐漸下降,‘倉方早生’中該基因表達(dá)量先緩慢增加后降低。在花后45 d,早熟芽變果實(shí)中屬于家族的相關(guān)基因(ppa013846m、ppa013844m、ppa013765m、ppa013847m)表達(dá)量較‘倉方早生’上調(diào),隨著果實(shí)逐漸成熟,其表達(dá)量逐漸增加。在果實(shí)生長發(fā)育過程中,AUX/IAA家族差異顯著基因共6個(gè),其中除ppa010871m、ppa010501m在前期不表達(dá)外,其余4個(gè)基因表達(dá)量呈上升趨勢。在花后59、71 d,早熟芽變中AUX/IAA相關(guān)基因ppa010342m、ppa010871m、ppa009416m表達(dá)量較‘倉方早生’上調(diào),其中ppa010871m表達(dá)量上調(diào)幅度最大。隨著果實(shí)發(fā)育成熟,ppa007483m、ppa010342m、ppa011935m、ppa011570m表達(dá)量逐漸增高。編碼的ppa003134m表達(dá)豐度較高且在‘倉方早生’及其早熟芽變果實(shí)發(fā)育后期表達(dá)量差異顯著。生長素合成限速酶基因(ppa007054m)的表達(dá)量在早熟芽變果實(shí)中自硬核期便迅速增加,而在‘倉方早生’中的表達(dá)趨勢則是先緩慢增加,后期才迅速增加。
A:乙烯;B:脫落酸;C:生長素 A: Ethylene; B: Abscisic acid; C: Auxin
為了鑒定與果實(shí)發(fā)育相關(guān)的基因,對轉(zhuǎn)錄組數(shù)據(jù)中測得的34 375個(gè)基因進(jìn)行加權(quán)基因共表達(dá)網(wǎng)絡(luò)分析。首先篩選出樣本間表達(dá)量差異最大的前10%的基因(3 483個(gè))作為網(wǎng)絡(luò)構(gòu)建中的樣本-基因數(shù)據(jù)集。然后計(jì)算網(wǎng)絡(luò)權(quán)重,當(dāng)power=10時(shí),相關(guān)性達(dá)到0.85,此時(shí)平均連接度趨近于0,為最優(yōu)軟閾值數(shù)。根據(jù)power值獲得臨近矩陣和拓?fù)渚仃?,得到的拓?fù)渚仃囀褂孟喈惗葘蜻M(jìn)行聚類,然后使用動(dòng)態(tài)剪切法將樹剪切成不同的模塊,如圖8所示。本研究鑒定到14個(gè)模塊,各模塊所包含的基因數(shù)目見圖9。另外,各個(gè)模塊均具有相對獨(dú)立性,有利于后續(xù)模塊分析的公平性和客觀性。
經(jīng)分析鑒定,模塊turquoise中基因的差異表達(dá)可能是導(dǎo)致兩品種果實(shí)成熟期出現(xiàn)差異的主要原因,以MM值和GS值篩選出隸屬于該模塊中的樞紐基因643個(gè)。將上述643個(gè)基因進(jìn)行KEGG通路分析,共有356個(gè)基因被注釋到了各種通路。經(jīng)統(tǒng)計(jì),生長素信號轉(zhuǎn)導(dǎo)途徑注釋到的基因數(shù)目最多,包含了10個(gè)AUX/IAA基因,其表達(dá)量變化如圖10所示。AUX/IAA基因在‘倉方早生’和早熟芽變果實(shí)中表達(dá)量總體呈上升趨勢,但表達(dá)豐度呈現(xiàn)明顯不同。當(dāng)‘倉方早生’及早熟芽變果實(shí)達(dá)到成熟時(shí),表達(dá)量最高,最小,且8自花后45 d表達(dá)量迅速增加。在‘倉方早生’及其早熟芽變的果實(shí)中,在各采樣時(shí)間點(diǎn)表達(dá)豐度良好,而在果實(shí)發(fā)育早期不表達(dá),在成熟時(shí)達(dá)到峰值。在表達(dá)豐度中等的AUX/IAA基因中,的表達(dá)量隨果實(shí)發(fā)育成熟持續(xù)上升,當(dāng)果實(shí)進(jìn)入成熟時(shí),上升趨勢最明顯。將上述IAA蛋白序列輸入到String中,搜索與之互作的ARF蛋白,并繪制IAA與ARF之間的蛋白互作網(wǎng)絡(luò)圖,結(jié)果通過Cytoscape進(jìn)行可視化(圖11)。以Degree繪制點(diǎn)的大小和顏色衡量該節(jié)點(diǎn)在網(wǎng)絡(luò)圖中關(guān)鍵程度,以combined-score繪制線的粗細(xì)和顏色衡量互作關(guān)系的強(qiáng)度,點(diǎn)越大、越綠則節(jié)點(diǎn)越重要(ARF5>ARF1>AUX/IAA6>AUX/IAA27>ARF4),線越粗、越綠則互作更強(qiáng)(ARF5-AUX/IAA8>ARF5-AUX/IAA20D>ARF9-AUX/IAA20D>ARF5-ARF4)。
圖8 基于diss TOM的動(dòng)態(tài)混合算法構(gòu)建系統(tǒng)聚類樹
圖9 各個(gè)模塊中基因數(shù)量
從轉(zhuǎn)錄組中查找預(yù)測到的8個(gè)ARF蛋白,除ARF9以外,其余均被鑒定到。因此,對余下7個(gè)ARF基因進(jìn)行表達(dá)量分析,發(fā)現(xiàn)在‘倉方早生’及早熟芽變果實(shí)中,隨著果實(shí)的發(fā)育進(jìn)程,不同ARF基因間的表達(dá)趨勢大為不同。在果實(shí)成熟終階段,表達(dá)水平達(dá)到峰值。多數(shù)ARF基因在‘倉方早生’及其早熟芽變中表達(dá)趨勢相似,而在兩個(gè)品種中表達(dá)趨勢相異(圖12)。在果實(shí)發(fā)育成熟過程中的表達(dá)豐度保持良好,且蛋白互作預(yù)測表明(圖11),與篩選得到的樞紐AUX/IAA基因均有互作關(guān)系。
圖10 ‘倉方早生’和早熟芽變中IAA的表達(dá)量
圖11 IAA和ARF的蛋白互作網(wǎng)絡(luò)圖
圖12 ‘倉方早生’和早熟芽變中ARF基因表達(dá)量
本研究對‘倉方早生’及其早熟芽變不同發(fā)育時(shí)期果實(shí)進(jìn)行轉(zhuǎn)錄組測序分析,發(fā)現(xiàn)早熟芽變較‘倉方早生’果實(shí)多數(shù)基因下調(diào)表達(dá)?;ê?0 d,‘倉方早生’及其早熟芽變之間的DEG數(shù)量較低,而花后71 d時(shí)‘倉方早生’及其早熟芽變之間的差異表達(dá)基因數(shù)量最高,且各組間除y4 vs c5上調(diào)基因數(shù)目多于下調(diào)基因外,其他3個(gè)時(shí)期的下調(diào)基因數(shù)目均多于上調(diào)基因,因此推測發(fā)育后期可能是影響早熟芽變果實(shí)成熟差異的關(guān)鍵。GO富集顯示,4個(gè)對比組中注釋到生物過程類的基因數(shù)量最多,結(jié)合KEGG通路分析發(fā)現(xiàn),在果實(shí)生長發(fā)育成熟過程中,伴隨著多種次生代謝途徑基因的差異表達(dá),猜測果實(shí)在成熟過程中次生代謝產(chǎn)物大量合成,這為更深入研究果實(shí)內(nèi)在品質(zhì)形成的分子代謝機(jī)理奠定了基礎(chǔ)。
CHEN等[33]分析了兩種肉質(zhì)桃果實(shí)在3個(gè)不同發(fā)育階段的RNA-seq數(shù)據(jù),鑒定了包含52個(gè)在內(nèi)的120個(gè)差異基因可能與果實(shí)成熟軟化相關(guān)。ONIK等[34]對3個(gè)不同階段的蘋果進(jìn)行RNA-Seq分析,結(jié)果顯示,眾多差異表達(dá)基因參與了乙烯、脫落酸、生長素、赤霉素等激素生物合成途徑,MYB、NAC、WRKY和HSF等轉(zhuǎn)錄因子在成熟前和成熟后的果實(shí)間也存在差異表達(dá);除乙烯外,ABA等激素在調(diào)節(jié)蘋果果實(shí)成熟中也發(fā)揮著關(guān)鍵作用,并可能與乙烯信號相互作用。殷亞蕊[35]通過對‘京紅’桃與其晚熟芽變不同發(fā)育階段果實(shí)進(jìn)行RNA-Seq分析,從中篩選出23個(gè)生長素信號轉(zhuǎn)導(dǎo)途徑的差異基因,和表達(dá)量隨著果實(shí)發(fā)育呈下調(diào)趨勢,且果實(shí)發(fā)育后期在晚熟突變體中的表達(dá)量顯著低于野生型;此外,隨著果實(shí)發(fā)育成熟進(jìn)程,多個(gè)IAA基因在野生型果實(shí)發(fā)育后期的表達(dá)呈明顯上調(diào)。本研究也發(fā)現(xiàn)植物激素信號轉(zhuǎn)導(dǎo)途徑在不同時(shí)間節(jié)點(diǎn)均有富集?!畟}方早生’及其早熟芽變果實(shí)發(fā)育進(jìn)程差異主要表現(xiàn)在硬核期及以后,早熟芽變果實(shí)比‘倉方早生’的硬核期短,推測可能是硬核期基因表達(dá)差異的影響引起后續(xù)植物中生長素、乙烯、脫落酸相關(guān)基因表達(dá)差異,激素相關(guān)基因表達(dá)差異又進(jìn)一步加速果實(shí)成熟相關(guān)基因的表達(dá)。
前期研究表明,在桃果實(shí)乙烯生物合成中發(fā)揮關(guān)鍵作用,是控制桃果實(shí)成熟軟化的主要因子[36-39]。本研究發(fā)現(xiàn),隨著果實(shí)成熟,表達(dá)量增加,當(dāng)果實(shí)成熟時(shí),早熟芽變中表達(dá)量顯著高于‘倉方早生’。番茄、柿和甜櫻桃的表達(dá)量也表現(xiàn)出在成熟轉(zhuǎn)變期達(dá)到高峰,后熟期迅速下降的趨勢[40-41]。本研究發(fā)現(xiàn)在果實(shí)成熟過程中,相較于‘倉方早生’,早熟芽變中2個(gè)表達(dá)水平呈下降趨勢,且ABA合成關(guān)鍵酶顯著下調(diào),多數(shù)PP2C基因表達(dá)量下調(diào),暗示脫落酸積累的多少對果實(shí)發(fā)育成熟具有十分重要的作用。此外,鑒定到了多個(gè)生長素信號響應(yīng)因子、和,這些基因的啟動(dòng)子區(qū)均包含保守生長素響應(yīng)元件,生長素響應(yīng)因子(auxin response factor,ARF)通過與這些元件特異性結(jié)合來調(diào)控生長素的響應(yīng)[42-44],其中對于生長素極為敏感[45-47]。在果實(shí)發(fā)育前期,早熟芽變與‘倉方早生’相比,表達(dá)量上調(diào),推測當(dāng)生長素達(dá)到一定濃度時(shí),首先響應(yīng)生長素信號,通過對生長素的合成及運(yùn)輸調(diào)控果實(shí)發(fā)育。另有研究表明IAA基因可以直接或間接促進(jìn)乙烯的生物合成,最終調(diào)控果實(shí)成熟進(jìn)程[42,48]。本研究中,與的表達(dá)量隨果實(shí)發(fā)育逐漸升高,并在果實(shí)成熟時(shí)表達(dá)量達(dá)到最高(圖10)。根據(jù)基因表達(dá)量的變化與早熟芽變比‘倉方早生’的上調(diào)倍數(shù),推測、、等參與果實(shí)的成熟。此外,本研究還鑒定到在果實(shí)達(dá)到成熟時(shí)表達(dá)豐度良好,但在果實(shí)發(fā)育后期,在兩個(gè)品種中出現(xiàn)顯著的差異表達(dá),因此推測可能參與果實(shí)成熟差異調(diào)控過程。
RNA-seq獲得的數(shù)據(jù)量大且條目繁多,WGCNA能夠有效從大量數(shù)據(jù)中提取到關(guān)鍵信息來解釋生物學(xué)現(xiàn)象[49],因此,利用WGCNA解析具體的農(nóng)藝性狀,分析模塊的生物功能,挖掘模塊中的目標(biāo)基因,將為解析復(fù)雜的農(nóng)藝性狀提供重要的參考依據(jù)。本研究運(yùn)用WGCNA算法從轉(zhuǎn)錄組數(shù)據(jù)中挖掘出了關(guān)于桃果實(shí)成熟的相關(guān)基因,并應(yīng)用該算法對‘倉方早生’及其早熟芽變果實(shí)不同發(fā)育時(shí)期的轉(zhuǎn)錄組數(shù)據(jù)通過構(gòu)建無尺度的基因共表達(dá)網(wǎng)絡(luò),根據(jù)權(quán)重參數(shù)將數(shù)據(jù)進(jìn)行聚類形成不同的模塊,再以相關(guān)系數(shù)值的大小對基因模塊的關(guān)聯(lián)性劃分,得到相關(guān)顯著的模塊turquoise,對模塊中具有特異性的基因深度分析。然后對上述基因進(jìn)行KEGG功能富集分析,進(jìn)一步篩選到與果實(shí)成熟相關(guān)的10個(gè)AUX/IAA基因,為闡明調(diào)控桃果實(shí)成熟的分子網(wǎng)絡(luò)奠定了基礎(chǔ)。
本研究從桃‘倉方早生’及其早熟芽變果實(shí)不同發(fā)育時(shí)期的RNA-seq結(jié)果中篩選出與桃果實(shí)成熟相關(guān)的差異表達(dá)基因4 395個(gè),其中上調(diào)基因2 212個(gè),下調(diào)基因2 183個(gè)。通過WGCNA將差異基因劃分為14個(gè)共表達(dá)模塊,其中模塊turquoise是與桃果實(shí)成熟度顯著相關(guān)的特異性模塊,結(jié)合GO和KEGG分析,共篩選到39個(gè)植物激素相關(guān)通路的差異表達(dá)基因,涉及10個(gè)乙烯、11個(gè)脫落酸和18個(gè)生長素生物合成及其信號轉(zhuǎn)導(dǎo)基因。利用樞紐基因挖掘到10個(gè)作為候選基因,在此基礎(chǔ)上預(yù)測到了7個(gè)ARF基因,并用其構(gòu)建了基因互作調(diào)控網(wǎng)絡(luò)。
[1] GIOVANNONI J, NGUYEN C, AMPOFO B, ZHONG S L, FEI Z J. The epigenome and transcriptional dynamics of fruit ripening. Annual Review of Plant Biology, 2017, 68: 61-84.
[2] SHEN J Y, TIEMAN D, JONES J B, TAYLOR M G, SCHMELZ E, HUFFAKER A, BIES D, CHEN K S, KLEE H J. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany, 2014, 65(2): 419-428.
[3] KLIE S, OSORIO S, TOHGE T, DRINCOVICH M F, FAIT A, GIOVANNONI J J, FERNIE A R, NIKOLOSKI Z. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species. Plant Physiology, 2014, 164(1): 55-68.
[4] KUMAR R, KHURANA A, SHARMA A K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 2014, 65(16): 4561-4575.
[5] LERSLERWONG L, THIPPAN S, RUGKONG A, IMSABAI W. Expression pattern of ethylene-related genes in response to preharvest chemical treatments during development and ripening of mangosteen fruit (L.). Walailak Journal of Science and Technology, 2021, 18(3): 6663-6672.
[6] YANG Y Y, SHAN W, KUANG J F, CHEN J Y, LU W J. Four HD-ZIPs are involved in banana fruit ripening by activating the transcription of ethylene biosynthetic and cell wall-modifying genes. Plant Cell Reports, 2020, 39(3): 351-362.
[7] LI S, ZHU B Z, PIRRELLO J, XU C J, ZHANG B, BOUZAYEN M, CHEN K S, GRIERSON D. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. The New Phytologist, 2020, 226(2): 460-475.
[8] HAYAMA H, SHIMADA T, FUJII H, ITO A, KASHIMURA Y. Ethylene-regulation of fruit softening and softening-related genes in peach. Journal of Experimental Botany, 2006, 57(15): 4071-4077.
[9] 闞娟, 劉俊, 金昌海. 桃果實(shí)成熟軟化與細(xì)胞壁降解相關(guān)糖苷酶及乙烯生物合成的關(guān)系. 中國農(nóng)業(yè)科學(xué), 2012, 45(14): 2931-2938. doi: 10.3864/j.issn.0578-1752.2012.14.016.
KAN J, LIU J, JIN C H. Study on the relationship between peach fruit softening, cell wall degradation related glycosidase and ethlylene biosynthesis. Scientia Agricultura Sinica, 2012, 45(14): 2931-2938. doi: 10.3864/j.issn.0578-1752.2012.14.016. (in Chinese)
[10] 劉進(jìn)平. 乙烯生物合成關(guān)鍵酶基因研究進(jìn)展. 熱帶農(nóng)業(yè)科學(xué), 2013, 33(1): 51-57.
LIU J P. Advances in research on key enzyme genes of ethylene biosynthesis. Chinese Journal of Tropical Agriculture, 2013, 33(1): 51-57. (in Chinese)
[11] TRAINOTTI L, TADIELLO A, CASADORO G. The involvement of auxin in the ripening of climacteric fruits comes of age: The hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany, 2007, 58(12): 3299-3308.
[12] HAN Y C, KUANG J F, CHEN J Y, LIU X C, XIAO Y Y, FU C C, WANG J N, WU K Q, LU W J. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiology, 2016, 171(2): 1070-1084.
[13] LI T, XU Y X, ZHANG L C, JI Y L, TAN D M, YUAN H, WANG A D. The jasmonate-activated transcription factor mdmyc2regulates ethylene response factor and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. The Plant Cell, 2017, 29(6): 1316-1334.
[14] NICOLAS P, LECOURIEUX D, KAPPEL C, CLUZET S, CRAMER G, DELROT S, LECOURIEUX F. The basic leucine zipper transcription factor abscisic acid response element-binding factor2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiology, 2014, 164(1): 365-383.
[15] LIU Y F, ZHAO Y N, CHAI L P, ZHOU J Q, YANG S, KOU X H, XUE Z H. Transcriptome profiling of abscisic acid-related pathways in-silenced tomato fruits. Transactions of Tianjin University, 2021, 27(6): 473-486.
[16] ZENG W F, TAN B, DENG L, WANG Y, ASLAM M, WANG X B, QIAO C K, WANG Z Q, FENG J C. Identification and expression analysis of abscisic acid signal transduction genes during peach fruit ripening. Scientia Horticulturae, 2020, 270: 109402.
[17] WANG X B, ZENG W F, DING Y F, WANG Y, NIU L, YAO J L, PAN L, LU Z H, CUI G C, LI G H, WANG Z Q.PpERFpositively regulates ABA biosynthesis by activatingtranscription during fruit ripening in peach. Horticulture Research, 2019, 6: 19.
[18] KLINGLER J P, BATELLI G, ZHU J K. ABA receptors: The start of a new paradigm in phytohormone signalling. Journal of Experimental Botany, 2010, 61(12): 3199-3210.
[19] SUN L, WANG Y P, CHEN P, REN J, JI K, LI Q, LI P, DAI S J, LENG P. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. Journal of Experimental Botany, 2011, 62(15): 5659-5669.
[20] LEYSER O. Auxin signaling. Plant Physiology, 2018, 176(1): 465-479.
[21] WANG Y C, WANG N, XU H F, JIANG S H, FANG H C, SU M Y, ZHANG Z Y, ZHANG T L, CHEN X S. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Horticulture Research, 2018, 5: 59.
[22] 余佳, 李陽, 龔碩, 關(guān)偉, 劉悅萍. 桃果實(shí)生長素結(jié)合蛋白ABP1的組織定位及蛋白表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2015, 48(5): 921-930. doi: 10.3864/j.issn.0578-1752.2015.05.10.
YU J, LI Y, GONG S, GUAN W, LIU Y P. Tissue location and protein expression analysis of auxin binding protein ABP1 in peach fruit (L.). Scientia Agricultura Sinica, 2015, 48(5): 921-930. doi: 10.3864/j.issn.0578-1752.2015.05.10. (in Chinese)
[23] TATSUKI M, NAKAJIMA N, FUJII H, SHIMADA T, NAKANO M, HAYASHI K I, HAYAMA H, YOSHIOKA H, NAKAMURA Y. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (L. Batsch). Journal of Experimental Botany, 2013, 64(4): 1049-1059.
[24] GUAN D, HU X, DIAO D H, WANG F, LIU Y P. Genome-wide analysis and identification of the Aux/IAA gene family in peach. International Journal of Molecular Sciences, 2019, 20(19):4703-4721.
[25] PAN L Z W F, NIU L, LU Z H, LIU H, CUI G C, ZHU Y Q, CHU J F, LI WP, FANG W C, CAI Z G, LI G H, WANG Z Q., a strong candidate gene for the stony hard phenotype in peach (L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015, 66(22): 7031-7044.
[26] WANG X B, PAN L, WANG Y, MENG J R, DENG L, NIU L, LIU H, DING Y F, YAO J L, NIEUWENHUIZEN N J, AMPOMAH- DWAMENA C, LU Z H, CUI G C, WANG Z Q, ZENG W F.andPpERFform a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Science: an International Journal of Experimental Plant Biology, 2021, 313: 111084.
[27] WANG X B, ZENG W F, DING Y F, WANG Y, NIU L, YAO J L, PAN L, LU Z H, CUI G C, LI G H, WANG Z Q. Peach ethylene response factor PpeERFrepresses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Science: an International Journal of Experimental Plant Biology, 2019, 283: 116-126.
[28] CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.
[29] 趙灣灣. 基于RNA-seq的紅肉番木瓜果實(shí)成熟相關(guān)基因的挖掘[D]. 福州: 福建農(nóng)林大學(xué), 2019.
ZHAO W W. Mining related genes of red meat papaya fruit ripening based on RNA-seq [D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese)
[30] 徐獻(xiàn)斌, 耿曉月, 李慧, 孫麗娟, 鄭煥, 陶建敏. 基于轉(zhuǎn)錄組分析ABA促進(jìn)葡萄花青苷積累相關(guān)基因. 中國農(nóng)業(yè)科學(xué), 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012.
XU X B, GENG X Y, LI H, SUN L J, ZHENG H, TAO J M. Transcriptome analysisof genes involved inABA-induced anthocyanin accumulation in grape. Scientia Agricultura Sinica, 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012. (in Chinese)
[31] 郭永春, 王鵬杰, 金珊, 侯炳豪, 王淑燕, 趙峰, 葉乃興. 基于WGCNA鑒定茶樹響應(yīng)草甘膦相關(guān)的基因共表達(dá)模塊. 中國農(nóng)業(yè)科學(xué), 2022, 55(1): 152-166. doi: 10.3864/j.issn.0578-1752.2022. 01.013.
GUO Y C, WANG P J, JIN S, HOU B H, WANG S Y, ZHAO F, YE N X. Identification of Co-expression gene related to tea plant response to glyphosate based on WGCNA. Scientia Agricultura Sinica, 2022, 55(1): 152-166. doi: 10.3864/j.issn.0578-1752.2022.01. 013. (in Chinese)
[32] 何平, 李林光, 王海波, 常源升, 李慧峰. 遮光性套袋對桃果實(shí)轉(zhuǎn)錄組的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50(6): 1088-1097. doi: 10.3864/j.issn.0578-1752.2017.06.010.
HE P, LI L G, WANG H B, CHANG Y S, LI H F. Effects of shading fruit with opaque paper bag on transcriptome in peach. Scientia Agricultura Sinica, 2017, 50(6): 1088-1097. doi: 10.3864/j.issn.0578- 1752.2017.06.010. (in Chinese)
[33] CHEN C W, GUO J, CAO K, ZHU G R, FANG W C, WANG X W, LI Y, WU J L, XU Q, WANG L R. Identification of candidate genes associated with slow-melting flesh trait in peach using bulked segregant analysis and RNA-seq. Scientia Horticulturae, 2021, 286: 110208.
[34] ONIK J C, HU X J, LIN Q, WANG Z D. Comparative transcriptomic profiling to understand pre- and post-ripening hormonal regulations and anthocyanin biosynthesis in early ripening apple fruit. Molecules, 2018, 23(8): 1908-1927.
[35] 殷亞蕊. ‘京紅’桃及其晚熟芽變果實(shí)發(fā)育特征和轉(zhuǎn)錄組測序分析[D]. 秦皇島: 河北科技師范學(xué)院, 2020.
YIN Y R. Development characteristics and transcriptome sequencing analysis of ‘Jinghong’ peach and its late-maturing bud mutation fruit [D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2020. (in Chinese)
[36] 王小貝. 桃和協(xié)同調(diào)控桃成熟軟化的分子機(jī)制研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2019.
WANG X B. Study on the molecular mechanism of synergistic regulation of peach ripening and softening byand[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[37] YUAN H, YUE P T, BU H D, HAN D G, WANG A D. Genome-wide analysis ofandgenes in pear ().Cellular & Developmental Biology-Plant, 2020, 56(2): 193-199.
[38] LI T, TAN D M, YANG X Y, WANG A D. Exploring the apple genome reveals six ACC synthase genes expressed during fruit ripening. Scientia Horticulturae, 2013, 157: 119-123.
[39] 王宏, 楊王莉, 藺經(jīng), 楊青松, 李曉剛, 盛寶龍, 常有宏. 早熟砂梨‘蘇翠1號’與其親本‘翠冠’‘華酥’成熟果實(shí)差異代謝產(chǎn)物及差異基因比較分析. 園藝學(xué)報(bào), 2022, 49(3): 493-508.
WANG H, YANG W L, LIN J, YANG Q S, LI X G, SHENG B L, CHANG Y H. Comparative metabolic and transcriptomic analysis of ripening fruit in pear cultivars of ‘Sucui l’ ‘Cuiguan’ and ‘Huasu’. Acta Horticulturae Sinica, 2022, 49(3): 493-508. (in Chinese)
[40] JI K, KAI W B, ZHAO B, SUN Y F, YUAN B, DAI S J, LI Q, CHEN P, WANG Y, PEI Y L, WANG H Q, GUO Y D, LENG P.and: Key genes involved in ABA metabolism during tomato fruit ripening. Journal of Experimental Botany, 2014, 65(18): 5243-5255.
[41] ZHAO S L, QI J X, DUAN C R, SUN L, SUN Y F, WANG Y P, JI K, CHEN P, DAI S J, LENG P. Expression analysis of theandgenes that regulate homeostasis of abscisic acid during the maturation of persimmon fruit. The Journal of Horticultural Science and Biotechnology, 2015, 87(2): 165-171.
[42] ITO J, FUKAKI H, ONODA M, LI L, LI C Y, TASAKA M, FURUTANI M. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6562-6567.
[43] 歐春青, 姜淑苓, 王斐, 趙亞楠. 梨全基因組生長素反應(yīng)因子(ARF)基因家族鑒定及表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012.
OU C Q, JIANG S L, WANG F, ZHAO Y N. Genome-wide identification and expression analysis of auxin response factor () gene family in pear. Scientia Agricultura Sinica, 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012. (in Chinese)
[44] TAO S B, ESTELLE M. Mutational studies of the Aux/IAA proteins inreveal novel insights into their function. The New Phytologist, 2018, 218(4): 1534-1542.
[45] HOU K, WU W, GAN S S., a small auxin up RNA gene, is involved in the promotion of leaf senescence in. Plant Physiology, 2013, 161(2): 1002-1009.
[46] 朱宇斌, 孔瑩瑩, 王君暉. 植物生長素響應(yīng)基因SAUR的研究進(jìn)展. 生命科學(xué), 2014, 26(4): 407-413.
ZHU Y B, KONG Y Y, WANG J H. Research advances in auxin-responsive SA UR genes. Chinese Bulletin of Life Sciences, 2014, 26(4): 407-413. (in Chinese)
[47] KONG Y Y, ZHU Y B, GAO C, SHE W J, LIN W Q, CHEN Y, HAN N, BIAN H W, ZHU M Y, WANG J H. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in. Plant and Cell Physiology, 2013, 54(4): 609-621.
[48] LIU M C, CHEN Y, CHEN Y, SHIN J H, MILA I, AUDRAN C, ZOUINE M, PIRRELLO J, BOUZAYEN M. The tomato ethylene response factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Au/IAA27. The New Phytologist, 2018, 219(2): 631-640.
[49] 秦天元, 孫超, 畢真真, 梁文君, 李鵬程, 張俊蓮, 白江平. 基于WGCNA的馬鈴薯根系抗旱相關(guān)共表達(dá)模塊鑒定和核心基因發(fā)掘. 作物學(xué)報(bào), 2020, 46(7): 1033-1051.
QIN T Y, SUN C, BI Z Z, LIANG W J, LI P C, ZHANG J L, BAI J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agronomica Sinica, 2020, 46(7): 1033-1051. (in Chinese)
Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant
1Horticultural Department, Agricultural University of Hebei, Baoding 071000, Hebei;2Mountainous Areas Research Institute, Hebei Agricultural University/Technology Innovation Center for Agriculture in Mountainous Areas of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, Hebei;3Baoding Municipal Bureau of Agriculture and Rural Affairs, Baoding 071000, Hebei;4Wangshu Town Middle School of Yanshan County, Hebei Province, Cangzhou 061300, Hebei
【Objective】 In this study, transcriptome analyses were carried out on the fruits of Kurakato Wase peach and its early-ripening mutant at different developmental stages. The key factors involved in fruit ripening regulation were explored, so as to provide a theoretical basis for further study on the regulation mechanism of fruit ripening. 【Method】 The flesh of Kurakato Wase peach and its early-ripening mutant was sampled at 30 d, 45 d, 59 d, 71 d, and 89 d after anthesis, and transcriptome analyses were performed on the above samples. The candidate differentially expressed genes (DEGs) were verified by quantitative real-time PCR (qRT-PCR). The biological function of DEGs were analyzed through GO function and KEGG pathway. The weighted gene co-expression network analysis (WGCNA) was constructed to identify the hub modules and hub genes closely related to fruit ripening. 【Result】 Four comparison groups including y1 vs c1, y2 vs c2, y3 vs c4 and y4 vs c5 were obtained based on fruit development stages. A tatal of 4 395 DEGs were identified with 2 212 up- and 2 183 down-regulated genes.There were 10, 11 and 18 candidate genes involved in ethylene, abscisic acid and auxin synthesis and signal transduction, respectively. The interaction networks between 10 IAA proteins and their predictive interacting proteins ARF were constructed. GO function revealed that the DEGs were mainly enriched in cellular processes, metabolic processes and monomeric processes in the biological process category; in cell component category, DEGs were mainly enriched in membranes and cellular components; in molecular function category, DEGs were mainly enriched in binding protein and catalytic activity. There were more DEGs in comparison groups y3 vs c4 and y4 vs c5, and these DEGs mainly enriched in molecular functions, such as binding and catalytic activity. The KEGG pathway analysis showed that a variety of secondary metabolites changed during fruit development and ripening, such as sesquiterpene and triterpenoid biosynthesis, flavonoid biosynthesis, carotenoid biosynthesis, and-linolenic acid metabolism. In addition, auxin signal transduction pathway was found to be enriched at different time nodes. 【Conclusion】 Among DEGs, a large number of hormone signal transduction pathway genes, especially auxin signal pathway genes, were enriched, and these genes might play an extremely important role during fruit ripening. The functions of candidate genesandand the molecular regulation of fruit ripening would be further elucidated in the future studies.
peach; fruit ripening; RNA-seq; WGCNA
10.3864/j.issn.0578-1752.2023.05.012
2022-04-27;
2022-07-21
財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-30-2-03)、熱雜果現(xiàn)代種業(yè)科技創(chuàng)新團(tuán)隊(duì)(21326310D)
彭佳偉,E-mail:1358345303@qq.com。張葉,E-mail:20528036@qq.com。彭佳偉和張葉為同等貢獻(xiàn)作者。通信作者張學(xué)英,E-mail:yyzxy@hebau.edu.cn。通信作者陳海江,E-mail:chenhaijiang2001@163.com。通信作者田義,E-mail:tianyi@hebau.edu.cn
(責(zé)任編輯 趙伶俐)